Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.635
Filtrar
1.
Microbiome ; 12(1): 81, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715147

RESUMEN

BACKGROUND: After two decades of extensive microbiome research, the current forefront of scientific exploration involves moving beyond description and classification to uncovering the intricate mechanisms underlying the coalescence of microbial communities. Deciphering microbiome assembly has been technically challenging due to their vast microbial diversity but establishing a synthetic community (SynCom) serves as a key strategy in unravelling this process. Achieving absolute quantification is crucial for establishing causality in assembly dynamics. However, existing approaches are primarily designed to differentiate a specific group of microorganisms within a particular SynCom. RESULTS: To address this issue, we have developed the differential fluorescent marking (DFM) strategy, employing three distinguishable fluorescent proteins in single and double combinations. Building on the mini-Tn7 transposon, DFM capitalises on enhanced stability and broad applicability across diverse Proteobacteria species. The various DFM constructions are built using the pTn7-SCOUT plasmid family, enabling modular assembly, and facilitating the interchangeability of expression and antibiotic cassettes in a single reaction. DFM has no detrimental effects on fitness or community assembly dynamics, and through the application of flow cytometry, we successfully differentiated, quantified, and tracked a diverse six-member SynCom under various complex conditions like root rhizosphere showing a different colonisation assembly dynamic between pea and barley roots. CONCLUSIONS: DFM represents a powerful resource that eliminates dependence on sequencing and/or culturing, thereby opening new avenues for studying microbiome assembly. Video Abstract.


Asunto(s)
Elementos Transponibles de ADN , Microbiota , Rizosfera , Plásmidos/genética , Raíces de Plantas/microbiología , Proteobacteria/genética , Citometría de Flujo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microbiología del Suelo
2.
PLoS One ; 19(5): e0302522, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758940

RESUMEN

Paddlefish has high economic and ecological value. In this study, microbial diversity and community structure in intestine, stomach, and mouth of paddlefish were detected using high-throughput sequencing. The results showed that the diversity and richness indices decreased along the digestive tract, and significantly lower proportion of those were observed in intestine. Firmicutes, Bacteroidetes and Proteobacteria were the dominant phyla. In top 10 phyla, there was no significant difference in mouth and stomach. But compared with intestine, there were significant differences in 8 of the 10 phyla, and Firmicutes and Bacteroidetes increased significantly, while Proteobacteria decreased significantly. There was no dominant genus in mouth and stomach, but Clostridium_sensu_stricto_1 and uncultured_bacterium_o_Bacteroidales was predominant in intestine. In conclusion, the species and abundance of microbiota in the mouth and stomach of paddlefish were mostly the same, but significantly different from those in intestine. Moreover, there was enrichment of the dominant bacteria in intestine.


Asunto(s)
Peces , Microbioma Gastrointestinal , Animales , Peces/microbiología , Tracto Gastrointestinal/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Boca/microbiología , Estómago/microbiología , Proteobacteria/aislamiento & purificación , Proteobacteria/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Intestinos/microbiología , Bacteroidetes/aislamiento & purificación , Bacteroidetes/genética , Firmicutes/aislamiento & purificación , Firmicutes/genética , Firmicutes/clasificación , ARN Ribosómico 16S/genética , Biodiversidad
3.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38637314

RESUMEN

Biocrusts, common in natural ecosystems, are specific assemblages of microorganisms at or on the soil surface with associated microorganisms extending into the top centimeter of soil. Agroecosystem biocrusts have similar rates of nitrogen (N) fixation as those in natural ecosystems, but it is unclear how agricultural management influences their composition and function. This study examined the total bacterial and diazotrophic communities of biocrusts in a citrus orchard and a vineyard that shared a similar climate and soil type but differed in management. To contrast climate and soil type, these biocrusts were also compared with those from an apple orchard. Unlike natural ecosystem biocrusts, these agroecosystem biocrusts were dominated by proteobacteria and had a lower abundance of cyanobacteria. All of the examined agroecosystem biocrust diazotroph communities were dominated by N-fixing cyanobacteria from the Nostocales order, similar to natural ecosystem cyanobacterial biocrusts. Lower irrigation and fertilizer in the vineyard compared with the citrus orchard could have contributed to biocrust microbial composition, whereas soil type and climate could have differentiated the apple orchard biocrust. Season did not influence the bacterial and diazotrophic community composition of any of these agroecosystem biocrusts. Overall, agricultural management and climatic and edaphic factors potentially influenced the community composition and function of these biocrusts.


Asunto(s)
Productos Agrícolas , Malus , Fijación del Nitrógeno , Microbiología del Suelo , Malus/microbiología , Productos Agrícolas/microbiología , Productos Agrícolas/crecimiento & desarrollo , Bacterias Fijadoras de Nitrógeno/genética , Bacterias Fijadoras de Nitrógeno/metabolismo , Citrus/microbiología , Ecosistema , Cianobacterias/genética , Cianobacterias/clasificación , Cianobacterias/crecimiento & desarrollo , Suelo/química , Agricultura , Nitrógeno/metabolismo , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Proteobacteria/genética , Estaciones del Año
4.
J Water Health ; 22(3): 536-549, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38557569

RESUMEN

Bacterial communities in drinking water provide a gauge to measure quality and confer insights into public health. In contrast to urban systems, water treatment in rural areas is not adequately monitored and could become a health risk. We performed 16S rRNA amplicon sequencing to analyze the microbiome present in the water treatment plants at two rural communities, one city, and the downstream water for human consumption in schools and reservoirs in the Andean highlands of Ecuador. We tested the effect of water treatment on the diversity and composition of bacterial communities. A set of physicochemical variables in the sampled water was evaluated and correlated with the structure of the observed bacterial communities. Predominant bacteria in the analyzed communities belonged to Proteobacteria and Actinobacteria. The Sphingobium genus, a chlorine resistance group, was particularly abundant. Of health concern in drinking water reservoirs were Fusobacteriaceae, Lachnospiraceae, and Ruminococcaceae; these families are associated with human and poultry fecal contamination. We propose the latter families as relevant biomarkers for establishing local standards for the monitoring of potable water systems in highlands of Ecuador. Our assessment of bacterial community composition in water systems in the Ecuadorian highlands provides a technical background to inform management decisions.


Asunto(s)
Agua Potable , Humanos , Ecuador , ARN Ribosómico 16S/genética , Bacterias , Proteobacteria/genética , Microbiología del Agua
5.
Huan Jing Ke Xue ; 45(5): 2727-2740, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629536

RESUMEN

Lake wetlands are extremely important and special ecosystems, which are important for regional water resource storage, environmental protection, and biodiversity maintenance. Sediment bacteria are an important component of lake ecosystems and are a major driver of biogeochemical cycling in lakes. In order to investigate the community structure of bacteria in typical lake sediments in Yinchuan City and their influencing factors, three typical lakes in Yinchuan City (Yuehai Lake, Mingcui Lake, and Xiniu Lake) were selected for the study and surface sediments were collected in January, April, July, and October 2021. The composition of the sediment bacterial community was examined using 16S rDNA high-throughput sequencing technology, and the response relationships between them and heavy metals were explored. The results showed that the ecological hazard coefficient for heavy metals in the sediments of three typical lakes in Yinchuan City was far less than 40, and the ecological hazard index was far less than 150, all of which indicated a minor ecological hazard. There were no significant differences in bacterial community diversity among the three lakes, but there were significant variations in diversity among the lakes in different seasons and significant differences in community composition. The dominant phyla (top three in terms of relative abundance) in Yuehai Lake, Mingcui Lake, and Xiniu Lake were Proteobacteria, Bacteroidetes, and Chloroflexi. The dominant lower orders were Gammaproteobacteria, Alphaproteobacteria, and Deltaproteobacteria. The main divergent species that occurred at the phylum level in typical lakes in Yinchuan were Proteobacteria, Bacteroidetes, Euryarchaeota, Firmicutes, Actinobacteria, and Acidobacteria. The sediment bacterial community structure of Yuehai Lake was significantly correlated with Cu, Fe, Mn, Zn, As, and Pb; the sediment bacterial community structure of Lake Mingcui was significantly correlated with Fe, Pb, and Cr; and the sediment bacterial community structure of Xiniu Lake was not significantly correlated with heavy metals. The types and contents of sediment heavy metals had a significant effect on the bacterial community structure of sediments in Yinchuan Yuehai Lake and Mingcui Lake and were important environmental factors that caused changes in the bacterial community structure of lake sediments.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Lagos/química , Ecosistema , Plomo , Metales Pesados/análisis , Bacterias/genética , Proteobacteria/genética , Sedimentos Geológicos/química , China , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Monitoreo del Ambiente
6.
PLoS One ; 19(4): e0301642, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38683832

RESUMEN

Horizontal gene transfer (HGT) is a well-documented strategy used by bacteria to enhance their adaptability to challenging environmental conditions. Through HGT, a group of conserved genetic elements known as mobile genetic elements (MGEs) is disseminated within bacterial communities. MGEs offer numerous advantages to the host, increasing its fitness by acquiring new functions that help bacteria contend with adverse conditions, including exposure to heavy metal and antibiotics. This study explores MGEs within microbial communities along the Yucatan coast using a metatranscriptomics approach. Prior to this research, nothing was known about the coastal Yucatan's microbial environmental mobilome and HGT processes between these bacterial communities. This study reveals a positive correlation between MGEs and antibiotic resistance genes (ARGs) along the Yucatan coast, with higher MGEs abundance in more contaminated sites. The Proteobacteria and Firmicutes groups exhibited the highest number of MGEs. It's important to highlight that the most abundant classes of MGEs might not be the ones most strongly linked to ARGs, as observed for the recombination/repair class. This work presents the first geographical distribution of the environmental mobilome in Yucatan Peninsula mangroves.


Asunto(s)
Transferencia de Gen Horizontal , Secuencias Repetitivas Esparcidas , Microbiota , Secuencias Repetitivas Esparcidas/genética , Microbiota/genética , México , Bacterias/genética , Bacterias/clasificación , Proteobacteria/genética
7.
PLoS One ; 19(3): e0299251, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38442103

RESUMEN

Environmental variations have been observed to influence bacterial community composition, thereby impacting biological activities in the soil. Together, the information on bacterial functional groups in Phatthalung sago palm-growing soils remains limited. In this work, the core soil bacterial community in the Phatthalung sago palm-growing areas during both the summer and rainy seasons was examined using V3-V4 amplicon sequencing. Our findings demonstrated that the seasons had no significant effects on the alpha diversity, but the beta diversity of the community was influenced by seasonal variations. The bacteria in the phyla Acidobacteriota, Actinobacteriota, Chloroflexi, Methylomirabilota, Planctomycetota, and Proteobacteria were predominantly identified across the soil samples. Among these, 26 genera were classified as a core microbiome, mostly belonging to uncultured bacteria. Gene functions related to photorespiration and methanogenesis were enriched in both seasons. Genes related to aerobic chemoheterotrophy metabolisms and nitrogen fixation were more abundant in the rainy season soils, while, human pathogen pneumonia-related genes were overrepresented in the summer season. The investigation not only provides into the bacterial composition inherent to the sago palm-cultivated soil but also the gene functions during the shift in seasons.


Asunto(s)
Arecaceae , Chloroflexi , Microbiota , Humanos , Bacterias/genética , Proteobacteria/genética , Microbiota/genética , Suelo
8.
PeerJ ; 12: e16931, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38371377

RESUMEN

Background: Urbanization has an ecological and evolutionary effect on urban microorganisms. Microorganisms are fundamental to ecosystem functions, such as global biogeochemical cycles, biodegradation and biotransformation of pollutants, and restoration and maintenance of ecosystems. Changes in microbial communities can disrupt these essential processes, leading to imbalances within ecosystems. Studying the impact of human activities on urban microbes is critical to protecting the environment, human health, and overall urban sustainability. Methods: In this study, bacterial communities in the sediments of an urban artificial river were profiled by sequencing the 16S rRNA V3-V4 region. The samples collected from the eastern side of the Jiusha River were designated as the JHE group and were marked by persistent urban sewage discharges. The samples collected on the western side of the Jiusha River were categorized as the JHW group for comparative analysis. Results: The calculated alpha diversity indices indicated that the bacterial community in the JHW group exhibited greater species diversity and evenness than that of the JHE group. Proteobacteria was the most dominant phylum between the two groups, followed by Bacteroidota. The relative abundance of Proteobacteria and Bacteroidota accumulated in the JHE group was higher than in the JHW group. Therefore, the estimated biomarkers in the JHE group were divided evenly between Proteobacteria and Bacteroidota, whereas the biomarkers in the JHW group mainly belonged to Proteobacteria. The Sulfuricurvum, MND1, and Thiobacillus genus were the major contributors to differences between the two groups. In contrast to JHW, JHE exhibited higher enzyme abundances related to hydrolases, oxidoreductases, and transferases, along with a prevalence of pathways associated with carbohydrate, energy, and amino acid metabolisms. Our study highlights the impact of human-induced water pollution on microorganisms in urban environments.


Asunto(s)
Microbiota , Aguas del Alcantarillado , Humanos , Ciudades , Ríos/química , ARN Ribosómico 16S/genética , Sedimentos Geológicos/microbiología , Crecimiento Sostenible , Bacterias/genética , Bacteroidetes/genética , Proteobacteria/genética , Microbiota/genética , Biomarcadores
9.
FEMS Microbiol Ecol ; 100(3)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38305149

RESUMEN

Himalayan glaciers are receding at an exceptional rate, perturbing the local biome and ecosystem processes. Understanding the microbial ecology of an exclusively microbe-driven biome provides insights into their contributions to the ecosystem functioning through biogeochemical fluxes. Here, we investigated the bacterial communities and their functional potential in the retreating East Rathong Glacier (ERG) of Sikkim Himalaya. Amplicon-based taxonomic classification revealed the dominance of the phyla Proteobacteria, Bacteroidota, and candidate Patescibacteria in the glacial sites. Further, eight good-quality metagenome-assembled genomes (MAGs) of Proteobacteria, Patescibacteria, Acidobacteriota, and Choloflexota retrieved from the metagenomes elucidated the microbial contributions to nutrient cycling. The ERG MAGs showed aerobic respiration as a primary metabolic feature, accompanied by carbon fixation and complex carbon degradation potentials. Pathways for nitrogen metabolism, chiefly dissimilatory nitrate reduction and denitrification, and a complete sulphur oxidation enzyme complex for sulphur metabolism were identified in the MAGs. We observed that DNA repair and oxidative stress response genes complemented with osmotic and periplasmic stress and protein chaperones were vital for adaptation against the intense radiation and stress conditions of the extreme Himalayan niche. Current findings elucidate the microbiome and associated functional potentials of a vulnerable glacier, emphasizing their significant ecological roles in a changing glacial ecosystem.


Asunto(s)
Ecosistema , Microbiota , Cubierta de Hielo , Metagenómica , Bacterias , Metagenoma , Proteobacteria/genética , Azufre/metabolismo
10.
Microbiome ; 12(1): 16, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287457

RESUMEN

BACKGROUND: Many arthropods rely on their gut microbiome to digest plant material, which is often low in nitrogen but high in complex polysaccharides. Detritivores, such as millipedes, live on a particularly poor diet, but the identity and nutritional contribution of their microbiome are largely unknown. In this study, the hindgut microbiota of the tropical millipede Epibolus pulchripes (large, methane emitting) and the temperate millipede Glomeris connexa (small, non-methane emitting), fed on an identical diet, were studied using comparative metagenomics and metatranscriptomics. RESULTS: The results showed that the microbial load in E. pulchripes is much higher and more diverse than in G. connexa. The microbial communities of the two species differed significantly, with Bacteroidota dominating the hindguts of E. pulchripes and Proteobacteria (Pseudomonadota) in G. connexa. Despite equal sequencing effort, de novo assembly and binning recovered 282 metagenome-assembled genomes (MAGs) from E. pulchripes and 33 from G. connexa, including 90 novel bacterial taxa (81 in E. pulchripes and 9 in G. connexa). However, despite this taxonomic divergence, most of the functions, including carbohydrate hydrolysis, sulfate reduction, and nitrogen cycling, were common to the two species. Members of the Bacteroidota (Bacteroidetes) were the primary agents of complex carbon degradation in E. pulchripes, while members of Proteobacteria dominated in G. connexa. Members of Desulfobacterota were the potential sulfate-reducing bacteria in E. pulchripes. The capacity for dissimilatory nitrate reduction was found in Actinobacteriota (E. pulchripes) and Proteobacteria (both species), but only Proteobacteria possessed the capacity for denitrification (both species). In contrast, some functions were only found in E. pulchripes. These include reductive acetogenesis, found in members of Desulfobacterota and Firmicutes (Bacillota) in E. pulchripes. Also, diazotrophs were only found in E. pulchripes, with a few members of the Firmicutes and Proteobacteria expressing the nifH gene. Interestingly, fungal-cell-wall-degrading glycoside hydrolases (GHs) were among the most abundant carbohydrate-active enzymes (CAZymes) expressed in both millipede species, suggesting that fungal biomass plays an important role in the millipede diet. CONCLUSIONS: Overall, these results provide detailed insights into the genomic capabilities of the microbial community in the hindgut of millipedes and shed light on the ecophysiology of these essential detritivores. Video Abstract.


Asunto(s)
Artrópodos , Microbioma Gastrointestinal , Animales , Microbioma Gastrointestinal/genética , Filogenia , Bacterias , Artrópodos/genética , Metagenoma , Bacteroidetes/genética , Proteobacteria/genética , Metagenómica , Carbohidratos , Nitrógeno/metabolismo , Sulfatos/metabolismo
11.
Microbiome ; 12(1): 2, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38167330

RESUMEN

BACKGROUND: Aquaculture plays an important role in global protein supplies and food security. The ban on antibiotics as feed additive proposes urgent need to develop alternatives. Gut microbiota plays important roles in the metabolism and immunity of fish and has the potential to give rise to novel solutions for challenges confronted by fish culture. However, our understanding of fish gut microbiome is still lacking. RESULTS: We identified 575,856 non-redundant genes by metagenomic sequencing of the intestinal content samples of grass carp. Taxonomic and functional annotation of the gene catalogue revealed specificity of the gut microbiome of grass carp compared with mammals. Co-occurrence analysis indicated exclusive relations between the genera belonging to Proteobacteria and Fusobacteria/Firmicutes/Bacteroidetes, suggesting two independent ecological groups of the microbiota. The association pattern of Proteobacteria with the gene expression modules of fish gut and the liver was consistently opposite to that of Fusobacteria, Firmicutes, and Bacteroidetes, implying differential functionality of Proteobacteria and Fusobacteria/Firmicutes/Bacteroidetes. Therefore, the two ecological groups were considered as two functional groups, i.e., Functional Group 1: Proteobacteria and Functional Group 2: Fusobacteria/Firmicutes/Bacteroidetes. Further analysis revealed that the two functional groups differ in genetic capacity for carbohydrate utilization, virulence factors, and antibiotic resistance. Finally, we proposed that the ratio of "Functional Group 2/Functional Group 1" can be used as a biomarker that efficiently reflects the structural and functional characteristics of the microbiota of grass carp. CONCLUSIONS: The gene catalogue is an important resource for investigating the gut microbiome of grass carp. Multi-omics analysis provides insights into functional implications of the main phyla that comprise the fish microbiota and shed lights on targets for microbiota regulation. Video Abstract.


Asunto(s)
Carpas , Microbioma Gastrointestinal , Microbiota , Animales , Microbioma Gastrointestinal/genética , Multiómica , Proteobacteria/genética , Fusobacterias/genética , Bacteroidetes/genética , Firmicutes/genética , Fusobacterium/genética , ARN Ribosómico 16S/genética , Mamíferos/genética
12.
Sci Rep ; 14(1): 2062, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267511

RESUMEN

In this study, high-throughput sequencing of 16S rRNA amplicons and predictive PICRUSt functional profiles were used to perform a comprehensive analysis of the temporal bacterial distribution and metabolic functions of 19 bimonthly samples collected from July 2019 to January 2020 in the surface water of Billings Reservoir, São Paulo. The results revealed that most of the bacterial 16S rRNA gene sequences belonged to Cyanobacteria and Proteobacteria, which accounted for more than 58% of the total bacterial abundance. Species richness and evenness indices were highest in surface water from summer samples (January 2020), followed by winter (July 2019) and spring samples (September and November 2019). Results also showed that the highest concentrations of sulfate (SO4-2), phosphate (P), ammonia (NH3), and nitrate (NO3-) were detected in November 2019 and January 2020 compared with samples collected in July and September 2019 (P < 0.05). Principal component analysis suggests that physicochemical factors such as pH, DO, temperature, and NH3 are the most important environmental factors influencing spatial and temporal variations in the community structure of bacterioplankton. At the genus level, 18.3% and 9.9% of OTUs in the July and September 2019 samples, respectively, were assigned to Planktothrix, while 14.4% and 20% of OTUs in the November 2019 and January 2020 samples, respectively, were assigned to Microcystis. In addition, PICRUSt metabolic analysis revealed increasing enrichment of genes in surface water associated with multiple metabolic processes rather than a single regulatory mechanism. This is the first study to examine the temporal dynamics of bacterioplankton and its function in Billings Reservoir during the winter, spring, and summer seasons. The study provides comprehensive reference information on the effects of an artificial habitat on the bacterioplankton community that can be used to interpret the results of studies to evaluate and set appropriate treatment targets.


Asunto(s)
Amoníaco , Proteobacteria , ARN Ribosómico 16S/genética , Brasil , Proteobacteria/genética , Agua
13.
Sci Total Environ ; 915: 170143, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38242477

RESUMEN

Microbial communities in surface waters are affected by environmental conditions and can influence changes in water quality. To explore the hypothesis that the microbiome in agricultural waters associates with spatiotemporal variations in overall water quality and, in turn, has implications for resource monitoring and management, we characterized the relationships between the microbiota and physicochemical properties in a model irrigation pond as a factor of sampling time (i.e., 9:00, 12:00, 15:00) and location within the pond (i.e., bank vs. interior sites and cross-sectional depths at 0, 1, and 2 m). The microbial communities, which were defined by 16S rRNA gene sequencing analysis, significantly varied based on all sampling factors (PERMANOVA P < 0.05 for each). While the relative abundances of dominant phyla (e.g., Proteobacteria and Bacteroidetes) were relatively stable throughout the pond, subtle yet significant increases in α-diversity were observed as the day progressed (ANOVA P < 0.001). Key water quality properties that also increased between the morning and afternoon (i.e., pH, dissolved oxygen, and temperature) positively associated with relative abundances of Cyanobacteria, though were inversely proportional to Verrucomicrobia. These properties, among additional parameters such as bioavailable nutrients (e.g., NH3, NO3, PO4), chlorophyll, phycocyanin, conductivity, and colored dissolved organic matter, exhibited significant relationships with relative abundances of various bacterial genera as well. Further investigation of the microbiota in underlying sediments revealed significant differences between the bank and interior sites of the pond (P < 0.05 for α- and ß-diversity). Overall, our findings emphasize the importance of accounting for time of day and water sampling location and depth when surveying the microbiomes of irrigation ponds and other small freshwater sources.


Asunto(s)
Cianobacterias , Estanques , Estanques/microbiología , ARN Ribosómico 16S/genética , Estudios Transversales , Proteobacteria/genética , Cianobacterias/genética
14.
Microb Pathog ; 186: 106502, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38103581

RESUMEN

Starvation stress can profoundly impact various physiological parameters in fish, including metabolism, behavior, meat quality, and reproduction. However, the repercussions of starvation on the intestinal microbiota of grass carp remain under-explored. This research aimed to elucidate the effects of a 28-day starvation period on the composition of the intestinal microbiota of grass carp. Tissue pathology assessments revealed significant alterations in the dimensions of intestinal villi in the foregut, midgut, and hindgut as compared to the controls. Specifically, dominant differences appeared in both the length and width of the villi. Moreover, a marked decline in the goblet cell population was observed across all the intestinal segments. 16S rDNA sequencing was used to investigate changes in the gut microbiota, which revealed distinct clustering patterns among the starved and control groups. While α diversity metrics remained consistent for the anterior intestine, significant deviations were recorded in the Shannon (midgut: ***P < 0.001; hindgut: *P < 0.05) and Simpson indices (midgut and hindgut: ***P < 0.001), demonstrating alterations in microbial richness and evenness. At the phylum level, Proteobacteria, Bacteroidetes, and Fusobacteria emerged as dominant groups post-starvation. Other bacterial taxa, such as Actinobacteria and Verrucomicrobia, decreased, whereas Bacteroidetes and Firmicutes showed a small increase. In summation, starvation induces considerable morphological and microbial shifts in the grass carp intestine, and thus, this study offers valuable insights into their cultivation strategies.


Asunto(s)
Carpas , Animales , Bacterias/genética , Intestinos/microbiología , Proteobacteria/genética , Bacteroidetes
15.
PeerJ ; 11: e16619, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107585

RESUMEN

Endophytes are core of the plant-associated microbiome, and seed endophytes are closely related to the plant growth and development. Seed germination is an important part of pecan's life activities, but the composition and changes of microbes during different germination processes have not yet been revealed in pecan seeds. In order to deeply explore the characteristics of endophytes during the germination process of pecan, high-throughput sequencing was performed on seeds at four different germination stages. Findings of present study was found that the diversity and composition of microorganisms were different in different germination stages, and the microbial richness and diversity were highest in the seed endocarp break stage. It was speculated that the change of endophytes in pecan seeds was related to the germination stage. By evaluating the relationship between microbial communities, the core microbiota Cyanobacteria, Proteobacteria and Actinobacteria (bacterial) and Anthophyta and Ascomycota (fungal) core microbiota were identified in germinating pecan seeds. Finally, biomarkers in different germination processes of pecan seeds were identified by LEfSe analysis, among which Proteobacteria, Gamma proteobacteria and, Cyanobacteria and Ascomycota and Sordariomycetes were most abundant. Thus, this study will help to explore the interaction mechanism between pecan seeds and endophytes in different germination processes, and provide materials for the research and development of pecan seed endophytes.


Asunto(s)
Carya , Microbiota , Germinación , Semillas , Bacterias/genética , Microbiota/genética , Proteobacteria/genética , Endófitos/genética
16.
Front Cell Infect Microbiol ; 13: 1266446, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38029257

RESUMEN

Objectives: To investigate the urinary microbiota composition in urolithiasis patients compared to healthy controls and to identify potential microbial markers and their association with clinical parameters. Methods: A total of 66 samples, comprising 45 from urolithiasis patients and 21 from healthy controls, were analyzed. 16S rRNA gene sequencing was employed to determine the microbiota composition. Various statistical and bioinformatics tools, including ANOVA, PCoA, and LEfSe, were utilized to analyze the sequencing data and identify significant differences in microbial abundance. Results: No significant demographic differences were observed between the two groups. Post-quality control, clean tags ranged from 60,979 to 68,736. Significant differences in α-diversity were observed between the two groups. ß-diversity analysis revealed distinct clustering of the urinary microbiota in urolithiasis patients and controls. Notably, Ruminococcaceae was predominant in urolithiasis samples, while Proteobacteria was more prevalent in healthy samples. Lactobacillus was significantly overrepresented in samples from healthy females. Conclusion: The urinary microbiota composition in urolithiasis patients is distinct from that of healthy controls. Specific microbial taxa, such as Ruminococcaceae and Proteobacteria, could serve as potential biomarkers for urolithiasis. The findings pave the way for further exploration of the role of microbiota in urolithiasis and the development of microbiome-based therapeutic strategies.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Urolitiasis , Femenino , Humanos , ARN Ribosómico 16S/genética , Microbioma Gastrointestinal/genética , Genes de ARNr , Microbiota/genética , Proteobacteria/genética , Urolitiasis/genética
17.
Med Sci Monit ; 29: e941560, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38018034

RESUMEN

BACKGROUND Neonatal gut diversity is influenced by birth conditions and probiotic/antibiotic use. The gut microbiota affects brain development, immunity, and risk of diseases. Preterm infants, especially in neonatal intensive care units (NICUs), have different gut flora from full-term infants, suggesting in utero microbial colonization. This study examined gut microbiota changes in 92 NICU preterm infants in China. MATERIAL AND METHODS We collected data on 92 preterm infants admitted to the NICU immediately after birth, and fecal samples were collected on days 1, 3, 7, 14, 21, 28, and 60. We analyzed changes in intestinal bacteria through 16S rRNA sequencing, predicted the change in gut microbiota function over time, and compared the effects of main feeding modality on the intestinal bacteria of preterm infants. RESULTS At the phylum level, the top 5 phyla in total accounted for 99.69% of the abundance, in decreasing order of abundance: Proteobacteria, Firmicutes, Actinobacteria, Tenericutes, and Bacteroidetes. At the genus level, the top 10 genera in terms of abundance accounted for a total of 90.90%, in decreasing order of abundance: Pseudomonas, Staphylococcus, Klebsiella, Escherichia-Shigella, unclassified Enterobacteriaceae, Staphylococcus, Clostridium-sensu-stricto-1, Streptococcus, Sphingomonas, and Ureaplasma. The abundance of Proteobacteria and Pseudomonas showed a decreasing trend at first, reached a minimum at day 14, and then an increasing trend, while the opposite trend was observed for Firmicutes. The metabolic function of the bacterial community changed greatly at different time points. The abundance of Proteobacteria at the phylum level and Streptococcus at the genus level in formula-fed infants were significantly higher than in breast-fed infants. CONCLUSIONS Between 1 and 60 days, the gut microbiome in preterm infants in the NICU changed with changes in feeding patterns, with the main gut bacteria being from the phyla, Proteobacteria, and Pseudomonas.


Asunto(s)
Microbioma Gastrointestinal , Recien Nacido Prematuro , Lactante , Femenino , Humanos , Recién Nacido , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Unidades de Cuidado Intensivo Neonatal , Genes de ARNr , Bacterias/genética , Heces/microbiología , Proteobacteria/genética , Firmicutes/genética , Streptococcus
18.
PLoS One ; 18(11): e0291167, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37972047

RESUMEN

Kuwaiti territorial waters of the northwest Arabian Gulf represent a unique aquatic ecosystem prone to various environmental and anthropogenic stressors that pose significant constraints on the resident biota which must withstand extreme temperatures, salinity levels, and reducing conditions, among other factors to survive. Such conditions create the ideal environment for investigations into novel functional genetic adaptations of resident organisms. Firstly, however, it is essential to identify said organisms and understand the dynamic nature of their existence. Thus, this study provides the first comprehensive analysis of bacterial and archaeal community structures in the unique waters of Kuwait located in the Northwest Arabian Gulf and analyzes their variations with respect to depth, season, and location, as well as their susceptibility to changes in abundance with respect to various physicochemical parameters. Importantly, this study is the first of its kind to utilize a shotgun metagenomics approach with sequencing performed at an average depth of 15 million paired end reads per sample, which allows for species-level community profiling and sets the framework for future functional genomic investigations. Results showed an approximately even abundance of both archaeal (42.9%) and bacterial (57.1%) communities, but significantly greater diversity among the bacterial population, which predominantly consisted of members of the Proteobacteria, Cyanobacteria, and Bacteroidetes phyla in decreasing order of abundance. Little to no significant variations as assessed by various metrics including alpha and beta diversity analyses were observed in the abundance of archaeal and bacterial populations with respect to depth down the water column. Furthermore, although variations in differential abundance of key genera were detected at each of the three sampling locations, measurements of species richness and evenness revealed negligible variation (ANOVA p<0.05) and only a moderately defined community structure (ANOSIM r2 = 0.243; p>0.001) between the various locations. Interestingly, abundance of archaeal community members showed a significant increase (log2 median ratio of RA = 2.6) while the bacterial population showed a significant decrease (log2 median ratio = -1.29) in the winter season. These findings were supported by alpha and beta diversity analyses as well (ANOSIM r2 = 0.253; p>0.01). Overall, this study provides the first in-depth analysis of both bacterial and archaeal community structures developed using a shotgun metagenomic approach in the waters of the Northwest Arabian Gulf thus providing a framework for future investigations of functional genetic adaptations developed by resident biota attempting to survive in the uniquely extreme conditions to which they are exposed.


Asunto(s)
Archaea , Cianobacterias , Archaea/genética , Kuwait , Ecosistema , Cianobacterias/genética , Proteobacteria/genética , ARN Ribosómico 16S/genética
19.
PLoS One ; 18(11): e0287084, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38032916

RESUMEN

Plant-associated bacteria are essential partners in plant health and development. In addition to taking advantage of the rapid advances recently achieved in high-throughput sequencing approaches, studies on plant-microbiome interactions require experiments with culturable bacteria. A study on the rice root microbiome was recently initiated in Burkina Faso. As a follow up, the aim of the present study was to develop a collection of corresponding rice root-associated bacteria covering maximum diversity, to assess the diversity of the obtained isolates based on the culture medium used, and to describe the taxonomy, phenotype and abundance of selected isolates in the rice microbiome. More than 3,000 isolates were obtained using five culture media (TSA, NGN, NFb, PCAT, Baz). The 16S rRNA fragment sequencing of 1,013 selected isolates showed that our working collection covered four bacterial phyla (Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes) and represented 33% of the previously described diversity of the rice root microbiome at the order level. Phenotypic in vitro analysis of the plant growth promoting capacity of the isolates revealed an overall ammonium production and auxin biosynthesis capacity, while siderophore production and phosphate solubilisation were enriched in Burkholderia, Ralstonia, Acinetobacter and Pseudomonas species. Of 45 representative isolates screened for growth promotion on seedlings of two rice cultivars, five showed an ability to improve the growth of both cultivars, while five others were effective on only one cultivar. The best results were obtained with Pseudomonas taiwanensis ABIP 2315 and Azorhizobium caulinodans ABIP 1219, which increased seedling growth by 158% and 47%, respectively. Among the 14 best performing isolates, eight appeared to be abundant in the rice root microbiome dataset from previous study. The findings of this research contribute to the in vitro and in planta PGP capacities description of rice root-associated bacteria and their potential importance for plants by providing, for the first time, insight into their prevalence in the rice root microbiome.


Asunto(s)
Oryza , Oryza/genética , Burkina Faso , ARN Ribosómico 16S/genética , Bacterias , Proteobacteria/genética , Plantones , Raíces de Plantas
20.
mSystems ; 8(6): e0054323, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37921472

RESUMEN

IMPORTANCE: Knowledge on microbial iron oxidation is important for understanding the cycling of iron, carbon, nitrogen, nutrients, and metals. The current study yields important insights into the niche sharing, diversification, and Fe(III) oxyhydroxide morphology of Ghiorsea, an iron- and hydrogen-oxidizing Zetaproteobacteria representative belonging to Zetaproteobacteria operational taxonomic unit 9. The study proposes that Ghiorsea exhibits a more extensive morphology of Fe(III) oxyhydroxide than previously observed. Overall, the results increase our knowledge on potential drivers of Zetaproteobacteria diversity in iron microbial mats and can eventually be used to develop strategies for the cultivation of sheath-forming Zetaproteobacteria.


Asunto(s)
Respiraderos Hidrotermales , Hierro , Agua de Mar/microbiología , Hidrógeno , Respiraderos Hidrotermales/microbiología , Proteobacteria/genética , Oxidación-Reducción , Compuestos Férricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA