Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
Más filtros












Intervalo de año de publicación
1.
Exp Gerontol ; 194: 112520, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38992823

RESUMEN

Medium-chain triglycerides (MCTs) and docosahexaenoic acid (DHA, Cn-3, 22:6) are essential in improving cognitive function and protecting neurocytes. This study explored the effects of the combined intervention of MCTs and DHA on inhibiting neurocyte apoptosis of the brain and improving cognitive function in senescence-accelerated mouse-prone 8 (SAMP8). Four-month-old male SAMP8 mice were randomly divided into four treatment groups (12 mice/group): DHA, MCT, DHA + MCT, and control groups, which intervened for seven months. Twelve age-matched male senescence-accelerated mouse resistant 1 (SAMR1) was used as the natural aging group. TUNEL assay and HE staining were used to assess neurocyte apoptosis and damage in the brain of mice. Moreover, the cognitive function was analyzed using the Morris water maze (MWM) and open field (OF) tests. The results showed that the cognitive function of 11-month-old SAMP8 mice decreased with age, and further pathological examination revealed the damaged neurocyte structure, karyopyknosis, cell atrophy, and even apoptosis. MCTs combined with DHA supplementation could increase octanoic acid (C8:0), decanoic acid (C10:0), and DHA levels in the serum, inhibit neurocyte apoptosis, improve neurocyte damage, moreover delay age-related cognitive decline after seven-month treatment. Furthermore, combining MCTs and DHA was significantly more beneficial than MCTs or DHA alone. In conclusion, MCTs combined with DHA could delay cognitive decline by inhibiting neurocyte apoptosis of the brain in SAMP8 mice.


Asunto(s)
Apoptosis , Encéfalo , Cognición , Ácidos Docosahexaenoicos , Triglicéridos , Animales , Ácidos Docosahexaenoicos/farmacología , Apoptosis/efectos de los fármacos , Masculino , Cognición/efectos de los fármacos , Ratones , Encéfalo/efectos de los fármacos , Encéfalo/patología , Aprendizaje por Laberinto/efectos de los fármacos , Suplementos Dietéticos , Envejecimiento , Prueba del Laberinto Acuático de Morris/efectos de los fármacos , Neuronas/efectos de los fármacos , Caprilatos/farmacología , Modelos Animales de Enfermedad
2.
Neuromolecular Med ; 26(1): 29, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014255

RESUMEN

Vascular dementia (VaD) is a cognitive disorder characterized by a decline in cognitive function resulting from cerebrovascular disease. The hippocampus is particularly susceptible to ischemic insults, leading to memory deficits in VaD. Astaxanthin (AST) has shown potential therapeutic effects in neurodegenerative diseases. However, the mechanisms underlying its protective effects in VaD and against hippocampal neuronal death remain unclear. In this study, We used the bilateral common carotid artery occlusion (BCCAO) method to establish a chronic cerebral hypoperfusion (CCH) rat model of VaD and administered a gastric infusion of AST at 25 mg/kg per day for 4 weeks to explore its therapeutic effects. Memory impairments were assessed using Y-maze and Morris water maze tests. We also performed biochemical analyses to evaluate levels of hippocampal neuronal death and apoptosis-related proteins, as well as the impact of astaxanthin on the PI3K/Akt/mTOR pathway and oxidative stress. Our results demonstrated that AST significantly rescued memory impairments in VaD rats. Furthermore, astaxanthin treatment protected against hippocampal neuronal death and attenuated apoptosis. We also observed that AST modulated the PI3K/Akt/mTOR pathway, suggesting its involvement in promoting neuronal survival and synaptic plasticity. Additionally, AST exhibited antioxidant properties, mitigating oxidative stress in the hippocampus. These findings provide valuable insights into the potential therapeutic effects of AST in VaD. By elucidating the mechanisms underlying the actions of AST, this study highlights the importance of protecting hippocampal neurons and suggests potential targets for intervention in VaD. There are still some unanswered questions include long-term effects and optimal dosage of the use in human. Further research is warranted to fully understand the therapeutic potential of AST and its application in the clinical treatment of VaD.


Asunto(s)
Apoptosis , Demencia Vascular , Hipocampo , Trastornos de la Memoria , Neuronas , Fármacos Neuroprotectores , Estrés Oxidativo , Ratas Sprague-Dawley , Xantófilas , Animales , Xantófilas/uso terapéutico , Xantófilas/farmacología , Hipocampo/efectos de los fármacos , Demencia Vascular/tratamiento farmacológico , Ratas , Masculino , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Estrés Oxidativo/efectos de los fármacos , Neuronas/efectos de los fármacos , Apoptosis/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Muerte Celular/efectos de los fármacos , Antioxidantes/uso terapéutico , Antioxidantes/farmacología , Prueba del Laberinto Acuático de Morris/efectos de los fármacos
3.
Phytomedicine ; 130: 155725, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38772181

RESUMEN

BACKGROUND: Bidirectional communication between the gut microbiota and the brain may play an essential role in the cognitive dysfunction associated with chronic sleep deprivation(CSD). Salvia miltiorrhiza Bunge (Danshen, DS), a famous Chinese medicine and functional tea, is extensively used to protect learning and memory capacities, although the mechanism of action remains unknown. PURPOSE: The purpose of this research was to explore the efficacy and the underlying mechanism of DS in cognitive dysfunction caused by CSD. METHODS: DS chemical composition was analyzed by UPLC-QTOF-MS/MS. Forty rats were randomly assigned to five groups (n = 8): control (CON), model (MOD), low- (1.35 g/kg, DSL), high-dose (2.70 g/kg, DSH) DS group, and Melatonin(100 mg/kg, MT) group. A CSD rat model was established over 21 days. DS's effects and the underlying mechanism were explored using the open-field test(OFT), Morris water-maze(MWM), tissue staining(Hematoxylin and Eosin Staining, Nissl staining, Alcian blue-periodic acid SCHIFF staining, and Immunofluorescence), enzyme-linked immunosorbent assay, Western blot, quantitative real-time polymerase chain reaction(qPCR), and 16S rRNA sequencing. RESULTS: We demonstrated that CSD caused gut dysbiosis and cognitive dysfunction. Furthermore, 16S rRNA sequencing demonstrated that Firmicutes and Proteobacteria were more in fecal samples from model group rats, whereas Bacteroidota and Spirochaetota were less. DS therapy, on the contrary hand, greatly restored the gut microbial community, consequently alleviating cognitive impairment in rats. Further research revealed that DS administration reduced systemic inflammation via lowering intestinal inflammation and barrier disruption. Following that, DS therapy reduced Blood Brain Barrier(BBB) and neuronal damage, further decreasing neuroinflammation in the hippocampus(HP). Mechanistic studies revealed that DS therapy lowered lipopolysaccharide (LPS) levels in the HP, serum, and colon, consequently blocking the TLR4/MyD88/NF-κB signaling pathway and its downstream pro-inflammatory products(IL-1ß, IL-6, TNF-α, iNOS, and COX2) in the HP and colon. CONCLUSION: DS treatment dramatically improved spatial learning and memory impairments in rats with CSD by regulating the composition of the intestinal flora, preserving gut and brain barrier function, and reducing inflammation mediated by the LPS-TLR4 signaling pathway. Our findings provide novel insight into the mechanisms by which DS treats cognitive dysfunction caused by CSD.


Asunto(s)
Disfunción Cognitiva , Medicamentos Herbarios Chinos , Ratas Sprague-Dawley , Salvia miltiorrhiza , Privación de Sueño , Animales , Salvia miltiorrhiza/química , Privación de Sueño/complicaciones , Privación de Sueño/tratamiento farmacológico , Disfunción Cognitiva/tratamiento farmacológico , Masculino , Medicamentos Herbarios Chinos/farmacología , Ratas , Microbioma Gastrointestinal/efectos de los fármacos , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , FN-kappa B/metabolismo , Prueba del Laberinto Acuático de Morris/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos
4.
Biomed Pharmacother ; 176: 116754, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810401

RESUMEN

Alzheimer's disease (AD) presents a significant challenge due to its prevalence and lack of cure, driving the quest for effective treatments. Anshen Bunao Syrup, a traditional Chinese medicine known for its neuroprotective properties, shows promise in addressing this need. However, understanding its precise mechanisms in AD remains elusive. This study aimed to investigate Anshen Bunao Syrup's therapeutic potential in AD treatment using a scopolamine-induced AD rat model. Assessments included novel-object recognition and Morris water maze tasks to evaluate spatial learning and memory, alongside Nissl staining and ELISA analyses for neuronal damage and biomarker levels. Results demonstrated that Anshen Bunao Syrup effectively mitigated cognitive dysfunction by inhibiting amyloid-ß and phosphorylation Tau aggregation, thereby reducing neuronal damage. Metabolomics profiling of rats cortex revealed alterations in key metabolites implicated in tryptophan and fatty acid metabolism pathways, suggesting a role in the therapeutic effects of Anshen Bunao Syrup. Additionally, ELISA and correlation analyses indicated attenuation of oxidative stress and immune response through metabolic remodeling. In conclusion, this study provides compelling evidence for the neuroprotective effects of Anshen Bunao Syrup in AD models, shedding light on its potential as a therapeutic agent for AD prevention and treatment.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Fármacos Neuroprotectores , Estrés Oxidativo , Ratas Sprague-Dawley , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Masculino , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Ratas , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Escopolamina , Proteínas tau/metabolismo , Prueba del Laberinto Acuático de Morris/efectos de los fármacos
5.
J Ethnopharmacol ; 329: 118161, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38599474

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Kai-Xin-San (KXS) is a classic herbal formula for the treatment and prevention of AD (Alzheimer's disease) with definite curative effect, but its mechanism, which involves multiple components, pathways, and targets, is not yet fully understood. AIM OF THE STUDY: To verify the effect of KXS on gut microbiota and explore its anti-AD mechanism related with gut microbiota. MATERIALS AND METHODS: AD rat model was established and evaluated by intraperitoneal injection of D-gal and bilateral hippocampal CA1 injections of Aß25-35. The pharmacodynamics of KXS in vivo includes general behavior, Morris water maze test, ELISA, Nissl & HE staining and immunofluorescence. Systematic analysis of gut microbiota was conducted using 16S rRNA gene sequencing technology. The potential role of gut microbiota in the anti-AD effect of KXS was validated with fecal microbiota transplantation (FMT) experiments. RESULTS: KXS could significantly improve cognitive impairment, reduce neuronal damage and attenuate neuroinflammation and colonic inflammation in vivo in AD model rats. Nine differential intestinal bacteria associated with AD were screened, in which four bacteria (Lactobacillus murinus, Ligilactobacillus, Alloprevotella, Prevotellaceae_NK3B31_group) were very significant. CONCLUSION: KXS can maintain the ecological balance of intestinal microbiota and exert its anti-AD effect by regulating the composition and proportion of gut microbiota in AD rats through the microbiota-gut-brain axis.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Disfunción Cognitiva , Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Neuronas , Fragmentos de Péptidos , Ratas Sprague-Dawley , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Masculino , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/inducido químicamente , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/inducido químicamente , Ratas , Neuronas/efectos de los fármacos , Modelos Animales de Enfermedad , Trasplante de Microbiota Fecal , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Prueba del Laberinto Acuático de Morris/efectos de los fármacos
6.
Neural Netw ; 172: 106050, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38232429

RESUMEN

Navigation is a complex skill with a long history of research in animals and humans. In this work, we simulate the Morris Water Maze in 2D to train deep reinforcement learning agents. We perform automatic classification of navigation strategies, analyze the distribution of strategies used by artificial agents, and compare them with experimental data to show similar learning dynamics as those seen in humans and rodents. We develop environment-specific auxiliary tasks and examine factors affecting their usefulness. We suggest that the most beneficial tasks are potentially more biologically feasible for real agents to use. Lastly, we explore the development of internal representations in the activations of artificial agent neural networks. These representations resemble place cells and head-direction cells found in mouse brains, and their presence has correlation to the navigation strategies that artificial agents employ.


Asunto(s)
Prueba del Laberinto Acuático de Morris , Navegación Espacial , Ratones , Animales , Humanos , Refuerzo en Psicología , Aprendizaje , Redes Neurales de la Computación , Aprendizaje por Laberinto
7.
Epilepsy Behav ; 147: 109391, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37619464

RESUMEN

Temporal lobe epilepsy (TLE) often causes cognitive impairment, especially a decline in spatial memory. Reductions in spatial memory and learning are also common in rodent models of TLE. The Morris water maze and the Barnes maze are the standard methods for evaluating spatial learning and memory in rodents. However, animals with TLE may exhibit agitation, distress, and fail to follow the paradigmatic context of these tests, making the interpretation of experimental data difficult. This study optimized the procedure of the Morris water maze and the Barnes maze to evaluate spatial learning and memory in rats with the lithium-pilocarpine TLE model (LPM rats). It was demonstrated that LPM rats required a mandatory and prolonged habituation stage for both tests. Therefore, the experimental rats performed relatively well on these tests. Nevertheless, LPM rats exhibited a slower learning process compared to the control rats. LPM rats also showed a reduction in spatial memory formation. This was more pronounced in the Barnes maze. Also, LPM rats utilized a sequential strategy for searching in the Barnes maze and were incapable of developing a more efficient spatial search strategy that is common in control animals. The Barnes maze may be a better choice for assessing search strategies, learning deficits, and spatial memory in rats with TLE when choosing between the two tests. This is because of the risk of unexpected seizure occurrence during the Morris water maze tests, and the potential risks for animal welfare.


Asunto(s)
Disfunción Cognitiva , Epilepsia del Lóbulo Temporal , Epilepsia , Ratas , Animales , Pilocarpina/toxicidad , Litio , Prueba del Laberinto Acuático de Morris , Ratas Wistar , Aprendizaje Espacial , Cognición , Aprendizaje por Laberinto , Modelos Animales de Enfermedad
8.
Biomolecules ; 13(7)2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37509100

RESUMEN

The Morris water maze (MWM) is regarded as one of the most popular tests for detecting spatial memory in rodents. Long-term potentiation and cGMP synthesis seem to be among the crucial factors involved in this type of learning. Muscarinic (M1, M4, and M5 receptors) and metabotropic glutamate (mGlu) receptors are important targets in the search for antipsychotic drugs with the potency to treat cognitive disabilities associated with the disorder. Here, we show that muscarinic receptor activators (VU0357017, VU0152100, and VU0238429) and an mGlu2 receptor activator, LY487379, dose-dependently prevented the development of cognitive disorders as a result of MK-801 administration in the MWM. The dose-ranges of the compounds were as follows: VU0357017, 0.25, 0.5, and 1 mg/kg; VU0152100, 0.05, 0.25, and 1 mg/kg; VU0238429, 1, 5, and 20 mg/kg; and LY487379, 0.5, 3, and 5 mg/kg. The co-administration of LY487379 with each of the individual muscarinic receptor ligands showed no synergistic effect, which contradicts the results obtained earlier in the novel object recognition (NOR) test. MWM learning resulted in increased cGMP synthesis, both in the cortex and hippocampi, when compared to that in intact animals, which was prevented by MK-801 administration. The investigated compounds at the highest doses reversed this MK-801-induced effect. Neither the procedure nor the treatment resulted in changes in GluN2B-NMDA expression.


Asunto(s)
Maleato de Dizocilpina , Receptores de Glutamato Metabotrópico , Animales , Maleato de Dizocilpina/farmacología , Receptores de Glutamato Metabotrópico/metabolismo , Ácido Glutámico , N-Metilaspartato , Prueba del Laberinto Acuático de Morris , Receptores Muscarínicos
9.
Behav Brain Res ; 442: 114294, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36638914

RESUMEN

People who live or work in moldy buildings often complain of "brain fog" that interferes with cognitive performance. Until recently, there was no published research on the effects of controlled exposure to mold stimuli on cognitive function or an obvious mechanism of action, fueling controversy over these claims. The constellation of health problems reported by mold-exposed individuals (respiratory issues, fatigue, pain, anxiety, depression, and cognitive deficits) correspond to those caused by innate immune activation following exposure to bacterial or viral stimuli. To determine if mold-induced innate immune activation might cause cognitive issues, we quantified the effects of both toxic and nontoxic mold on brain immune activation and spatial memory in the Morris water maze. We intranasally administered either 1) intact, toxic Stachybotrys chartarum spores; 2) ethanol-extracted, nontoxic Stachybotrys chartarum spores; or 3) control saline vehicle to mice. Inhalation of nontoxic spores caused significant deficits in the test of long-term memory of platform location, while not affecting short-term memory. Inhalation of toxic spores increased motivation to reach the platform. Interestingly, in both groups of mold-exposed males, numbers of interleukin-1ß-immunoreactive cells in many areas of the hippocampus significantly correlated with latency to find the platform, path length, and swimming speed during training, but not during testing for long-term memory. These data add to our prior evidence that mold inhalation can interfere with cognitive processing in different ways depending on the task, and that brain inflammation is significantly correlated with changes in behavior.


Asunto(s)
Encefalitis , Stachybotrys , Masculino , Ratones , Animales , Esporas Fúngicas/fisiología , Prueba del Laberinto Acuático de Morris , Encefalitis/inducido químicamente
10.
Cannabis Cannabinoid Res ; 8(2): 283-298, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36108318

RESUMEN

Background: The mechanisms underlying the clinical effects of CBD remain poorly understood. Given the increasing evidence for CBD's effects on mitochondria, we sought to examine in more detail whether CBD impacts mitochondrial function and neuronal integrity. Methods: We utilized BE(2)-M17 neuroblastoma cells or acutely isolated brain mitochondria from rodents using a Seahorse extracellular flux analyzer and a fluorescent spectrofluorophotometer assay. Mitochondrial ion channel activity and hippocampal long-term potentiation were measured using standard cellular electrophysiological methods. Spatial learning/memory function was evaluated using the Morris water maze task. Plasma concentrations of CBD were assessed with liquid chromatography-mass spectrometry, and cellular viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction neuronal injury assay. Results: At low micromolar concentrations, CBD reduced mitochondrial respiration, the threshold for mitochondrial permeability transition, and calcium uptake, blocked a novel mitochondrial chloride channel, and reduced the viability of hippocampal cells. These effects were paralleled by in vitro and in vivo learning/memory deficits. We further found that these effects were independent of cannabinoid receptor 1 and mitochondrial G-protein-coupled receptor 55. Conclusion: Our results provide evidence for concentration- and dose-dependent toxicological effects of CBD, findings that may bear potential relevance to clinical populations.


Asunto(s)
Encéfalo , Cannabidiol , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatología , Cannabidiol/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Neuronas/fisiología , Animales , Prueba del Laberinto Acuático de Morris , Masculino , Ratones , Ratas , Ratas Wistar
11.
J Affect Disord ; 324: 8-15, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36566932

RESUMEN

BACKGROUND: We investigated the effects of liraglutide, a glucagon-like peptide-1 (GLP-1) agonist, on a depression-like phenotype in mice exposed to chronic unpredictable stress (CUS). Learning and memory were also assessed using the Morris water maze (MWM) test. METHODS: Liraglutide (0.3 mg/kg/day for 21 days) was administered to mice with or without exposure to CUS. After 21 days of CUS, the forced swim test (FST) was performed to assess its antidepressant effect. To evaluate cognitive function, liraglutide was administered to mice under stress-free conditions for 21 days, and then the MWM test was performed on 6 consecutive days. RESULTS: Chronic liraglutide treatment reduced FST immobility in mice with and without CUS. In the probe trial of the Morris water maze test, the search error rate was reduced and the time spent and path length in the target quadrant and the number of platform crossings were increased. LIMITATION: Additional animal model experiments and molecular level studies are needed to support the results obtained in this study. CONCLUSIONS: Liraglutide appears to exert antidepressant effects and could improve cognitive function. Based on these results, GLP-1 agonists could have potential as novel antidepressants.


Asunto(s)
Liraglutida , Prueba del Laberinto Acuático de Morris , Ratones , Animales , Liraglutida/farmacología , Liraglutida/uso terapéutico , Depresión/tratamiento farmacológico , Aprendizaje por Laberinto , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Cognición , Péptido 1 Similar al Glucagón , Modelos Animales de Enfermedad , Conducta Animal , Estrés Psicológico
12.
Sci Rep ; 12(1): 5451, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35361814

RESUMEN

Spatial disorientation is one of the earliest symptoms in Alzheimer's disease and allocentric deficits can already be detected in the asymptomatic preclinical stages of the disease. The Morris Water Maze (MWM) is used to study spatial learning in rodent models. Here we investigated the spatial memory of female 3, 7 and 12 month-old Alzheimer Tg4-42 mice in comparison to wild-type control animals. Conventional behavior analysis of escape latencies and quadrant preference revealed spatial memory and reference memory deficits in female 7 and 12 month-old Tg4-42 mice. In contrast, conventional analysis of the MWM indicated an intact spatial memory in 3 month-old Tg4-42 mice. However, a detailed analysis of the swimming strategies demonstrated allocentric-specific memory deficits in 3 month-old Tg4-42 mice before the onset of severe memory deficits. Furthermore, we could show that the spatial reference memory deficits in aged Tg4-42 animals are caused by the lack of allocentric and spatial strategies. Analyzing search strategies in the MWM allows to differentiate between hippocampus-dependent allocentric and hippocampus-independent egocentric search strategies. The spatial navigation impairments in young Tg4-42 mice are well in line with the hypometabolism and synaptic deficits in the hippocampus. Therefore, analyzing search strategies in the Tg4-42 model can be a powerful tool for preclinical drug testing and identifying early therapeutic successes.


Asunto(s)
Enfermedad de Alzheimer , Navegación Espacial , Animales , Femenino , Aprendizaje por Laberinto , Ratones , Prueba del Laberinto Acuático de Morris , Memoria Espacial
13.
Exp Anim ; 71(3): 264-280, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35314563

RESUMEN

Since its development about 40 years ago (1981-2021), Morris water maze has turned into a very popular tool for assessing spatial learning and memory. Its many advantages have ensured its pertinence to date. These include its effectiveness in evaluating hippocampal-dependent learning and memory, exemption from motivational differences across diverse experimental manipulations, reliability in various cross-species studies, and adaptability to many experimental conditions with various test protocols. Nonetheless, throughout its establishment, several experimental and analysis loopholes have galvanized researchers to assess ways in which it could be improved and adapted to fill this gap. Therefore, in this review, we briefly summarize these developments since the early years of its establishment through to the most recent advancements in computerized analysis, offering more comprehensive analysis paradigms. In addition, we discuss the adaptability of the Morris water maze across different test versions and analysis paradigms, providing suggestions with regard to the best paradigms for particular experimental conditions. Hence, the proper selection of the experimental protocols, analysis paradigms, and consideration of the assay's limitations should be carefully considered. Given that appropriate measures are taken, with various adaptations made, the Morris water maze will likely remain a relevant tool to assess the mechanisms of spatial learning and memory.


Asunto(s)
Memoria , Aprendizaje Espacial , Animales , Aprendizaje por Laberinto , Prueba del Laberinto Acuático de Morris , Reproducibilidad de los Resultados
14.
Pak J Pharm Sci ; 35(1): 59-67, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35221274

RESUMEN

After undergoing inhalation anesthesia, some patients, especially elderly patients, experience postoperative cognitive dysfunction, such as personality changes and memory impairment. In the present study, 20-month-old rats were randomly allocated to sevoflurane (Sevo group) and control groups (Con group), and they inhaled 3% sevoflurane or 40% oxygen for 8 hours, respectively. The Morris water maze test found that the cognitive function of rats in the Sevo group were significantly different on 1d and 3d after anesthesia than that of rats in the Con group. The expression of RGS2 mRNA and protein in hippocampus of Sevo group was lower compared to the Con group, while Ca2 + was higher than con group. The expression of CaM and CaMK II in Sevo group was higher compared to the Con group. We found that Bcl-2 reduced, but the expression of Bax and Caspase-3 increased, indicating that apoptosis of hippocampal neurons was increased after sevoflurane inhalation. Both the expression of NGF and BDNF was depressed in the Sevo group. After continuous inhalation of 3% sevoflurane for 8h, the expression of RGS2 in the hippocampi of aged rats is down regulated. RGS2 may be an important factor that leads to cognitive dysfunction in rats.


Asunto(s)
Disfunción Cognitiva/inducido químicamente , Proteínas RGS/metabolismo , Sevoflurano/toxicidad , Envejecimiento , Animales , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Prueba del Laberinto Acuático de Morris , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas RGS/genética , Ratas , Ratas Wistar , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
15.
Cell Mol Life Sci ; 79(3): 148, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35195763

RESUMEN

Patients with progressive neurodegenerative disorder retinitis pigmentosa (RP) are diagnosed in the midst of ongoing retinal degeneration and remodeling. Here, we used a Pde6b-deficient RP gene therapy mouse model to test whether treatment at late disease stages can halt photoreceptor degeneration and degradative remodeling, while sustaining constructive remodeling and restoring function. We demonstrated that when fewer than 13% of rods remain, our genetic rescue halts photoreceptor degeneration, electroretinography (ERG) functional decline and inner retinal remodeling. In addition, in a water maze test, the performance of mice treated at 16 weeks of age or earlier was indistinguishable from wild type. In contrast, no efficacy was apparent in mice treated at 24 weeks of age, suggesting the photoreceptors had reached a point of no return. Further, remodeling in the retinal pigment epithelium (RPE) and retinal vasculature was not halted at 16 or 24 weeks of age, although there appeared to be some slowing of blood vessel degradation. These data suggest a novel working model in which restoration of clinically significant visual function requires only modest threshold numbers of resilient photoreceptors, halting of destructive remodeling and sustained constructive remodeling. These novel findings define the potential and limitations of RP treatment and suggest possible nonphotoreceptor targets for gene therapy optimization.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Terapia Genética/métodos , Enfermedades Neurodegenerativas/metabolismo , Mutación Puntual , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Modelos Animales de Enfermedad , Electrorretinografía/métodos , Ratones , Ratones Transgénicos , Prueba del Laberinto Acuático de Morris/efectos de los fármacos , Enfermedades Neurodegenerativas/genética , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Vasos Retinianos/metabolismo , Retinitis Pigmentosa/metabolismo , Tamoxifeno/administración & dosificación
16.
Gene ; 822: 146348, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35183682

RESUMEN

Aging is referred to progressive dysfunction of body organs, including the brain. This study aims to explore the anti-aging effect of combing nicotinamide mononucleotide (NMN) and lycopene (Lyco) (NMN + Lyco) on aging rats and senescent PC12 cells. Both in vivo and in vitro aging models were established using D-galactose (D-gal). The combination showed a trend to superiority over monotherapy in preventing aging in vivo and in vitro. Morris water maze test showed that NMN + Lyco effectively improved the ability of spatial location learning and memory of aging model rats. NMN + Lyco mitigated the oxidative stress of rat brains, livers, and PC12 cells by elevating the levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), GSH, as well as total antioxidant capacity (T-AOC), and reducing malondialdehyde (MDA) content. CCK-8 assay, senescence-associated ß-galactosidase staining, and flow cytometer confirmed the cellular senescence of PC12 cells after exposing D-gal, and indicated the anti-senescence effect of NMN + Lyco in vitro. Moreover, NMN + Lyco effectively down-regulated the expressions of p53, p21, and p16 (senescence-related genes), and activated Keap1-Nrf2 signaling in both in vivo and in vitro aging models. In total, NMN + Lyco protected rats and PC12 cells from cognitive impairment and cellular senescence induced by D-gal, of which effects might be linked to the reduction of oxidative stress and the activation of Keap1-Nrf2 signaling.


Asunto(s)
Envejecimiento/psicología , Disfunción Cognitiva/prevención & control , Galactosa/efectos adversos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Licopeno/administración & dosificación , Factor 2 Relacionado con NF-E2/metabolismo , Mononucleótido de Nicotinamida/administración & dosificación , Envejecimiento/efectos de los fármacos , Animales , Disfunción Cognitiva/etiología , Quimioterapia Combinada , Regulación de la Expresión Génica/efectos de los fármacos , Licopeno/farmacología , Masculino , Prueba del Laberinto Acuático de Morris , Mononucleótido de Nicotinamida/farmacología , Estrés Oxidativo/efectos de los fármacos , Células PC12 , Ratas , Transducción de Señal/efectos de los fármacos , Aprendizaje Espacial/efectos de los fármacos , Resultado del Tratamiento
17.
BMC Complement Med Ther ; 22(1): 30, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35101010

RESUMEN

BACKGROUND: Lactuca sativa is an edible plant commonly used by local communities to manage diabetes and stomach problems. METHODS: This work aimed to investigate the anti-oxidant, anticancer, antidiabetic and Anti-Alzheimer effects of hydroponically (HyL) and soil-grown (SoL) Lactuca sativa. Streptozotocin-induced diabetes and AlCl3-induced Alzheimer's disease model was used to evaluate the medicinal effects of Lactuca sativa. RESULTS: HyL showed significant activity in lipid peroxidation assay, DPPH and DNA protection assay, while SoL extract showed moderated activity, respectively. A similar activity response was quantified for α-glucosidase, α-amylase, acetylcholinesterase and butyrylcholinesterase inhibition assays. The cytotoxic potential of HyL and SoL extracts against MCF7, and HePG2 cancer cell lines exhibited significant activity. HyL and SoL showed a substantial decrease in blood glucose levels in streptozotocin-induced diabetic rats. Diabetes-related liver/kidney biomarkers and anti-oxidant enzyme trends moved toward normal after HyL and SoL treatment. In Anti-Alzheimer's based Morris water and elevated plus maze tests, HyL and SoL displayed memory-enhancing response and anti-anxiety behaviour, respectively. HPLC quantification of dopamine and serotonin revealed a moderate but significant (p<0.05) increase in the level of these neurotransmitters in HyL and SoL groups. CONCLUSION: Overall, the study revealed that hydroponic Lactuca sativa possesses the therapeutic potential to treat diseases like Alzheimer's and diabetes.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Antineoplásicos/farmacología , Antioxidantes/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/farmacología , Lactuca , Extractos Vegetales/farmacología , Animales , Peroxidación de Lípido/efectos de los fármacos , Masculino , Aprendizaje por Laberinto , Prueba del Laberinto Acuático de Morris , Pakistán , Ratas , Ratas Sprague-Dawley , Estreptozocina
18.
Hippocampus ; 32(4): 264-285, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35025127

RESUMEN

Most commonly used behavioral measures for testing learning and memory in the Morris water maze (MWM) involve comparisons of an animal's residence time in different quadrants of the pool. Such measures are limited in their ability to test different aspects of the animal's performance. Here, we describe novel measures of performance in the MWM that use vector fields to capture the motion of mice as well as their search pattern in the maze. Using these vector fields, we develop quantitative measures of performance that are intuitive and more sensitive than classical measures. First, we describe search patterns in terms of vector field properties and use these properties to define three metrics of spatial memory namely Spatial Accuracy, Uncertainty and, Intensity of Search. We demonstrate the usefulness of these measures using four different data sets including comparisons between different strains of mice, an analysis of two mouse models of Noonan syndrome (NS; Ptpn11 D61G and Ptpn11 N308D/+), and a study of goal reversal training. Importantly, besides highlighting novel aspects of performance in this widely used spatial task, our measures were able to uncover previously undetected differences, including in an animal model of NS, which we rescued with the mitogen activated protein kinase kinase (MEK) inhibitor SL327. Thus, our results show that our approach breaks down performance in the MWM into sensitive measurable independent components that highlight differences in spatial learning and memory in the MWM that were undetected by conventional measures.


Asunto(s)
Intención , Prueba del Laberinto Acuático de Morris , Animales , Modelos Animales de Enfermedad , Aprendizaje por Laberinto/fisiología , Ratones , Aprendizaje Espacial , Incertidumbre
19.
Sci Rep ; 12(1): 432, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013366

RESUMEN

Behavioral measurements in mice are critical tools used to evaluate the effects of interventions. Whilst mice are nocturnal animals, many studies conduct behavioral tests during the day. To better understand the effects of diurnal rhythm on mouse behaviors, we compared the results from behavioral tests conducted in the active and inactive phases. C57BL/6 mice were used in this study; we focus on sensorimotor performance, anxiety, learning and memory. Overall, our results show mice exhibit slightly higher cutaneous sensitivity, better long-term contextual memory, and a greater active avoidance escape response during the active phase. We did not observe significant differences in motor coordination, anxiety, or spatial learning and memory. Furthermore, apart from the elevated-O-maze, there was no remarkable sex effect among these tests. This study provides information on the effects of different diurnal phases on types of behavior and demonstrates the importance of the circadian cycle on learning and memory. Although we did not detect differences in anxiety and spatial learning/memory, diurnal rhythm may interact with other factors to influence these behaviors.


Asunto(s)
Ansiedad , Ritmo Circadiano , Memoria/fisiología , Desempeño Psicomotor , Aprendizaje Espacial/fisiología , Animales , Reacción de Prevención , Femenino , Masculino , Ratones Endogámicos C57BL , Prueba del Laberinto Acuático de Morris , Caracteres Sexuales
20.
Hippocampus ; 32(4): 253-263, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34971006

RESUMEN

Adropin is a secreted peptide, which is composed of 43 amino acids and shows an effective role in regulating energy metabolism and insulin resistance. Motor coordination and locomotor activity were improved by adropin in the cerebellum. However, it is not known whether adropin administration has an effect on spatial learning and memory. In this study, we investigated the effect of adropin on spatial learning and memory and characterized the biochemical properties of adropin in the hippocampus. Thirty male Sprague-Dawley rats were randomly divided into two groups as control and adropin groups. The control group received 0.9% NaCl intracerebroventricular for 6 days, while the adropin groups received 1 nmol of adropin dissolved in 0.9% NaCl (for 6 days). The Morris water maze, Y maze, and object location recognition tests were performed to evaluate learning and memory. Also, the locomotor activity tests were measured to assess the motor function. The expression of Akt, phospho-Akt, CREB, phospho-CREB, Erk1/2, phospho-Erk1/2, glycogen synthase kinase 3 ß (GSK3ß), phospho-GSK3ß, brain-derived neurotrophic factor (BDNF), and N-methyl-d-aspartate receptor NR2B subunit were determined in the hippocampal tissues by using western blot. Behavior tests showed that adropin significantly increase spatial memory performance. Meanwhile, the western blot analyses revealed that the phosphorylated form of the Akt and CREB were enhanced with adropin administration in the hippocampus. Also, the expression of BDNF showed an enhancement in adropin group in comparison to the control group. In conclusion, we have shown for the first time that adropin exerts its enhancing effect on spatial memory capacity through Akt/CREB/BDNF signaling pathways.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Proteínas Proto-Oncogénicas c-akt , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/farmacología , Hipocampo/metabolismo , Masculino , Aprendizaje por Laberinto/fisiología , Prueba del Laberinto Acuático de Morris , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Solución Salina/metabolismo , Solución Salina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...