Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.034
Filtrar
1.
Traffic ; 25(5): e12936, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38725127

RESUMEN

Endosomal trafficking of TrkA is a critical process for nerve growth factor (NGF)-dependent neuronal cell survival and differentiation. The small GTPase ADP-ribosylation factor 6 (Arf6) is implicated in NGF-dependent processes in PC12 cells through endosomal trafficking and actin cytoskeleton reorganization. However, the regulatory mechanism for Arf6 in NGF signaling is largely unknown. In this study, we demonstrated that EFA6A, an Arf6-specific guanine nucleotide exchange factor, was abundantly expressed in PC12 cells and that knockdown of EFA6A significantly inhibited NGF-dependent Arf6 activation, TrkA recycling from early endosomes to the cell surface, prolonged ERK1/2 phosphorylation, and neurite outgrowth. We also demonstrated that EFA6A forms a protein complex with TrkA through its N-terminal region, thereby enhancing its catalytic activity for Arf6. Similarly, we demonstrated that EFA6A forms a protein complex with TrkA in cultured dorsal root ganglion (DRG) neurons. Furthermore, cultured DRG neurons from EFA6A knockout mice exhibited disturbed NGF-dependent TrkA trafficking compared with wild-type neurons. These findings provide the first evidence for EFA6A as a key regulator of NGF-dependent TrkA trafficking and signaling.


Asunto(s)
Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP , Endosomas , Factores de Intercambio de Guanina Nucleótido , Factor de Crecimiento Nervioso , Proyección Neuronal , Receptor trkA , Animales , Células PC12 , Receptor trkA/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Ratas , Endosomas/metabolismo , Factores de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Ratones , Transporte de Proteínas , Ganglios Espinales/metabolismo , Ratones Noqueados
2.
Nat Commun ; 15(1): 3473, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724563

RESUMEN

Neuronal differentiation-the development of neurons from neural stem cells-involves neurite outgrowth and is a key process during the development and regeneration of neural functions. In addition to various chemical signaling mechanisms, it has been suggested that thermal stimuli induce neuronal differentiation. However, the function of physiological subcellular thermogenesis during neuronal differentiation remains unknown. Here we create methods to manipulate and observe local intracellular temperature, and investigate the effects of noninvasive temperature changes on neuronal differentiation using neuron-like PC12 cells. Using quantitative heating with an infrared laser, we find an increase in local temperature (especially in the nucleus) facilitates neurite outgrowth. Intracellular thermometry reveals that neuronal differentiation is accompanied by intracellular thermogenesis associated with transcription and translation. Suppression of intracellular temperature increase during neuronal differentiation inhibits neurite outgrowth. Furthermore, spontaneous intracellular temperature elevation is involved in neurite outgrowth of primary mouse cortical neurons. These results offer a model for understanding neuronal differentiation induced by intracellular thermal signaling.


Asunto(s)
Diferenciación Celular , Neuronas , Transducción de Señal , Temperatura , Animales , Células PC12 , Neuronas/fisiología , Neuronas/citología , Ratones , Ratas , Proyección Neuronal , Neurogénesis/fisiología , Neuritas/metabolismo , Neuritas/fisiología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Termometría/métodos , Termogénesis/fisiología
3.
Life Sci ; 345: 122606, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574884

RESUMEN

AIMS: Alzheimer's disease (AD), the most common neurodegenerative disorder associated with aging, is characterized by amyloid-ß (Aß) plaques in the hippocampus. Ergosterol, a mushroom sterol, exhibits neuroprotective activities; however, the underlying mechanisms of ergosterol in promoting neurite outgrowth and preventing Aß-associated aging have never been investigated. We aim to determine the beneficial activities of ergosterol in neuronal cells and Caenorhabditis elegans (C. elegans). MATERIALS AND METHODS: The neuritogenesis and molecular mechanisms of ergosterol were investigated in wild-type and Aß precursor protein (APP)-overexpressing Neuro2a cells. The anti-amyloidosis properties of ergosterol were determined by evaluating in vitro Aß production and the potential inhibition of Aß-producing enzymes. Additionally, AD-associated transgenic C. elegans was utilized to investigate the in vivo attenuating effects of ergosterol. KEY FINDINGS: Ergosterol promoted neurite outgrowth in Neuro2a cells through the upregulation of the transmembrane protein Teneurin-4 (Ten-4) mRNA and protein expressions, phosphorylation of the extracellular signal-regulated kinases (ERKs), activity of cAMP response element (CRE), and growth-associated protein-43 (GAP-43). Furthermore, ergosterol enhanced neurite outgrowth in transgenic Neuro2A cells overexpressing either the wild-type APP (Neuro2a-APPwt) or the Swedish mutant APP (Neuro2a-APPswe) through the Ten-4/ERK/CREB/GAP-43 signaling pathway. Interestingly, ergosterol inhibited Aß synthesis in Neuro2a-APPwt cells. In silico analysis indicated that ergosterol can interact with the catalytic sites of ß- and γ-secretases. In Aß-overexpressing C. elegans, ergosterol decreased Aß accumulation, increased chemotaxis behavior, and prolonged lifespan. SIGNIFICANCE: Ergosterol is a potential candidate compound that might benefit AD patients by promoting neurite outgrowth, inhibiting Aß synthesis, and enhancing longevity.


Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales Modificados Genéticamente/metabolismo , Caenorhabditis elegans/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteína GAP-43 , Longevidad , Neuroblastoma , Proyección Neuronal , Línea Celular Tumoral
4.
J Nat Med ; 78(3): 599-607, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38662302

RESUMEN

In this study, the effects of 3,5,7,3',4'-pentamethoxyflavone (KP1), a major bioactive ingredient isolated from the Kaempferia parviflora rhizomes, on a neurite outgrowth in Neuro2a cells and its mechanism have been investigated. KP1 increased concentration-dependently the percentage of neurite-bearing cells. KP1 showed a remarkable capability to elicit neurite outgrowth in Neuro2a cells, as evidenced by morphological alterations and immunostaining using anti-class III ß-tubulin and anti-NeuN antibodies. KP1 also displayed a higher neurogenic activity than retinoic acid (RA), a promoter of neurite outgrowth in Neuro2a cells. KP1 treatment caused significant elevation in phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38 MAPK) and glycogen synthase kinase-3ß (GSK-3ß). However, KP1-triggered neurite outgrowth was markedly inhibited by treatment with the ERK inhibitor U0126, whereas p38 MAPK inhibitor SB203580 and GSK-3ß inhibitor SB216763 did not influence KP1-induced neurite outgrowth. These results demonstrate that KP1 elicits neurite outgrowth and triggers cell differentiation of Neuro2a cells through ERK signal pathway.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Proyección Neuronal , Animales , Proyección Neuronal/efectos de los fármacos , Ratones , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Neuritas/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Fosforilación/efectos de los fármacos , Flavonoides/farmacología , Flavonas/farmacología , Flavonas/química , Línea Celular Tumoral , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Línea Celular
5.
Bioorg Chem ; 147: 107389, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677011

RESUMEN

The leaves of Odontonema strictum, a tropical plant used for its antihypertensive properties, are rich in nutrients and biologically active phytochemicals, such as ß-sitosterol, stigmasterol, umuravumbolide, deacetylumuravumbolide, dideacetylboronolide, deacetylboronolide, verbascoside, and isoverbascoside. In addition, its roots are rich in ß-sitosterol, stigmasterol, and the iridoid glycoside ß-O-methyl-unedoside. Ingestion of the roots was reported to have a sedative effect in a dog was previously reported on a dog eating the roots of this plant. In the present study, we report for the first time the cell proliferation- and neurite outgrowth-promoting effects in PC12 neuronal cells of the isolated organic compounds and crude extracts from O. strictum. Pituitary adenylate cyclase-activating peptide (PACAP) and quercetin were used as positive controls. At the concentration of 0.2 µg/mL, ß-sitosterol was more potent than quercetin and displayed the same activity (>45 µm/cell) as PACAP (100 nM). At a low concentration (0.04 µg/mL), verbascoside and isoverbascoside showed the strongest neurite outgrowth-promoting effect (neurite length of 30 to 35 µm/cell). Our results indicate that phytomedicines made from O. strictum may be useful in preventing neurodegenerative diseases.


Asunto(s)
Productos Biológicos , Proliferación Celular , Proyección Neuronal , Animales , Células PC12 , Proyección Neuronal/efectos de los fármacos , Ratas , Productos Biológicos/farmacología , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Relación Dosis-Respuesta a Droga , Relación Estructura-Actividad , Neuronas/efectos de los fármacos , Neuronas/citología , Hojas de la Planta/química
6.
Arch Toxicol ; 98(6): 1859-1875, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38555327

RESUMEN

Poisoning with the organophosphorus nerve agent VX can be life-threatening due to limitations of the standard therapy with atropine and oximes. To date, the underlying pathomechanism of VX affecting the neuromuscular junction has not been fully elucidated structurally. Results of recent studies investigating the effects of VX were obtained from cells of animal origin or immortalized cell lines limiting their translation to humans. To overcome this limitation, motor neurons (MN) of this study were differentiated from in-house feeder- and integration-free-derived human-induced pluripotent stem cells (hiPSC) by application of standardized and antibiotic-free differentiation media with the aim to mimic human embryogenesis as closely as possible. For testing VX sensitivity, MN were initially exposed once to 400 µM, 600 µM, 800 µM, or 1000 µM VX and cultured for 5 days followed by analysis of changes in viability and neurite outgrowth as well as at the gene and protein level using µLC-ESI MS/HR MS, XTT, IncuCyte, qRT-PCR, and Western Blot. For the first time, VX was shown to trigger neuronal cell death and decline in neurite outgrowth in hiPSC-derived MN in a time- and concentration-dependent manner involving the activation of the intrinsic as well as the extrinsic pathway of apoptosis. Consistent with this, MN morphology and neurite network were altered time and concentration-dependently. Thus, MN represent a valuable tool for further investigation of the pathomechanism after VX exposure. These findings might set the course for the development of a promising human neuromuscular test model and patient-specific therapies in the future.


Asunto(s)
Diferenciación Celular , Supervivencia Celular , Células Madre Pluripotentes Inducidas , Neuronas Motoras , Agentes Nerviosos , Compuestos Organotiofosforados , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Compuestos Organotiofosforados/toxicidad , Agentes Nerviosos/toxicidad , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proyección Neuronal/efectos de los fármacos , Sustancias para la Guerra Química/toxicidad , Relación Dosis-Respuesta a Droga , Células Cultivadas
7.
Biomacromolecules ; 25(3): 1448-1467, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38412382

RESUMEN

Despite all recent progresses in nerve tissue engineering, critical-sized nerve defects are still extremely challenging to repair. Therefore, this study targets the bridging of critical nerve defects and promoting an oriented neuronal outgrowth by engineering innovative nerve guidance conduits (NGCs) synergistically possessing exclusive topographical, chemical, and mechanical cues. To do so, a mechanically adequate mixture of polycaprolactone (PCL) and polylactic-co-glycolic acid (PLGA) was first carefully selected as base material to electrospin nanofibrous NGCs simulating the extracellular matrix. The electrospinning process was performed using a newly designed 2-pole air gap collector that leads to a one-step deposition of seamless NGCs having a bilayered architecture with an inner wall composed of highly aligned fibers and an outer wall consisting of randomly oriented fibers. This architecture is envisaged to afford guidance cues for the extension of long neurites on the underlying inner fiber alignment and to concurrently provide a sufficient nutrient supply through the pores of the outer random fibers. The surface chemistry of the NGCs was then modified making use of a hollow cathode discharge (HCD) plasma reactor purposely designed to allow an effective penetration of the reactive species into the NGCs to eventually treat their inner wall. X-ray photoelectron spectroscopy (XPS) results have indeed revealed a successful O2 plasma modification of the inner wall that exhibited a significantly increased oxygen content (24 → 28%), which led to an enhanced surface wettability. The treatment increased the surface nanoroughness of the fibers forming the NGCs as a result of an etching effect. This effect reduced the ultimate tensile strength of the NGCs while preserving their high flexibility. Finally, pheochromocytoma (PC12) cells were cultured on the NGCs to monitor their ability to extend neurites which is the base of a good nerve regeneration. In addition to remarkably improved cell adhesion and proliferation on the plasma-treated NGCs, an outstanding neural differentiation occurred. In fact, PC12 cells seeded on the treated samples extended numerous long neurites eventually establishing a neural network-like morphology with an overall neurite direction following the alignment of the underlying fibers. Overall, PCL/PLGA NGCs electrospun using the 2-pole air gap collector and O2 plasma-treated using an HCD reactor are promising candidates toward a full repair of critical nerve damage.


Asunto(s)
Neuritas , Andamios del Tejido , Ratas , Animales , Andamios del Tejido/química , Neuritas/fisiología , Ingeniería de Tejidos/métodos , Regeneración Nerviosa , Proyección Neuronal
8.
Bioorg Med Chem Lett ; 102: 129670, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387692

RESUMEN

Histone deacetylase 6 (HDAC6) has drawn more and more attention for its potential application in Alzheimer's disease (AD) therapy. A series of tetrahydro-ß-carboline (THßC) hydroxamic acids with aryl linker were synthesized. In enzymatic assay, all compounds exhibited nanomolar IC50 values. The most promising compound 11d preferentially inhibited HDAC6 (IC50, 8.64 nM) with approximately 149-fold selectivity over HDAC1. Molecular simulation revealed that the hydroxamic acid of 11d could bind to the zinc ion by a bidentate chelating manner. In vitro, 11d induced neurite outgrowth of PC12 cells without producing toxic effects and showed obvious neuroprotective activity in a model of H2O2-induced oxidative stress.


Asunto(s)
Carbolinas , Inhibidores de Histona Desacetilasas , Peróxido de Hidrógeno , Ratas , Animales , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas/farmacología , Peróxido de Hidrógeno/farmacología , Ácidos Hidroxámicos/farmacología , Proyección Neuronal , Histona Desacetilasa 1/metabolismo , Relación Estructura-Actividad
9.
mBio ; 15(2): e0330823, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38275838

RESUMEN

The highly prevalent herpes simplex virus type 1 (HSV-1) causes a range of diseases, including cold sores, blinding keratitis, and life-threatening encephalitis. HSV-1 initially replicates in epithelial cells, enters the peripheral nervous system via neurites, and establishes lifelong infection in the neuronal cell bodies. Neurites are highly dynamic structures that grow or retract in response to attractive or repulsive cues, respectively. Here, we show that infection with HSV-1, but not with a mutant virus lacking glycoprotein G (gG), reduced the repulsive effect of epithelial cells on neurite outgrowth and facilitated HSV-1 invasion of neurons. HSV-1 gG was required and sufficient to induce neurite outgrowth by modifying the protein composition of extracellular vesicles, increasing the amount of neurotrophic and neuroprotective proteins, including galectin-1. Antibodies directed against galectin-1 neutralized the capacity of extracellular vesicles released from HSV-1-infected cells to promote neurite outgrowth. Our study provides new insights into the neurotropism of HSV-1 and identifies a viral protein that modifies the protein composition of extracellular vesicles to stimulate neurite outgrowth and invasion of the nervous system.IMPORTANCEHerpes simplex virus type 1 (HSV-1) must infect neurites (or nerve endings) to establish a chronic infection in neurons. Neurites are highly dynamic structures that retract or grow in the presence of repulsive or attractive proteins. Some of these proteins are released by epithelial cells in extracellular vesicles and act upon interaction with their receptor present on neurites. We show here that HSV-1 infection of epithelial cells modulated their effect on neurites, increasing neurite growth. Mechanistically, HSV-1 glycoprotein G (gG) modifies the protein composition of extracellular vesicles released by epithelial cells, increasing the amount of attractive proteins that enhance neurite outgrowth and facilitate neuronal infection. These results could inform of therapeutic strategies to block HSV-1 induction of neurite outgrowth and, thereby, neuronal infection.


Asunto(s)
Enfermedades Transmisibles , Vesículas Extracelulares , Herpes Simple , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/fisiología , Galectina 1/metabolismo , Vesículas Extracelulares/metabolismo , Proyección Neuronal , Glicoproteínas/metabolismo
10.
Brain Res Bull ; 207: 110876, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38215950

RESUMEN

Numb is an evolutionarily conserved protein that regulates the differentiation of neuronal progenitor cells through unknown mechanisms. Numb has four alternative splice variants with different lengths of phosphotyrosine-binding (PTB) and proline-rich regions (PRR) domains. In this study, we demonstrated that Numb expression was increased in the primary cultures of rat cortical and hippocampal neurons over time in vitro, and Numb antisense inhibited neurite outgrowth. We verified that cells overexpressing short PTB (SPTB) or long PTB (LPTB) domains exhibited differentiation or proliferation, respectively. SPTB-mediated differentiation was related to the PRR domains, as cells expressing SPTB/LPRR had longer dendrites and more branched dendrites than cells expressing SPTB/SPRR. The differentiation of both cell types was completely blocked by the Ca2+ chelator. Western blot analysis revealed the increased total protein expression of voltage-gated calcium channel (VGCC) subunit α1C and α1D in cells expressing SPTB and LPTB Numb. The increased expression of the VGCC ß3 subunit was only observed in cells expressing SPTB Numb. Immunocytochemistry further showed that SPTB-mediated cell differentiation was associated with increased membrane expression of VGCC subunits α1C, α1D and ß3, which corresponded to the higher Ca2+ current (ICa) densities. Furthermore, we found that VGCC of cells transfected with SPTB/SPRR or SPTB/LPRR Numb isoforms exhibit steady-state inactivation (SSI) in both differentiated and undifferentiated phenotypes. A similar SSI of VGCC was observed in the differentiated cells transfected with SPTB/SPRR or SPTB/LPRR Numb isoforms, whereas a left shift SSI of VGCC in cells expressing SPTB/LPRR was detected in the undifferentiated cells. Collectively, these data indicate that SPTB domain is essential for neurite outgrowth involving in membrane expression of VGCC subunits, and LPRR plays a role in neuronal branching and the regulation of VGCC inactivation kinetics.


Asunto(s)
Proteínas de la Membrana , Neuronas , Ratas , Animales , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Canales de Calcio/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacología , Proyección Neuronal , Calcio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
11.
Neuroscience ; 537: 165-173, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38070592

RESUMEN

Thioredoxin system plays an important role in maintaining the cellular redox balance. Recent evidence suggests that thioredoxin (Trx) system may promote cell survival and neuroprotection. In this study, we explored the role of thioredoxin system in neuronal differentiation using a primary mouse cortical neuronal cell culture. First, Trx and Trx reductase (TrxR) protein levels were analyzed in cultured neurons from 1 to 32 days in vitro (DIV). The result showed that Trx and TrxR protein levels time-dependently increased in the neuron cell culture from 1 to 18 DIV. To establish the role of Trx in neuronal differentiation, Trx gene expression was knockdown in cultured neurons using Trx sgRNA CRISPR/Cas9 technology. Treatment with CRISPR/Cas9/Trx sgRNA decreased Trx protein levels and caused a reduction in dendritic outgrowth and branching of cultured neurons. Then, primary cortical neurons were treated with the Trx inhibitor PX12 to block Trx reducing activity. Treatment with PX12 also reduced dendritic outgrowth and branching. Furthermore, PX12 treatment reduced the ratio of phosphorylated cyclic AMP response element-binding protein (CREB)/total CREB protein levels. To investigate whether CREB phosphorylation is redox regulated, SH-SY5Y cells were treated with H2O2, which reduced phosphorylated CREB protein levels and increased CREB thiol oxidation. However, treatment with CB3, a Trx-mimetic tripeptide, rescued H2O2-decreased CREB phosphorylation. Our results suggest that Trx regulates neuronal differentiation and maturation of primary mouse cortical neurons by targeting CREB neurotrophic pathway. Trx may regulate CREB activation by maintaining the cellular redox balance.


Asunto(s)
Neuroblastoma , ARN Guía de Sistemas CRISPR-Cas , Ratones , Humanos , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Peróxido de Hidrógeno/metabolismo , Neuroblastoma/metabolismo , Tiorredoxinas/metabolismo , Neuronas/metabolismo , Oxidación-Reducción , Proyección Neuronal
12.
J Biomater Sci Polym Ed ; 35(2): 164-189, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37847579

RESUMEN

Type I collagen is a predominant fibrous protein that makes up the extracellular matrix. Collagen enhances cell attachment and is commonly used in three-dimensional culture systems, to mimic the native extracellular environment, for primary sensory neurons such as dorsal root ganglia (DRG). However, the effects of collagen concentration on adult rat DRG neurite growth have not been assessed in a physiologically relevant, three-dimensional culture. This study focuses on the effects of type I collagen used in a methacrylated hyaluronic acid (MAHA)-laminin-collagen gel (triple gel) on primary adult rat DRG explants in vitro. DRGs were cultured in triple gels, and the neurite lengths and number of support cells were quantified. Increased collagen concentration significantly reduced neurite length but did not affect support cell counts. Mechanical properties, fiber diameter, diffusivity, and mesh size of the triple gels with varying collagen concentration were characterized to further understand the effects of type I collagen on hydrogel property that may affect adult rat DRG explants. Gel stiffness significantly increased as collagen concentration increased and is correlated to DRG neurite length. Collagen concentration also significantly impacted fiber diameter but there was no correlation with DRG neurite length. Increasing collagen concentration had no significant effect on mesh size and diffusivity of the hydrogel. These data suggest that increasing type I collagen minimizes adult rat DRG explant growth in vitro while raising gel stiffness. This knowledge can help develop more robust 3D culture platforms to study sensory neuron growth and design biomaterials for nerve regeneration applications.


Asunto(s)
Colágeno Tipo I , Hidrogeles , Ratas , Animales , Hidrogeles/farmacología , Ganglios Espinales , Neuritas/fisiología , Colágeno/farmacología , Proyección Neuronal , Células Cultivadas
13.
Adv Healthc Mater ; 13(3): e2301894, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37922888

RESUMEN

Neuronal disorders are characterized by the loss of functional neurons and disrupted neuroanatomical connectivity, severely impacting the quality of life of patients. This study investigates a novel electroconductive nanocomposite consisting of glycine-derived carbon nanodots (GlyCNDs) incorporated into a collagen matrix and validates its beneficial physicochemical and electro-active cueing to relevant cells. To this end, this work employs mouse induced pluripotent stem cell (iPSC)-derived neural progenitor (NP) spheroids. The findings reveal that the nanocomposite markedly augmented neuronal differentiation in NP spheroids and stimulate neuritogenesis. In addition, this work demonstrates that the biomaterial-driven enhancements of the cellular response ultimately contribute to the development of highly integrated and functional neural networks. Lastly, acute dizocilpine (MK-801) treatment provides new evidence for a direct interaction between collagen-bound GlyCNDs and postsynaptic N-methyl-D-aspartate (NMDA) receptors, thereby suggesting a potential mechanism underlying the observed cellular events. In summary, the findings establish a foundation for the development of a new nanocomposite resulting from the integration of carbon nanomaterials within a clinically approved hydrogel, toward an effective biomaterial-based strategy for addressing neuronal disorders by restoring damaged/lost neurons and supporting the reestablishment of neuroanatomical connectivity.


Asunto(s)
Nanocompuestos , Calidad de Vida , Animales , Ratones , Materiales Biocompatibles , Diferenciación Celular , Colágeno , Proyección Neuronal
14.
Sci Rep ; 13(1): 21799, 2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-38066058

RESUMEN

Carbon nanotubes (CNTs) have the potential to promote peripheral nerve regeneration, although with limited capacity and foreign body reaction. This study investigated whether CNTs hydrophilized by oxidation can improve peripheral nerve regeneration and reduce foreign body reactions and inflammation. Three different artificial nerve conduit models were created using CNTs treated with ozone (O group), strong acid (SA group), and untreated (P group). They were implanted into a rat sciatic nerve defect model and evaluated after 8 and 16 weeks. At 16 weeks, the SA group showed significant recovery in functional and electrophysiological evaluations compared with the others. At 8 weeks, histological examination revealed a significant increase in the density of regenerated neurofilament and decreased foreign body giant cells in the SA group compared with the others. Oxidation-treated CNTs improved biocompatibility, induced nerve regeneration, and inhibited foreign-body reactions.


Asunto(s)
Nanotubos de Carbono , Ratas , Animales , Nervio Ciático/fisiología , Regeneración Nerviosa/fisiología , Prótesis e Implantes , Proyección Neuronal
15.
Sci Transl Med ; 15(725): eadg7020, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-38055799

RESUMEN

Low back pain (LBP) is often associated with the degeneration of human intervertebral discs (IVDs). However, the pain-inducing mechanism in degenerating discs remains to be elucidated. Here, we identified a subtype of locally residing human nucleus pulposus cells (NPCs), generated by certain conditions in degenerating discs, that was associated with the onset of discogenic back pain. Single-cell transcriptomic analysis of human tissues showed a strong correlation between a specific cell subtype and the pain condition associated with the human degenerated disc, suggesting that they are pain-triggering. The application of IVD degeneration-associated exogenous stimuli to healthy NPCs in vitro recreated a pain-associated phenotype. These stimulated NPCs activated functional human iPSC-derived sensory neuron responses in an in vitro organ-chip model. Injection of stimulated NPCs into the healthy rat IVD induced local inflammatory responses and increased cold sensitivity and mechanical hypersensitivity. Our findings reveal a previously uncharacterized pain-inducing mechanism mediated by NPCs in degenerating IVDs. These findings could aid in the development of NPC-targeted therapeutic strategies for the clinically unmet need to attenuate discogenic LBP.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Dolor de la Región Lumbar , Núcleo Pulposo , Humanos , Ratas , Animales , Degeneración del Disco Intervertebral/complicaciones , Degeneración del Disco Intervertebral/terapia , Dolor de la Región Lumbar/complicaciones , Proyección Neuronal
16.
Int J Mol Sci ; 24(24)2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38139155

RESUMEN

The vesicle-associated membrane protein 7 (VAMP7) is a SNARE protein of the longin family involved in a wide range of subcellular trafficking events, including neurite sprouting and elongation. The expression of the human gene SYBL1, encoding VAMP7, is finely regulated by alternative splicing. Among the minor isoforms identified so far, VAMP7j is the one most expressed and modulated in the human brain. Therefore, we focused on gaining functional evidence on VAMP7j, which lacks a functional SNARE motif but retains both the longin and transmembrane domains. In human SH-SY5Y cells, we found VAMP7j to modulate neuritogenesis by mediating transport of L1CAM toward the plasma membrane, in a fashion regulated by phosphorylation of the longin domain. VAMP7-mediated regulation of L1CAM trafficking seems at least to differentiate humans from rats, with VAMP7j CNS expression being restricted to primates, including humans. Since L1CAM is a central player in neuritogenesis and axon guidance, these findings suggest the species-specific splicing of SYBL1 is among the fine tuners of human neurodevelopmental complexity.


Asunto(s)
Molécula L1 de Adhesión de Célula Nerviosa , Neuroblastoma , Animales , Humanos , Ratas , Membrana Celular/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/genética , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Neuroblastoma/metabolismo , Proyección Neuronal , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Proteínas SNARE/metabolismo
17.
J Nat Prod ; 86(11): 2457-2467, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37910033

RESUMEN

Abundisporin A (1), together with seven previously undescribed drimane sesquiterpenes named abundisporins B-H (2-8), were isolated from a polypore, Abundisporus violaceus MUCL 56355 (Polyporaceae), collected in Kenya. Chemical structures of the isolated compounds were elucidated based on exhaustive 1D and 2D NMR spectroscopic measurements and supported by HRESIMS data. The absolute configurations of the isolated compounds were determined by using Mosher's method for 1-4 and TDDFT-ECD calculations for 4 and 5-8. None of the isolated compounds exhibited significant activities in either antimicrobial or cytotoxicity assays. Notably, all of the tested compounds demonstrated neurotrophic effects, with 1 and 6 significantly increasing outgrowth of neurites when treated with 5 ng/mL NGF.


Asunto(s)
Polyporaceae , Sesquiterpenos , Estructura Molecular , Sesquiterpenos/química , Polyporaceae/química , Proyección Neuronal
18.
Chem Biodivers ; 20(12): e202301294, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37953436

RESUMEN

Artepillin C is the most studied compound in Brazilian Green Propolis and, along with its acetylated derivative, displays neurotrophic activity on PC12 cells. Specific inhibitors of the trkA receptor (K252a), PI3K/Akt (LY294002), and MAPK/ERK (U0126) signaling pathways were used to investigate the neurotrophic mechanism. The expression of proteins involved in axonal and synaptic plasticity (GAP-43 and Synapsin I) was assessed by western blotting. Additionally, physicochemical properties, pharmacokinetics, and drug-likeness were evaluated by the SwissADME web tool. Both compounds induced neurite outgrowth by activating the NGF-signaling pathways but through different neuronal proteins. Furthermore, in silico analyses showed interesting physicochemical and pharmacokinetic properties of these compounds. Therefore, these compounds could play an important role in axonal and synaptic plasticity and should be further investigated.


Asunto(s)
Própolis , Ratas , Animales , Células PC12 , Própolis/farmacología , Própolis/metabolismo , Neuritas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Brasil , Transducción de Señal , Proyección Neuronal
19.
Mol Brain ; 16(1): 79, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980537

RESUMEN

Protein kinases are responsible for protein phosphorylation and are involved in important intracellular signal transduction pathways in various cells, including neurons; however, a considerable number of poorly characterized kinases may be involved in neuronal development. Here, we considered mitogen-activated protein kinase kinase kinase kinases (MAP4Ks), related to as candidate regulators of neurite outgrowth and synaptogenesis, by examining the effects of a selective MAP4K inhibitor PF06260933. PF06260933 treatments of the cultured neurons reduced neurite lengths, not the number of synapses, and phosphorylation of GAP43 and JNK, relative to the control. These results suggest that MAP4Ks are physiologically involved in normal neuronal development and that the resultant impaired neurite outgrowth by diminished MAP4Ks' activity, is related to psychiatric disorders.


Asunto(s)
Neuritas , Neuronas , Humanos , Neuronas/metabolismo , Neuritas/metabolismo , Transducción de Señal , Fosforilación , Proyección Neuronal
20.
Acta Biochim Biophys Sin (Shanghai) ; 55(11): 1718-1729, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-37814815

RESUMEN

As a commonly used physical intervention, electrical stimulation (ES) has been demonstrated to be effective in the treatment of central nervous system disorders. Currently, researchers are studying the effects of electrical stimulation on individual neurons and neural networks, which are dependent on factors such as stimulation intensity, duration, location, and neuronal properties. However, the exact mechanism of action of electrical stimulation remains unclear. In some cases, repeated or prolonged electrical stimulation can lead to changes in the morphology or function of the neuron. In this study, immunofluorescence staining and Sholl analysis are used to assess changes in the neurite number and axon length to determine the optimal pattern and stimulation parameters of ES for neurons. Neuronal death and plasticity are detected by TUNEL staining and microelectrode array assays, respectively. mRNA sequencing and bioinformatics analysis are applied to predict the key targets of the action of ES on neurons, and the identified targets are validated by western blot analysis and qRT-PCR. The effects of alternating current stimulation (ACS) on neurons are more significant than those of direct current stimulation (DCS), and the optimal parameters are 3 µA and 20 min. ACS stimulation significantly increases the number of neurites, the length of axons and the spontaneous electrical activity of neurons, significantly elevates the expression of growth-associated protein-43 (GAP-43) without significant changes in the expression of neurotrophic factors. Furthermore, application of PI3K/AKT-specific inhibitors significantly abolishes the beneficial effects of ACS on neurons, confirming that the PI3K/AKT pathway is an important potential signaling pathway in the action of ACS.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neuronas/metabolismo , Transducción de Señal , Proyección Neuronal/fisiología , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA