Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 367
Filtrar
1.
BMC Biol ; 22(1): 184, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39183294

RESUMEN

BACKGROUND: Grafting with dwarf rootstock is an efficient method to control plant height in fruit production. However, the molecular mechanism remains unclear. Our previous study showed that plants with Prunus mume (mume) rootstock exhibited a considerable reduction in plant height, internode length, and number of nodes compared with Prunus persica (peach) rootstock. The present study aimed to investigate the mechanism behind the regulation of plant height by mume rootstocks through transcriptomic and metabolomic analyses with two grafting combinations, 'Longyan/Mume' and 'Longyan/Peach'. RESULTS: There was a significant decrease in brassinolide levels in plants that were grafted onto mume rootstocks. Plant hormone signal transduction and brassinolide production metabolism gene expression also changed significantly. Flavonoid levels, amino acid and fatty acid metabolites, and energy metabolism in dwarf plants decreased. There was a notable upregulation of PmLBD3 gene expression in plant specimens that were subjected to grafting onto mume rootstocks. Auxin signalling cues promoted PmARF3 transcription, which directly controlled this upregulation. Through its binding to PmBAS1 and PmSAUR36a gene promoters, PmLBD3 promoted endogenous brassinolide inactivation and inhibited cell proliferation. CONCLUSIONS: Auxin signalling and brassinolide levels are linked by PmLBD3. Our findings showed that PmLBD3 is a key transcription factor that regulates the balance of hormones through the auxin and brassinolide signalling pathways and causes dwarf plants in stone fruits.


Asunto(s)
Brasinoesteroides , Ácidos Indolacéticos , Proteínas de Plantas , Prunus , Transducción de Señal , Brasinoesteroides/metabolismo , Ácidos Indolacéticos/metabolismo , Prunus/genética , Prunus/metabolismo , Prunus/fisiología , Prunus/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Esteroides Heterocíclicos/metabolismo
2.
Int J Mol Sci ; 25(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39201381

RESUMEN

Gibberellins (GAs), enzymes that play a significant role in plant growth and development, and their levels in plants could be regulated by gibberellin-oxidases (GAoxs). As important fruit trees and ornamental plants, the study of the mechanism of plant architecture formation of the Prunus genus is crucial. Here, 85 GAox genes were identified from P. mume, P. armeniaca, P. salicina, and P. persica, and they were classified into six subgroups. Conserved motif and gene structure analysis showed that GAoxs were conserved in the four Prunus species. Collinearity analysis revealed two fragment replication events of PmGAoxs in the P. mume genome. Promoter cis-elements analysis revealed 24 PmGAoxs contained hormone-responsive elements and development regulatory elements. The expression profile indicated that PmGAoxs have tissue expression specificity, and GA levels during the dormancy stage of flower buds were controlled by certain PmGAoxs. After being treated with IAA or GA3, the transcription level of PmGA2ox8 in stems was significantly increased and showed a differential expression level between upright and weeping stems. GUS activity driven by PmGA2ox8 promoter was detected in roots, stems, leaves, and flower organs of Arabidopsis. PmGA2ox8 overexpression in Arabidopsis leads to dwarfing phenotype, increased number of rosette leaves but decreased leaf area, and delayed flowering. Our results showed that GAoxs were conserved in Prunus species, and PmGA2ox8 played an essential role in regulating plant height.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Giberelinas , Filogenia , Proteínas de Plantas , Prunus , Prunus/genética , Prunus/crecimiento & desarrollo , Prunus/enzimología , Prunus/metabolismo , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Familia de Multigenes , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Genoma de Planta
3.
BMC Plant Biol ; 24(1): 590, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38902595

RESUMEN

BACKGROUND: The Prunus sibirica seeds with rich oils has great utilization, but contain amygdalin that can be hydrolyzed to release toxic HCN. Thus, how to effectively reduce seed amygdalin content of P. sibirica is an interesting question. Mandelonitrile is known as one key intermediate of amygdalin metabolism, but which mandelonitrile lyase (MDL) family member essential for its dissociation destined to low amygdalin accumulation in P. sibirica seeds still remains enigmatic. An integration of our recent 454 RNA-seq data, amygdalin and mandelonitrile content detection, qRT-PCR analysis and function determination is described as a critical attempt to determine key MDL and to highlight its function in governing mandelonitrile catabolism with low amygdalin accumulation in Prunus sibirica seeds for better developing edible oil and biodiesel in China. RESULTS: To identify key MDL and to unravel its function in governing seed mandelonitrile catabolism with low amygdalin accumulation in P. sibirica. Global identification of mandelonitrile catabolism-associated MDLs, integrated with the across-accessions/developing stages association of accumulative amount of amygdalin and mandelonitrile with transcriptional level of MDLs was performed on P. sibirica seeds of 5 accessions to determine crucial MDL2 for seed mandelonitrile catabolism of P. sibirica. MDL2 gene was cloned from the seeds of P. sibirica, and yeast eukaryotic expression revealed an ability of MDL2 to specifically catalyze the dissociation of mandelonitrile with the ideal values of Km (0.22 mM) and Vmax (178.57 U/mg). A combination of overexpression and mutation was conducted in Arabidopsis. Overexpression of PsMDL2 decreased seed mandelonitrile content with an increase of oil accumulation, upregulated transcript of mandelonitrile metabolic enzymes and oil synthesis enzymes (involving FA biosynthesis and TAG assembly), but exhibited an opposite situation in mdl2 mutant, revealing a role of PsMDL2-mediated regulation in seed amygdalin and oil biosynthesis. The PsMDL2 gene has shown as key molecular target for bioengineering high seed oil production with low amygdalin in oilseed plants. CONCLUSIONS: This work presents the first integrated assay of genome-wide identification of mandelonitrile catabolism-related MDLs and the comparative association of transcriptional level of MDLs with accumulative amount of amygdalin and mandelonitrile in the seeds across different germplasms and developmental periods of P. sibirica to determine MDL2 for mandelonitrile dissociation, and an effective combination of PsMDL2 expression and mutation, oil and mandelonitrile content detection and qRT-PCR assay was performed to unravel a mechanism of PsMDL2 for controlling amygdalin and oil production in P. sibirica seeds. These findings could offer new bioengineering strategy for high oil production with low amygdalin in oil plants.


Asunto(s)
Amigdalina , Prunus , Semillas , Amigdalina/metabolismo , Prunus/genética , Prunus/metabolismo , Prunus/enzimología , Semillas/metabolismo , Semillas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Aceites de Plantas/metabolismo , Aldehído-Liasas/metabolismo , Aldehído-Liasas/genética , Regulación de la Expresión Génica de las Plantas
4.
Mol Plant Pathol ; 25(4): e13451, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38590135

RESUMEN

When compared with other phylogroups (PGs) of the Pseudomonas syringae species complex, P. syringae pv. syringae (Pss) strains within PG2 have a reduced repertoire of type III effectors (T3Es) but produce several phytotoxins. Effectors within the cherry pathogen Pss 9644 were grouped based on their frequency in strains from Prunus as the conserved effector locus (CEL) common to most P. syringae pathogens; a core of effectors common to PG2; a set of PRUNUS effectors common to cherry pathogens; and a FLEXIBLE set of T3Es. Pss 9644 also contains gene clusters for biosynthesis of toxins syringomycin, syringopeptin and syringolin A. After confirmation of virulence gene expression, mutants with a sequential series of T3E and toxin deletions were pathogenicity tested on wood, leaves and fruits of sweet cherry (Prunus avium) and leaves of ornamental cherry (Prunus incisa). The toxins had a key role in disease development in fruits but were less important in leaves and wood. An effectorless mutant retained some pathogenicity to fruit but not wood or leaves. Striking redundancy was observed amongst effector groups. The CEL effectors have important roles during the early stages of leaf infection and possibly acted synergistically with toxins in all tissues. Deletion of separate groups of T3Es had more effect in P. incisa than in P. avium. Mixed inocula were used to complement the toxin mutations in trans and indicated that strain mixtures may be important in the field. Our results highlight the niche-specific role of toxins in P. avium tissues and the complexity of effector redundancy in the pathogen Pss 9644.


Asunto(s)
Prunus avium , Prunus , Virulencia/genética , Pseudomonas syringae , Prunus avium/metabolismo , Frutas/metabolismo , Mutación/genética , Prunus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
5.
Plant Cell Rep ; 43(4): 89, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38462577

RESUMEN

KEY MESSAGE: This study provides novel insights into the evolution, diversification, and functions of melatonin biosynthesis genes in Prunus species, highlighting their potential role in regulating bud dormancy and abiotic stresses. The biosynthesis of melatonin (MEL) in plants is primarily governed by enzymatic reactions involving key enzymes such as serotonin N-acetyltransferase (SNAT), tryptamine 5-hydroxylase (T5H), N-acetylserotonin methyltransferase (ASMT) and tryptophan decarboxylase (TDC). In this study, we analyzed Melatonin genes in four Prunus species such as Prunus avium (Pavi), Prunus pusilliflora (Ppus), Prunus serulata (Pser), and Prunus persica (Pper) based on comparative genomics approach. Among the four Prunus species, a total of 29 TDCs, 998 T5Hs, 16 SNATs, and 115 ASMTs within the genome of four Prunus genomes. A thorough investigation of melatonin-related genes was carried out using systematic biological methods and comparative genomics. Through phylogenetic analysis, orthologous clusters, Go enrichment, syntenic relationship, and gene duplication analysis, we discovered both similarities and variations in Melatonin genes among these Prunus species. Additionally, our study revealed the existence of unique subgroup members in the Melatonin genes of these species, which were distinct from those found in Arabidopsis genes. Furthermore, the transcriptomic expression analysis revealed the potential significance of melatonin genes in bud dormancy regulation and abiotic stresses. Our extensive results offer valuable perspectives on the evolutionary patterns, intricate expansion, and functions of PavMEL genes. Given their promising attributes, PavTDCs, PavT5H, PavNAT, and three PavASMT genes warrant in-depth exploration as prime candidates for manipulating dormancy in sweet cherry. This was done to lay the foundation for future explorations into the structural and functional aspects of these factors in Prunus species. This study offers significant insights into the functions of ASMT, SNAT, T5H, and TDC genes and sheds light on their roles in Prunus avium. Moreover, it established a robust foundation for further exploration functional characterization of melatonin genes in fruit species.


Asunto(s)
Arabidopsis , Melatonina , Prunus avium , Prunus , Prunus avium/genética , Prunus avium/metabolismo , Prunus/genética , Prunus/metabolismo , 5-Metoxitriptamina , Melatonina/genética , Melatonina/metabolismo , Filogenia , Acetilserotonina O-Metiltransferasa/química , Acetilserotonina O-Metiltransferasa/genética , Acetilserotonina O-Metiltransferasa/metabolismo , Arabidopsis/genética , Genómica , Estrés Fisiológico/genética
6.
Plant Physiol ; 195(1): 566-579, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38345864

RESUMEN

The formation of multi-pistil flowers reduces the yield and quality in Japanese apricot (Prunus mume). However, the molecular mechanism underlying the formation of multi-pistil flowers remains unknown. In the current study, overexpression of PmKNAT2/6-a, a class I KNOTTED1-like homeobox (KNOX) member, in Arabidopsis (Arabidopsis thaliana) resulted in a multi-pistil phenotype. Analysis of the upstream regulators of PmKNAT2/6-a showed that AGAMOUS-like 24 (PmAGL24) could directly bind to the PmKNAT2/6-a promoter and regulate its expression. PmAGL24 also interacted with Like Heterochromatin Protein 1 (PmLHP1) to recruit lysine trimethylation at position 27 on histone H3 (H3K27me3) to regulate PmKNAT2/6-a expression, which is indirectly involved in multiple pistils formation in Japanese apricot flowers. Our study reveals that the PmAGL24 transcription factor, an upstream regulator of PmKNAT2/6-a, regulates PmKNAT2/6-a expression via direct and indirect pathways and is involved in the formation of multiple pistils in Japanese apricot.


Asunto(s)
Arabidopsis , Flores , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Flores/genética , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Plantas Modificadas Genéticamente , Prunus/genética , Prunus/metabolismo , Prunus armeniaca/genética , Prunus armeniaca/metabolismo , Regiones Promotoras Genéticas/genética
7.
Plant Cell Environ ; 47(4): 1379-1396, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38221869

RESUMEN

Japanese apricot is an important subtropical deciduous fruit tree in China, widely distributed in different altitude areas. How does it adapt to the different temperature environments in these areas? In this study, we identified a low-temperature transcription factor PmCBF03 on chromosome 7 through adaptive analysis of populations at different altitudes, which has an early termination single nucleotide polymorphism mutation. There were two different types of variation, PmCBF03A type in high-altitude areas and PmCBF03T type in low-altitude areas. PmCBF03A gene increased the survival rate, Fv/Fm values, antioxidant enzyme activity, and expression levels of antioxidant enzyme genes, and reducing electrolyte leakage and accumulation of reactive oxygen species in transgenic Arabidopsis under low temperature and freezing stress. Simultaneously, PmCBF03A gene promoted the dormancy of transgenic Arabidopsis seeds than wild-type. Biochemical analysis demonstrated that PmCBF03A directly bound to the DRE/CRT element in the promoters of the PmCOR413, PmDAM6 and PmABI5 genes, promoting their transcription and enhanced the cold resistance and dormancy of the overexpressing PmCBF03A lines. While PmCBF03T gene is unable to bind to the promoters of PmDAM6 and PmABI5 genes, leading to early release of dormancy to adapt to the problem of insufficient chilling requirement in low-altitude areas.


Asunto(s)
Arabidopsis , Prunus armeniaca , Prunus , Temperatura , Frutas , Altitud , Prunus/genética , Prunus/metabolismo , Antioxidantes/metabolismo , Arabidopsis/genética
8.
Plant Genome ; 17(1): e20371, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37493242

RESUMEN

Salinity is a major abiotic stress factor that can significantly impact crop growth, and productivity. In response to salt stress, the plant Salt Overly Sensitive (SOS) signaling pathway regulates the homeostasis of intracellular sodium ion concentration. The SOS1, SOS2, and SOS3 genes play critical roles in the SOS pathway, which belongs to the members of Na+/H+ exchanger (NHX), CBL-interacting protein kinase (CIPK), and calcineurin B-like (CBL) gene families, respectively. In this study, we performed genome-wide identifications and phylogenetic analyses of NHX, CIPK, and CBL genes in six Rosaceae species: Prunus persica, Prunus dulcis, Prunus mume, Prunus armeniaca, Pyrus ussuriensis × Pyrus communis, and Rosa chinensis. NHX, CIPK, and CBL genes of Arabidopsis thaliana were used as controls for phylogenetic analyses. Our analysis revealed the lineage-specific and adaptive evolutions of Rosaceae genes. Our observations indicated the existence of two primary classes of CIPK genes: those that are intron-rich and those that are intron-less. Intron-rich CIPKs in Rosaceae and Arabidopsis can be traced back to algae CIPKs and CIPKs found in early plants, suggesting that intron-less CIPKs evolved from their intron-rich counterparts. This study identified one gene for each member of the SOS signaling pathway in P. persica: PpSOS1, PpSOS2, and PpSOS3. Gene expression analyses indicated that all three genes of P. persica were expressed in roots and leaves. Yeast two-hybrid-based protein-protein interaction analyses revealed a direct interaction between PpSOS3 and PpSOS2; and between PpSOS2 and PpSOS1C-terminus region. Our findings indicate that the SOS signaling pathway is highly conserved in P. persica.


Asunto(s)
Arabidopsis , Prunus , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Prunus/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal , Arabidopsis/genética
9.
PeerJ ; 11: e15954, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37842053

RESUMEN

Sargent's cherry trees (Prunus sargentiiRehder) are widely planted as an ornamental, climate change-sensing species. This study investigated changes in the soil moisture content, fresh weight, photosynthesis and chlorophyll fluorescence properties, and the chlorophyll and proline content of four-year-old P. sargentii seedlings after 30 days of drought stress. In the trees subjected to drought stress treatment, soil moisture content decreased, and the fresh weight of the aboveground part of the plant decreased. However, there was no significant difference in the root growth of the dried plants. Among the photosynthesis parameters, Pn MAX, E and gs showed a significant (p  <  0.001) decrease after 15 days in dry-stressed seedlings, but there was no difference between treatments in WUE until 20 days, and there was a significant (p  <  0.001) difference after 24 days. Chlorophyll fluorescence parameters, Fv/Fm, ΦPSII, Rfd, NPQ, and Pn MAX, also increased after 10 days in dry-stressed seedlings, but these changes did not reach statistical significance compared to the control treatment. These results may suggest that drought stress highly correlates with photosynthesis and chlorophyll fluorescence parameters. Chlorophyll content also significantly decreased in the seedlings under drought stress compared with the control treatment. The proline content decreased until the 10th day of drought stress treatment and increased after the 15th day, showing an increase of 10.9% on the 15th day and 57.1% on the 30th day, compared to the control treatment. These results suggest that photosynthesis, chlorophyll fluorescence parameters, and proline content can be used to evaluate drought stress in trees. The results of this study can contribute to the management of forests, such as the irrigation of trees when pore control ability and photosynthesis ability decrease.


Asunto(s)
Prunus avium , Prunus , Prunus/metabolismo , Sequías , Prolina/metabolismo , Fluorescencia , Hojas de la Planta/metabolismo , Agua , Fotosíntesis , Clorofila , Plantones/metabolismo , Prunus avium/metabolismo , Suelo
10.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37762261

RESUMEN

The CCD gene family plays a crucial role in the cleavage of carotenoids, converting them into apocarotenoids. This process not only impacts the physiology and development of plants but also enhances their tolerance toward different stresses. However, the character of the PmCCD gene family and its role in ornamental woody Prunus mume remain unclear. Here, ten non-redundant PmCCD genes were identified from the P. mume genome, and their physicochemical characteristics were predicted. According to the phylogenetic tree, PmCCD proteins were classified into six subfamilies: CCD1, CCD4, CCD7, CCD8, NCED and CCD-like. The same subfamily possessed similar gene structural patterns and numbers of conserved motifs. Ten PmCCD genes were concentrated on three chromosomes. PmCCD genes exhibited interspecific collinearity with P. armeniaca and P. persica. Additionally, PmCCD genes had obvious specificity in different tissues and varieties. Compared with white-flowered 'ZLE', PmCCD1 and PmCCD4 genes were low-expressed in 'HJH' with yellow petals, which suggested PmCCD1 and PmCCD4 might be related to the formation of yellow flowers in P. mume. Nine PmCCD genes could respond to NaCl or PEG treatments. These genes might play a crucial role in salt and drought resistance in P. mume. Moreover, PmVAR3 and PmSAT3/5 interacted with PmCCD4 protein in yeast and tobacco leaf cells. This study laid a foundation for exploring the role of the PmCCD gene family in flower coloration and stress response in P. mume.


Asunto(s)
Prunus , Filogenia , Prunus/metabolismo , Genes de Plantas , Flores , Regulación de la Expresión Génica de las Plantas
11.
Plant Physiol ; 193(1): 448-465, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37217835

RESUMEN

Bud dormancy is crucial for winter survival and is characterized by the inability of the bud meristem to respond to growth-promotive signals before the chilling requirement (CR) is met. However, our understanding of the genetic mechanism regulating CR and bud dormancy remains limited. This study identified PpDAM6 (DORMANCY-ASSOCIATED MADS-box) as a key gene for CR using a genome-wide association study analysis based on structural variations in 345 peach (Prunus persica (L.) Batsch) accessions. The function of PpDAM6 in CR regulation was demonstrated by transiently silencing the gene in peach buds and stably overexpressing the gene in transgenic apple (Malus × domestica) plants. The results showed an evolutionarily conserved function of PpDAM6 in regulating bud dormancy release, followed by vegetative growth and flowering, in peach and apple. The 30-bp deletion in the PpDAM6 promoter was substantially associated with reducing PpDAM6 expression in low-CR accessions. A PCR marker based on the 30-bp indel was developed to distinguish peach plants with non-low and low CR. Modification of the H3K27me3 marker at the PpDAM6 locus showed no apparent change across the dormancy process in low- and non-low- CR cultivars. Additionally, H3K27me3 modification occurred earlier in low-CR cultivars on a genome-wide scale. PpDAM6 could mediate cell-cell communication by inducing the expression of the downstream genes PpNCED1 (9-cis-epoxycarotenoid dioxygenase 1), encoding a key enzyme for ABA biosynthesis, and CALS (CALLOSE SYNTHASE), encoding callose synthase. We shed light on a gene regulatory network formed by PpDAM6-containing complexes that mediate CR underlying dormancy and bud break in peach. A better understanding of the genetic basis for natural variations of CR can help breeders develop cultivars with different CR for growing in different geographical regions.


Asunto(s)
Malus , Prunus persica , Prunus , Prunus persica/genética , Prunus persica/metabolismo , Prunus/genética , Prunus/metabolismo , Histonas/metabolismo , Estudio de Asociación del Genoma Completo , Malus/genética , Regulación de la Expresión Génica de las Plantas , Latencia en las Plantas/genética
12.
Int J Mol Sci ; 24(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37240174

RESUMEN

Protein kinases of the MAPK cascade family (MAPKKK-MAPKK-MAPK) play an essential role in plant stress response and hormone signal transduction. However, their role in the cold hardiness of Prunus mume (Mei), a class of ornamental woody plant, remains unclear. In this study, we use bioinformatic approaches to assess and analyze two related protein kinase families, namely, MAP kinases (MPKs) and MAPK kinases (MKKs), in wild P. mume and its variety P. mume var. tortuosa. We identify 11 PmMPK and 7 PmMKK genes in the former species and 12 PmvMPK and 7 PmvMKK genes in the latter species, and we investigate whether and how these gene families contribute to cold stress responses. Members of the MPK and MKK gene families located on seven and four chromosomes of both species are free of tandem duplication. Four, three, and one segment duplication events are exhibited in PmMPK, PmvMPK, and PmMKK, respectively, suggesting that segment duplications play an essential role in the expansion and evolution of P. mume and its gene variety. Moreover, synteny analysis suggests that most MPK and MKK genes have similar origins and involved similar evolutionary processes in P. mume and its variety. A cis-acting regulatory element analysis shows that MPK and MKK genes may function in P. mume and its variety's development, modulating processes such as light response, anaerobic induction, and abscisic acid response as well as responses to a variety of stresses, such as low temperature and drought. Most PmMPKs and PmMKKs exhibited tissue-specifific expression patterns, as well as time-specific expression patterns that protect them through cold. In a low-temperature treatment experiment with the cold-tolerant cultivar P. mume 'Songchun' and the cold-sensitive cultivar 'Lve', we find that almost all PmMPK and PmMKK genes, especially PmMPK3/5/6/20 and PmMKK2/3/6, dramatically respond to cold stress as treatment duration increases. This study introduces the possibility that these family members contribute to P. mume's cold stress response. Further investigation is warranted to understand the mechanistic functions of MAPK and MAPKK proteins in P. mume development and response to cold stress.


Asunto(s)
Quinasas de Proteína Quinasa Activadas por Mitógenos , Prunus , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Respuesta al Choque por Frío/genética , Prunus/genética , Prunus/metabolismo , Genoma de Planta , Secuencia de Aminoácidos , Alineación de Secuencia , Plantas/metabolismo , Filogenia , Regulación de la Expresión Génica de las Plantas
13.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36769369

RESUMEN

Knotted1-like homeobox (KNOX) transcription factors are involved in plant development, playing complex roles in aerial organs. As Prunus species include important fruit tree crops of Italy, an exhaustive investigation of KNOX genes was performed using genomic and RNA-seq meta-analyses. Micropropagation is an essential technology for rootstock multiplication; hence, we investigated KNOX transcriptional behavior upon increasing 6-benzylaminopurine (BA) doses and the effects on GF677 propagules. Moreover, gene function in Prunus spp. was assessed by Gisela 6 rootstock transformation using fluorescence and peach KNOX transgenes. Based on ten Prunus spp., KNOX proteins fit into I-II-M classes named after Arabidopsis. Gene number, class member distribution, and chromosome positions were maintained, and exceptions supported the diversification of Prunus from Cerasus subgenera, and that of Armeniaca from the other sections within Prunus. Cytokinin (CK) cis-elements occurred in peach and almond KNOX promoters, suggesting a BA regulatory role in GF677 shoot multiplication as confirmed by KNOX expression variation dependent on dose, time, and interaction. The tripled BA concentration exacerbated stress, altered CK perception genes, and modified KNOX transcriptions, which are proposed to concur in in vitro anomalies. Finally, Gisela 6 transformation efficiency varied (2.6-0.6%) with the genetic construct, with 35S:GFP being more stable than 35S:KNOPE1 lines, which showed leaf modification typical of KNOX overexpression.


Asunto(s)
Arabidopsis , Prunus persica , Prunus , Citocininas/farmacología , Citocininas/metabolismo , Prunus/metabolismo , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Genes Homeobox , Arabidopsis/genética , Prunus persica/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
14.
J Exp Bot ; 74(6): 2173-2187, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36655907

RESUMEN

Low temperature is one of the most important abiotic factors limiting the growth, development and geographical distribution of plants. Prunus mume is an attractive woody ornamental plant that blooms in early spring in Beijing. However, the molecular mechanisms underlying cold hardening to enhance freezing tolerance in Prunus genus remains elusive. This study examined the dynamic physiological responses induced by cold hardening, and identified freezing-tolerance genes by RNA-seq and ATAC-seq analyses. Cold hardening elevated the content of soluble substances and enhanced freezing resistance in P. mume. Transcriptome analysis indicated that the candidate differentially expressed genes (DEGs) were those enriched in Ca2+ signalling, mitogen-activated protein kinase (MAPK) cascade, abscisic acid signalling, and inducer of CBF expression 1 (ICE)-C-repeat binding factor (CBF) signalling pathways. The openness of gene chromatin positively correlated with the expression level of these genes. Thirteen motifs were identified in the open chromatin regions in the treatment group subjected to freezing after cold hardening. The chromatin opening of transcription start site at the proximal -177 region of cold-shock protein CS120-like (PmCSL) was markedly increased, while the expression level of PmCSL was significantly up-regulated. Overexpression of PmCSL in Arabidopsis significantly improved the freezing tolerance of transgenic plants. These findings provide new insights into the regulatory mechanism of freezing tolerance to improve breeding of cold-hardy P. mume plants.


Asunto(s)
Arabidopsis , Prunus , Congelación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromatina/genética , Prunus/genética , Prunus/metabolismo , Fitomejoramiento , Frío , Arabidopsis/metabolismo , Expresión Génica , Regulación de la Expresión Génica de las Plantas
15.
Mol Biotechnol ; 65(8): 1359-1368, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36585571

RESUMEN

Prunus mume, a woody perennial tree, is valued for its ornamental traits and has been cultivated for a long history. Low temperature is the main environmental factor restricting the distribution and affecting the growth of P. mume. In plants, some WRKY transcription factors have been reported to participate in regulating cold tolerance. However, there were few researches about functional characterization of WRKYs involving in P. mume cold response. Here, a cold-induced WRKY gene named as PmWRKY57 was cloned from a P. mume cultivar 'Guhong Zhusha.' PmWRKY57 protein harboring a WRKY domain and a C2H2 zinc finger motif belongs to Group IIc of WRKY family. The PmWRKY57 protein was located to the nucleus and has transcriptional activation activity. PmWRKY57-overexpresing Arabidopsis thaliana lines showed improved cold tolerance, compared to wild-type plants. Under cold treatment, the leaves of transgenic lines contained significantly lower malondialdehyde content, and higher levels of superoxide dismutase activity, peroxidase activity, and proline content than wild-type plants. Furthermore, the expression levels of cold-response genes such as AtCOR6.6, AtCOR47, AtKIN1, and AtRCI2A were up-regulated in leaves of transgenic A. thaliana compared to those in wild-type plants. This study characterized the function of PmWRKY57 in improving cold tolerance of plants.


Asunto(s)
Arabidopsis , Prunus , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Prunus/genética , Prunus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética
16.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36362061

RESUMEN

Mutation is a source of genetic diversity widely used in breeding programs for the acquisition of agronomically interesting characters in commercial varieties of the Prunus species, as well as in the rest of crop species. Mutation can occur in nature at a very low frequency or can be induced artificially. Spontaneous or bud sport mutations in somatic cells can be vegetatively propagated to get an individual with the mutant phenotype. Unlike animals, plants have unlimited growth and totipotent cells that let somatic mutations to be transmitted to the progeny. On the other hand, in vitro tissue culture makes it possible to induce mutation in plant material and perform large screenings for mutant's selection and cleaning of chimeras. Finally, targeted mutagenesis has been boosted by the application of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 and Transcription activator-like effector nuclease (TALEN) editing technologies. Over the last few decades, environmental stressors such as global warming have been threatening the supply of global demand for food based on population growth in the near future. For this purpose, the release of new varieties adapted to such changes is a requisite, and selected or generated Prunus mutants by properly regulated mechanisms could be helpful to this task. In this work, we reviewed the most relevant mutations for breeding traits in Prunus species such as flowering time, self-compatibility, fruit quality, and disease tolerance, including new molecular perspectives in the present postgenomic era including CRISPR/Cas9 and TALEN editing technologies.


Asunto(s)
Edición Génica , Prunus , Animales , Sistemas CRISPR-Cas/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Prunus/genética , Prunus/metabolismo , Fitomejoramiento , Mutación , Endonucleasas/metabolismo , Genoma de Planta
17.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36233277

RESUMEN

Prunus mume, a famous perennial ornamental plant and fruit tree in Asia, blooms in winter or early spring in the Yangtze River area. The flowering time directly determines its ornamental and economic value, so it is of great significance to study the molecular mechanism of flowering time. SQUAMOSA PROMOTER BINDING PROTEIN (SBP), often regulated by miR156, is an important flowering regulator, although its function is unknown in P. mume. Here, 11 miR156 precursors were analyzed and located in five chromosomes of the P. mume genome. The expression pattern showed that PmSBP1/6 was negatively correlated with miR156. The promoters of PmSBP1/6 were specifically expressed in the apical meristem. Overexpression of PmSBP1/6 in tobacco promoted flowering and changed the length ratio of pistil and stamen. Moreover, PmSBP1 also affected the number and vitality of pollen and reduced the fertility of transgenic tobacco. Furthermore, ectopic expression of PmSBP1/6 caused up-regulated expression of endogenous SUPPRESSOR OF OVEREXPRESSION OF CO1 (NtSOC1). The yeast-one hybrid assay showed that PmSBP1 was bonded to the promoters of PmSOC1s. In conclusion, a miR156-PmSBP1-PmSOC1s pathway was formed to participate in the regulation of flowering time in P. mume, which provided references for the molecular mechanism of flowering time regulation and molecular breeding of P. mume.


Asunto(s)
MicroARNs , Prunus , Proteínas Portadoras/metabolismo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Prunus/genética , Prunus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
BMC Plant Biol ; 22(1): 499, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36284302

RESUMEN

BACKGROUND: Prunus mume is an early spring flower of Rosaceae, which owns high application value in gardens. Being an excellent ornamental trait, the double flower trait has always been one of the important breeding goals of plant breeders. However, the key regulatory genes of double flower traits of P. mume are still unclear at present. RESULTS: The floral organs' morphological differences of 20 single and 20 double flower cultivars of P. mume were compared firstly. And it was found that double flower trait of P. mume were often accompanied by petaloid stamen, multiple carpels and an increase in the total number of floral organs. Then, transcriptome sequencing of two representative cultivars P. mume 'Danban Lve' and P. mume 'Xiao Lve' were conducted at 3 Stage of flower bud development with distinct morphological differentiation. 3256 differentially expression genes (DEGs) were detected, and 20 candidate genes for double flower trait of P. mume were screened out including hub genes PmAP1-1 and PmAG-2 based on DEGs function analysis and WGCNA analysis. And it was found that epigenetic and hormone related genes may also play an important role in the process of double flower. CONCLUSIONS: This study suggested that the double flower trait of P.mume is more like accumulation origin based on morphological observation. 20 genes and co-expression network related to the formation of double flower P. mume were preliminarily screened through transcriptomics analysis. The results provided a reference for further understanding of the molecular mechanism of double flower trait in P. mume.


Asunto(s)
Prunus , Prunus/metabolismo , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Flores , Perfilación de la Expresión Génica , Hormonas/metabolismo , Transcriptoma
19.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36142832

RESUMEN

The Gibberellic Acid Stimulated Arabidopsis/Gibberellin Stimulated Transcript (GASA/GAST) gene family is a group of plant-specific genes encoding cysteine-rich peptides essential to plant growth, development, and stress responses. Although GASA family genes have been identified in various plant species, their functional roles in Prunus mume are still unknown. In this study, a total of 16 PmGASA genes were identified via a genome-wide scan in Prunus mume and were grouped into three major gene clades based on the phylogenetic tree. All PmGASA proteins possessed the conserved GASA domain, consisting of 12-cysteine residues, but varied slightly in protein physiochemical properties and motif composition. With evolutionary analysis, we observed that duplications and purifying selection are major forces driving PmGASA family gene evolution. By analyzing PmGASA promoters, we detected a number of hormonal-response related cis-elements and constructed a putative transcriptional regulatory network for PmGASAs. To further understand the functional role of PmGASA genes, we analyzed the expression patterns of PmGASAs across different organs and during various biological processes. The expression analysis revealed the functional implication of PmGASA gene members in gibberellic acid-, abscisic acid-, and auxin-signaling, and during the progression of floral bud break in P. mume. To summarize, these findings provide a comprehensive understanding of GASA family genes in P. mume and offer a theoretical basis for future research on the functional characterization of GASA genes in other woody perennials.


Asunto(s)
Arabidopsis , Prunus , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cisteína/metabolismo , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Familia de Multigenes , Filogenia , Proteínas de Plantas/metabolismo , Prunus/metabolismo
20.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36077445

RESUMEN

SQUAMOSA Promoter-Binding Protein-Like (SPL) genes encode plant-specific transcription factors which bind to the SQUAMOSA promoter of the MADS-box genes to regulate its expression. It plays important regulatory roles in floral induction and development, fertility, light signals and hormonal transduction, and stress response in plants. In this study, 32 PySPL genes with complete SBP (squamosa promoter binding protein) conserved domain were identified from the genome of Prunus × yedoensis 'Somei-yoshino' and analyzed by bioinformatics. 32 PySPLs were distributed on 13 chromosomes, encoding 32 PySPL proteins with different physical and chemical properties. The phylogenetic tree constructed with Arabidopsis thaliana and Oryza sativa can be divided into 10 subtribes, indicating PySPLs of different clusters have different biological functions. The conserved motif prediction showed that the number and distribution of motifs on each PySPL is varied. The gene structure analysis revealed that PySPLs harbored exons ranging from 2 to 10. The predictive analysis of acting elements showed that the promoter of PySPLs contain a large number of light-responsive elements, as well as response elements related to hormone response, growth and development and stress response. The analysis of the PySPLs expressions in flower induction and flower organs based on qRT-PCR showed that PySPL06/22 may be the key genes of flower development, PySPL01/06 and PySPL22 may play a role in the development of sepal and pistil, respectively. The results provide a foundation for the study of SPL transcription factors of Prunus × yedoensis 'Somei-yoshino' and provide more reference information of the function of SPL gene in flowering.


Asunto(s)
Arabidopsis , Oryza , Prunus , Arabidopsis/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Oryza/genética , Filogenia , Proteínas de Plantas/metabolismo , Prunus/genética , Prunus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...