Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.041
Filtrar
1.
Curr Microbiol ; 81(9): 264, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001894

RESUMEN

One of the main interests in the food industry is the preservation of food from spoilage by microorganisms or lipid oxidation. A novel alternative is the development of additives of natural origin with dual activity. In the present study, a chemically modified lysozyme (Lys) with epigallocatechin gallate (EGCG) was developed to obtain a conjugate (Lys-EGCG) with antibacterial/antioxidant activity to improve its properties and increase its application potential. The modification reaction was carried out using a free radical grafting method for the Lys modification reaction, using ascorbic acid and hydrogen peroxide as radical initiators in an aqueous medium. The synthesis of Lys-EGCG conjugate was confirmed by spectroscopic (FT-IR, 1H-RMN, and XPS) and calorimetry differential scanning (DSC) analyses. The EGCG binding to the Lys biomolecule was quantified by the Folin-Ciocalteu method; the antibacterial activity was evaluated by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MCB) against Staphylococcus aureus and Pseudomonas fluorescens; the antioxidant activity was evaluated by ABTS, DPPH, and FRAP. The spectroscopic results showed that the Lys-EGCG conjugate was successfully obtained, and the DSC analysis revealed a 20 °C increase (P < 0.05) in the denaturation temperature of Lys due to EGCG modification. The EGCG concentration in Lys-EGCG was 97.97 ± 4.7 µmol of EGCG/g of sample. The antibacterial and antioxidant activity of the Lys-EGCG conjugate was higher (P < 0.05) than pure EGCG and Lys. The chemical modification of Lys with EGCG allows for the bioconjugate with a dual function (antibacterial/antioxidant), broadening the range of Lys and EGCG applications to different areas such as food, cosmetic, and pharmaceutical industries.


Asunto(s)
Antibacterianos , Antioxidantes , Catequina , Pruebas de Sensibilidad Microbiana , Muramidasa , Pseudomonas fluorescens , Staphylococcus aureus , Catequina/análogos & derivados , Catequina/química , Catequina/farmacología , Muramidasa/farmacología , Muramidasa/química , Muramidasa/metabolismo , Antioxidantes/farmacología , Antioxidantes/química , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Pseudomonas fluorescens/efectos de los fármacos
2.
Microb Cell Fact ; 23(1): 162, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824548

RESUMEN

BACKGROUND: Syringic acid (SA) is a high-value natural compound with diverse biological activities and wide applications, commonly found in fruits, vegetables, and herbs. SA is primarily produced through chemical synthesis, nonetheless, these chemical methods have many drawbacks, such as considerable equipment requirements, harsh reaction conditions, expensive catalysts, and numerous by-products. Therefore, in this study, a novel biotransformation route for SA production was designed and developed by using engineered whole cells. RESULTS: An O-methyltransferase from Desulfuromonas acetoxidans (DesAOMT), which preferentially catalyzes a methyl transfer reaction on the meta-hydroxyl group of catechol analogues, was identified. The whole cells expressing DesAOMT can transform gallic acid (GA) into SA when S-adenosyl methionine (SAM) is used as a methyl donor. We constructed a multi-enzyme cascade reaction in Escherichia coli, containing an endogenous shikimate kinase (AroL) and a chorismate lyase (UbiC), along with a p-hydroxybenzoate hydroxylase mutant (PobA**) from Pseudomonas fluorescens, and DesAOMT; SA was biosynthesized from shikimic acid (SHA) by using whole cells catalysis. The metabolic system of chassis cells also affected the efficiency of SA biosynthesis, blocking the chorismate metabolism pathway improved SA production. When the supply of the cofactor NADPH was optimized, the titer of SA reached 133 µM (26.2 mg/L). CONCLUSION: Overall, we designed a multi-enzyme cascade in E. coli for SA biosynthesis by using resting or growing whole cells. This work identified an O-methyltransferase (DesAOMT), which can catalyze the methylation of GA to produce SA. The multi-enzyme cascade containing four enzymes expressed in an engineered E. coli for synthesizing of SA from SHA. The metabolic system of the strain and biotransformation conditions influenced catalytic efficiency. This study provides a new green route for SA biosynthesis.


Asunto(s)
Biocatálisis , Escherichia coli , Ácido Gálico , Ingeniería Metabólica , Ácido Gálico/metabolismo , Ácido Gálico/análogos & derivados , Escherichia coli/metabolismo , Escherichia coli/genética , Ingeniería Metabólica/métodos , Metiltransferasas/metabolismo , Metiltransferasas/genética , Ácido Shikímico/metabolismo , Pseudomonas fluorescens/metabolismo , Pseudomonas fluorescens/enzimología , Pseudomonas fluorescens/genética , Biotransformación
3.
Molecules ; 29(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38930986

RESUMEN

In this study, hybrid skeleton material ZIF-8@ZIF-67 was synthesized by the epitaxial growth method and then was utilized as a carrier for encapsulating Pseudomonas fluorescens lipase (PFL) through the co-precipitation method, resulting in the preparation of immobilized lipase (PFL@ZIF-8@ZIF-67). Subsequently, it was further treated with glutaraldehyde to improve protein immobilization yield. Under optimal immobilization conditions, the specific hydrolytic activity of PFL@ZIF-8@ZIF-67 was 20.4 times higher than that of the free PFL. The prepared biocatalyst was characterized and analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR). Additionally, the thermal stability of PFL@ZIF-8@ZIF-67 at 50 °C was significantly improved compared to the free PFL. After 7 weeks at room temperature, PFL@ZIF-8@ZIF-67 retained 78% of the transesterification activity, while the free enzyme was only 29%. Finally, PFL@ZIF-8@ZIF-67 was applied to the neryl acetate preparation in a solvent-free system, and the yield of neryl acetate reached 99% after 3 h of reaction. After 10 repetitions, the yields of neryl acetate catalyzed by PFL@ZIF-8@ZIF-67 and the free PFL were 80% and 43%, respectively.


Asunto(s)
Enzimas Inmovilizadas , Lipasa , Pseudomonas fluorescens , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Pseudomonas fluorescens/enzimología , Lipasa/química , Lipasa/metabolismo , Esterificación , Estabilidad de Enzimas , Zeolitas/química , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Acetatos/química , Difracción de Rayos X , Biocatálisis , Imidazoles
4.
Int J Biol Macromol ; 273(Pt 2): 133225, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38897501

RESUMEN

This work aimed to investigate the antibacterial ability and potential mechanism of chitosan grafted gentisate acid derivatives (CS-g-GA) against Pseudomonas fluorescens. The results showed that CS-g-GA had a significant suppressive impact on the growth of Pseudomonas fluorescens, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were 0.64 mg/mL and 1.28 mg/mL, respectively. Results of scanning electron microscopy (SEM) and alkaline phosphatase (AKPase) confirmed that CS-g-GA destroyed the cell structure thereby causing the leakage of intracellular components. In addition, 1 × MIC of CS-g-GA could significantly inhibit the formation of biofilms, and 74.78 % mature biofilm and 86.21 % extracellular polysaccharide of Pseudomonas fluorescens were eradicated by CS-g-GA at 2 × MIC. The results on the respiratory energy metabolism system and antioxidant system demonstrated that CS-g-GA caused respiratory disturbance and energy limitation by influencing the key enzyme activities. It could also bind to DNA and affect genetic metabolism. From this, it could be seen that CS-g-GA had the potential to control foodborne contamination of Pseudomonas fluorescens by attacking multiple targets.


Asunto(s)
Antibacterianos , Antioxidantes , Biopelículas , Quitosano , Gentisatos , Pruebas de Sensibilidad Microbiana , Pseudomonas fluorescens , Pseudomonas fluorescens/efectos de los fármacos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Quitosano/farmacología , Quitosano/química , Antibacterianos/farmacología , Antibacterianos/química , Antioxidantes/farmacología , Antioxidantes/química , Gentisatos/farmacología , Gentisatos/química
5.
Ecol Lett ; 27(6): e14457, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38844349

RESUMEN

Interspecific competition can hinder populations from evolutionarily adapting to abiotic environments, particularly by reducing population size and niche space; and feedback may arise between competitive ability and evolutionary adaptation. Here we studied populations of two model bacterial species, Escherichia coli and Pseudomonas fluorescens, that evolved in monocultures and cocultures for approximately 2400 generations at three temperatures. The two species showed a reversal in competitive dominance in cocultures along the temperature gradient. Populations from cocultures where they had been competitively dominant showed the same magnitude of fitness gain as those in monocultures. However, competitively inferior populations in cocultures showed limited abiotic adaptation compared with those in monocultures. The inferior populations in cocultures were also more likely to evolve weaker interspecific competitive ability, or go extinct. The possible competitive ability-adaptation feedback may have crucial consequences for population persistence.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Escherichia coli , Pseudomonas fluorescens , Pseudomonas fluorescens/fisiología , Pseudomonas fluorescens/genética , Escherichia coli/fisiología , Temperatura
6.
Int J Biol Macromol ; 273(Pt 1): 133029, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38852716

RESUMEN

This study determined the inhibitory mechanism as well as anti-biofilm activity of chlorogenic acid-grafted-chitosan (CS-g-CA) against Pseudomonas fluorescens (P. fluorescens) in terms of biofilm content, oxidative stress, quorum sensing and cyclic diguanosine monophosphate (c-di-GMP) concentration, and detected the changes in the expression levels of related genes by quantitative real-time PCR (qRT-PCR). Results indicated that treatment with sub-concentrations of CS-g-CA for P. fluorescens led to reduce the biofilm size of large colonies, decrease the content of biofilm and extracellular polymers, weaken the motility and adhesion of P. fluorescens. Moreover, CS-g-CA resulted in higher ROS levels, diminished catalase activity (CAT), and increased superoxide dismutase (SOD) in P. fluorescens. CS-g-CA reduced the production of quorum-sensing signaling molecules (AHLs) and the concentration of c-di-GMP in bacteria. Genes for flagellar synthesis (flgA), the resistance to stress (rpoS and hfq), and pde (phosphodiesterases that degrade c-di-GMP) were significantly down-regulated as determined by RT-PCR. Overall, CS-g-CA leads to the accumulation of ROS in bacteria via P. fluorescens environmental resistance genes and decreases the activity of enzymes in the bacterial antioxidant system, and interferes with the production and reception of quorum-sensing signaling molecules and the synthesis of c-di-GMP in P. fluorescens, which regulates the generation of biofilms.


Asunto(s)
Biopelículas , Quitosano , Ácido Clorogénico , GMP Cíclico , Estrés Oxidativo , Pseudomonas fluorescens , Percepción de Quorum , Pseudomonas fluorescens/efectos de los fármacos , Pseudomonas fluorescens/metabolismo , Quitosano/química , Quitosano/farmacología , Biopelículas/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Ácido Clorogénico/farmacología , Ácido Clorogénico/química , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
7.
J Microbiol Methods ; 222: 106956, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38759758

RESUMEN

Flow cytometry (FCM) provides unique information on bacterial viability and physiology, allowing a real-time early warning antimicrobial and antibiofilm monitoring system for preventing the spread risk of foodborne disease. The present work used a combined culture-based and FCM approach to assess the in vitro efficacy of essential oils (EOs) from condiment plants commonly used in Mediterranean Europe (i.e., thyme EO, oregano EO, basil EO, and lemon EO) against planktonic and sessile cells of food-pathogenic Listeria monocytogenes 56 LY, and contaminant and alterative species Escherichia coli ATCC 25922 and Pseudomonas fluorescens ATCC 13525. Evaluation of the bacterial response to the increasing concentrations of natural compounds posed FCM as a crucial technique for the quantification of the live/dead, and viable but non-culturable (VBNC) cells when antimicrobial agents exert no real bactericidal action. Furthermore, the FCM results displayed higher numbers of viable bacteria expressed as Active Fluorescent Units (AFUs) with a greater level of repeatability compared with outcomes of the plate-count method. Overall, accurate counting of viable microbial cells is a critically important parameter in food microbiology, and flow cytometry provides an innovative approach with high-throughput potential for applications in the food industry as "flow microbiology".


Asunto(s)
Biopelículas , Escherichia coli , Citometría de Flujo , Microbiología de Alimentos , Listeria monocytogenes , Viabilidad Microbiana , Aceites Volátiles , Pseudomonas fluorescens , Citometría de Flujo/métodos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Pseudomonas fluorescens/efectos de los fármacos , Listeria monocytogenes/efectos de los fármacos , Aceites Volátiles/farmacología , Escherichia coli/efectos de los fármacos , Viabilidad Microbiana/efectos de los fármacos , Microbiología de Alimentos/métodos , Antibacterianos/farmacología , Thymus (Planta)/química , Origanum/química , Pruebas de Sensibilidad Microbiana/métodos , Citrus/química , Ocimum basilicum/química
8.
Arch Microbiol ; 206(6): 283, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38806864

RESUMEN

The objective of this study was to investigate the effectiveness of a phage cocktail against Pseudomonas fluorescens group and its effect on the microbial, physical and chemical properties of raw milk during different storage conditions. A phage cocktail consisting of Pseudomonas fluorescens, Pseudomonas tolaasii, and Pseudomonas libanensis phages was prepared. As a result, reductions in fluorescent Pseudomonas counts of up to 3.44 log units for the storage at 4 °C and 2.38 log units for the storage at 25 °C were achieved. Following the phage application, it is found that there was no significant difference in the total mesophilic aerobic bacteria and Enterobacteriaceae counts. However, it was observed that the number of lactic acid bacteria was higher in phage-treated groups. The results also showed that pH values in the phage added groups were lower than the others and the highest titratable acidity was obtained only in the bacteria-inoculated group. As a future perspective, this study suggests that, while keeping the number of target microorganisms under control in the milk with the use of phages during storage, the microbiota and accordingly the quality parameters of the milk can be affected. This work contributes to the development of effective strategies for maintaining the quality and extending the shelf life of milk and dairy products.


Asunto(s)
Leche , Fagos Pseudomonas , Pseudomonas fluorescens , Leche/microbiología , Pseudomonas fluorescens/virología , Animales , Fagos Pseudomonas/fisiología , Fagos Pseudomonas/aislamiento & purificación , Microbiología de Alimentos , Concentración de Iones de Hidrógeno , Bacteriófagos/fisiología , Bacteriófagos/aislamiento & purificación
9.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791129

RESUMEN

Next-generation sequencing has transformed the acquisition of vast amounts of genomic information, including the rapid identification of target gene sequences in metagenomic databases. However, dominant species can sometimes hinder the detection of rare bacterial species. Therefore, a highly sensitive amplification technique that can selectively amplify bacterial genomes containing target genes of interest was developed in this study. The rolling circle amplification (RCA) method can initiate amplification from a single locus using a specific single primer to amplify a specific whole genome. A mixed cell suspension was prepared using Pseudomonas fluorescens ATCC17400 (targeting nonribosomal peptide synthetase [NRPS]) and Escherichia coli (non-target), and a specific primer designed for the NRPS was used for the RCA reaction. The resulting RCA product (RCP) amplified only the Pseudomonas genome. The NRPS was successfully amplified using RCP as a template from even five cells, indicating that the single-priming RCA technique can specifically enrich the target genome using gene-specific primers. Ultimately, this specific genome RCA technique was applied to metagenomes extracted from sponge-associated bacteria, and NRPS sequences were successfully obtained from an unknown sponge-associated bacterium. Therefore, this method could be effective for accessing species-specific sequences of NRPS in unknown bacteria, including viable but non-culturable bacteria.


Asunto(s)
Genoma Bacteriano , Técnicas de Amplificación de Ácido Nucleico , Péptido Sintasas , Péptido Sintasas/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Escherichia coli/genética , Pseudomonas fluorescens/genética , Análisis de Secuencia de ADN/métodos , Metagenoma/genética
10.
Plant Physiol Biochem ; 211: 108678, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38714126

RESUMEN

The consistently increasing use of zinc oxide nanoparticles (ZnONPs) in crop optimization practices and their persistence in agro-environment necessitate expounding their influence on sustainable agro-environment. Attempts have been made to understand nanoparticle-plant beneficial bacteria (PBB)- plant interactions; the knowledge of toxic impact of nanomaterials on soil-PBB-vegetable systems and alleviating nanotoxicity using PBB is scarce and inconsistent. This study aims at bio-fabrication of ZnONPs from Rosa indica petal extracts and investigates the impact of PBB on growth and biochemical responses of biofertilized eggplants exposed to phyto-synthesized nano-ZnO. Microscopic and spectroscopic techniques revealed nanostructure, triangular shape, size 32.5 nm, and different functional groups of ZnONPs and petal extracts. Inoculation of Pseudomonas fluorescens and Azotobacter chroococcum improved germination efficiency by 22% and 18% and vegetative growth of eggplants by 14% and 15% under NPs stress. Bio-inoculation enhanced total chlorophyll content by 36% and 14 %, increasing further with higher ZnONP concentrations. Superoxide dismutase and catalase activity in nano-ZnO and P. fluorescens inoculated eggplant shoots reduced by 15-23% and 9-11%. Moreover, in situ experiment unveiled distortion and accumulation of NPs in roots revealed by scanning electron microscope and confocal laser microscope. The present study highlights the phytotoxicity of biosynthesized ZnONPs to eggplants and demonstrates that PBB improved agronomic traits of eggplants while declining phytochemicals and antioxidant levels. These findings suggest that P. fluorescens and A. chroococcum, with NPs ameliorative activity, can be cost-effective and environment-friendly strategy for alleviating NPs toxicity and promoting eggplant production under abiotic stress, fulfilling vegetable demands.


Asunto(s)
Nanopartículas del Metal , Solanum melongena , Óxido de Zinc , Óxido de Zinc/farmacología , Solanum melongena/efectos de los fármacos , Solanum melongena/metabolismo , Solanum melongena/crecimiento & desarrollo , Solanum melongena/microbiología , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Pseudomonas fluorescens/efectos de los fármacos , Pseudomonas fluorescens/metabolismo , Azotobacter/efectos de los fármacos , Azotobacter/metabolismo , Estrés Fisiológico/efectos de los fármacos , Clorofila/metabolismo , Nanopartículas/química
11.
Sci Total Environ ; 932: 173029, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38719039

RESUMEN

Plant growth regulators (PGR) and plant growth-promoting bacteria (PGPB) have the potential in phytoremediation of heavy metals (HMs) contaminated soils. However, their sole application may not yield the optimal results, thus necessitating the combined application. The present study aimed to enhance the phytoremediation efficiency of Sedum alfredii Hance (S. alfredii) in acidic and alkaline soils through the combination of PGR (Brassinolide, BR) and PGPB (Pseudomonas fluorescens, P. fluorescens). The combination of BR and P. fluorescens (BRB treatment) effectively increased the removal efficiency of S. alfredii for Cd, Pb, and Zn by 355.2 and 155.3 %, 470.1 and 128.9 %, and 408.4 and 209.6 %, in acidic and alkaline soils, respectively. Moreover, BRB treatment led to a substantial increase in photosynthetic pigments contents and antioxidant enzymes activities, resulting in a remarkable increase in biomass (86.71 and 47.22 %) and dry mass (101.49 and 42.29 %) of plants grown in acidic and alkaline soils, respectively. Similarly, BRB treatment significantly elevated the Cd (109.4 and 71.36 %), Pb (174.9 and 48.03 %), and Zn levels (142.8 and 104.3 %) in S. alfredii shoots, along with cumulative accumulation of Cd (122.7 and 79.47 %), Pb (183.8 and 60.49 %), and Zn (150.7 and 117.9 %), respectively. In addition, the BRB treatment lowered the soil pH and DTPA-HMs contents, while augmenting soil enzymatic activities, thereby contributing soil microecology and facilitating the HMs absorption and translocation by S. alfredii to over-ground tissues. Furthermore, the evaluation of microbial community structure in phyllosphere and rhizosphere after remediation revealed the shift in microbial abundance. The combined treatment altered the principal effects on S. alfredii HMs accumulation from bacterial diversity to the soil HMs availability. In summary, our findings demonstrated that synergistic application of BR and P. fluorescens represents a viable approach to strengthen the phytoextraction efficacy of S. alfredii in varying soils.


Asunto(s)
Biodegradación Ambiental , Metales Pesados , Reguladores del Crecimiento de las Plantas , Pseudomonas fluorescens , Sedum , Contaminantes del Suelo , Suelo , Sedum/metabolismo , Contaminantes del Suelo/metabolismo , Metales Pesados/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Suelo/química , Pseudomonas fluorescens/metabolismo , Microbiología del Suelo
12.
Microb Pathog ; 191: 106645, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631412

RESUMEN

Olive knot disease, caused by Pseudomonas savastanoi, poses a significant threat to olive cultivation, necessitating sustainable alternatives to conventional chemical control. This study investigates the biocontrol effectiveness of Bacillus sp. (Og2) and Pseudomonas fluorescens (Oq5), alone and combined, against olive knot disease. Olive plants were sprayed with 5 ml of the bacteria until uniformly wet, with additional application to the soil surface. Pathogen injection occurred 24 h later. The results revealed that treating plants with a combination of both bacteria provided the highest reduction in disease severity (89.58 %), followed by P. fluorescens alone (69.38 %). Significant improvements were observed in shoot height, particularly with the combination of Bacillus sp. and P. fluorescens. The root length of olive seedlings treated with P. fluorescens and Bacillus sp., either alone or in combination, was significantly longer compared to the control and pathogen-treated seedlings. In terms of root dry weight, the most effective treatments were treated with P. fluorescens was the highest (82.94 g) among all treatments followed by the combination of both isolates with seedlings inoculated with P. savastanoi. These findings underscore the potential of Bacillus sp. and Pseudomonas fluorescens as effective biocontrol agents against olive knot disease and promoting olive seedlings growth, providing a sustainable and environmentally friendly approach to disease management.


Asunto(s)
Bacillus , Agentes de Control Biológico , Olea , Enfermedades de las Plantas , Pseudomonas fluorescens , Plantones , Olea/microbiología , Pseudomonas fluorescens/fisiología , Bacillus/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Plantones/microbiología , Plantones/crecimiento & desarrollo , Raíces de Plantas/microbiología , Antibiosis
13.
mSphere ; 9(5): e0017824, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38591888

RESUMEN

The genome of Pseudomonas fluorescens encodes >50 proteins predicted to play a role in bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP)-mediated biofilm formation. We built a network representation of protein-protein interactions and extracted key information via multidimensional scaling (i.e., principal component analysis) of node centrality measures, which measure features of proteins in a network. Proteins of different domain types (diguanylate cyclase, dual domain, phosphodiesterase, PilZ) exhibit unique network behavior and can be accurately classified by their network centrality values (i.e., roles in the network). The predictive power of protein-protein interactions in biofilm formation indicates the possibility of localized pools of c-di-GMP. A regression model showed a statistically significant impact of protein-protein interactions on the extent of biofilm formation in various environments. These results highlight the importance of a localized c-di-GMP signaling, extend our understanding of signaling by this second messenger beyond the current "Bow-tie Model," support a newly proposed "Hub Model," and suggest future avenues of investigation.


Asunto(s)
Proteínas Bacterianas , Biopelículas , GMP Cíclico , Pseudomonas fluorescens , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Biopelículas/crecimiento & desarrollo , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mapas de Interacción de Proteínas , Regulación Bacteriana de la Expresión Génica , Liasas de Fósforo-Oxígeno , Proteínas de Escherichia coli
14.
Microbiol Spectr ; 12(6): e0016624, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38687073

RESUMEN

Swarming motility in pseudomonads typically requires both a functional flagellum and the production/secretion of a biosurfactant. Published work has shown that the wild-type Pseudomonas fluorescens Pf0-1 is swarming deficient due to a point mutation in the gacA gene, which until recently was thought to inactivate rather than attenuate the Gac/Rsm pathway. As a result, little is known about the underlying mechanisms that regulate swarming motility by P. fluorescens Pf0-1. Here, we demonstrate that a ΔrsmA ΔrsmE ΔrsmI mutant, which phenotypically mimics Gac/Rsm pathway overstimulation, is proficient at swarming motility. RsmA and RsmE appear to play a key role in this regulation. Transposon mutagenesis of the ΔrsmA ΔrsmE ΔrsmI mutant identified multiple factors that impact swarming motility, including pathways involved in flagellar synthesis and biosurfactant production/secretion. We find that loss of genes linked to biosurfactant Gacamide A biosynthesis or secretion impacts swarming motility, as does loss of the alternative sigma factor FliA, which results in a defect in flagellar function. Collectively, these findings provide evidence that P. fluorescens Pf0-1 can swarm if the Gac/Rsm pathway is activated, highlight the regulatory complexity of swarming motility in this strain, and demonstrate that the cyclic lipopeptide Gacamide A is utilized as a biosurfactant for swarming motility.IMPORTANCESwarming motility is a coordinated process that allows communities of bacteria to collectively move across a surface. For P. fluorescens Pf0-1, this phenotype is notably absent in the parental strain, and to date, little is known about the regulation of swarming in this strain. Here, we identify RsmA and RsmE as key repressors of swarming motility via modulating the levels of biosurfactant production/secretion. Using transposon mutagenesis and subsequent genetic analyses, we further identify potential regulatory mechanisms of swarming motility and link Gacamide A biosynthesis and transport machinery to swarming motility.


Asunto(s)
Proteínas Bacterianas , Pseudomonas fluorescens , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Movimiento/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Tensoactivos/metabolismo , Mutagénesis , Factor sigma/genética , Factor sigma/metabolismo
15.
Environ Microbiol ; 26(4): e16604, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38561900

RESUMEN

Aphids are globally important pests causing damage to a broad range of crops. Due to insecticide resistance, there is an urgent need to develop alternative control strategies. In our previous work, we found Pseudomonas fluorescens PpR24 can orally infect and kill the insecticide-resistant green-peach aphid (Myzus persicae). However, the genetic basis of the insecticidal capability of PpR24 remains unclear. Genome sequencing of PpR24 confirmed the presence of various insecticidal toxins such as Tc (toxin complexes), Rhs (rearrangement hotspot) elements, and other insect-killing proteases. Upon aphids infection with PpR24, RNA-Seq analysis revealed 193 aphid genes were differentially expressed with down-regulation of 16 detoxification genes. In addition, 1325 PpR24 genes (542 were upregulated and 783 downregulated) were subject to differential expression, including genes responsible for secondary metabolite biosynthesis, the iron-restriction response, oxidative stress resistance, and virulence factors. Single and double deletion of candidate virulence genes encoding a secreted protease (AprX) and four toxin components (two TcA-like; one TcB-like; one TcC-like insecticidal toxins) showed that all five genes contribute significantly to aphid killing, particularly AprX. This comprehensive host-pathogen transcriptomic analysis provides novel insight into the molecular basis of bacteria-mediated aphid mortality and the potential of PpR24 as an effective biocontrol agent.


Asunto(s)
Áfidos , Insecticidas , Pseudomonas fluorescens , Animales , Áfidos/genética , Pseudomonas fluorescens/genética , Péptido Hidrolasas , Insecticidas/farmacología , Perfilación de la Expresión Génica
16.
Microb Ecol ; 87(1): 60, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630182

RESUMEN

Microorganisms produce siderophores, which are low-molecular-weight iron chelators when iron availability is limited. The present analyzed the role of LNPF1 as multifarious PGPR for improving growth parameters and nutrient content in peanut and soil nutrients. Such multifarious PGPR strains can be used as effective bioinoculants for peanut farming. In this work, rhizosphere bacteria from Zea mays and Arachis hypogaea plants in the Salem area of Tamil Nadu, India, were isolated and tested for biochemical attributes and characteristics that stimulate plant growth, such as the production of hydrogen cyanide, ammonia (6 µg/mL), indole acetic acid (76.35 µg/mL), and solubilizing phosphate (520 µg/mL). The 16S rRNA gene sequences identified the isolate LNPF1 as Pseudomonas fluorescens with a similarity percentage of 99% with Pseudomonas sp. Isolate LNPF1 was evaluated for the production of siderophore. Siderophore-rich supernatant using a Sep Pack C18 column and Amberlite-400 Resin Column (λmax 264) produced 298 mg/L and 50 mg/L of siderophore, respectively. The characterization of purified siderophore by TLC, HPLC, FTIR, and 2D-NMR analysis identified the compound as desferrioxamine, a hydroxamate siderophore. A pot culture experiment determined the potential of LNPF1 to improve iron and oil content and photosynthetic pigments in Arachis hypogaea L. and improve soil nutrient content. Inoculation of A. hypogea seeds with LNPF1 improved plant growth parameters such as leaf length (60%), shoot length (22%), root length (54.68%), fresh weight (47.28%), dry weight (37%), and number of nuts (66.66) compared to the control (untreated seeds). This inoculation also improved leaf iron content (43.42), short iron content (38.38%), seed iron (46.72%), seed oil (31.68%), carotenoid (64.40%), and total chlorophyll content (98.%) compared to control (untreated seeds). Bacterized seeds showed a substantial increase in nodulation (61.65%) and weight of individual nodules (95.97) vis-à-vis control. The results of the present study indicated that P. fluorescens might be utilized as a potential bioinoculant to improve growth, iron content, oil content, number of nuts and nodules of Arachishypogaea L., and enrich soil nutrients.


Asunto(s)
Arachis , Pseudomonas fluorescens , Deferoxamina , India , ARN Ribosómico 16S/genética , Nutrientes , Sideróforos , Hierro , Suelo
17.
Antimicrob Resist Infect Control ; 13(1): 40, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38605403

RESUMEN

In the healthcare sector, the implementation of standardized procedures, such as those commonly employed in franchises to ensure consistent quality, remains underprioritized. Within this framework, we focus on the importance of standardized central venous catheter (CVC) insertion procedures to prevent healthcare-associated outbreaks. While antimicrobial resistance (AMR) may still not be the most prevalent problem in some institutions, its increasing significance certainly underlines the urgency of infection prevention.We aim to highlight this issue by describing and discussing an outbreak scenario of carbapenem-resistant (CR) Pseudomonas fluorescens bloodstream infections resulting from a deviation from the standardized CVC insertion procedure. This outbreak led to six episodes of catheter related bloodstream infection (CRBSI) in patients with hematologic malignancies, delaying their primary treatment. Nineteen patients were exposed, leading to an attack rate of 31.6%.


Asunto(s)
Bacteriemia , Infecciones Relacionadas con Catéteres , Pseudomonas fluorescens , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones Relacionadas con Catéteres/epidemiología , Bacteriemia/epidemiología , Farmacorresistencia Bacteriana , Brotes de Enfermedades , Estándares de Referencia
18.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38632051

RESUMEN

AIMS: We aimed to develop an effective bacterial combination that can combat Fusarium oxysporum infection in watermelon using in vitro and pot experiments. METHODS AND RESULTS: In total, 53 strains of Bacillus and 4 strains of Pseudomonas were screened. Pseudomonas strains P3 and P4 and Bacillus strains XY-2-3, XY-13, and GJ-1-15 exhibited good antagonistic effects against F. oxysporum. P3 and P4 were identified as Pseudomonas chlororaphis and Pseudomonas fluorescens, respectively. XY-2-3 and GJ-1-15 were identified as B. velezensis, and XY-13 was identified as Bacillus amyloliquefaciens. The three Bacillus strains were antifungal, promoted the growth of watermelon seedlings and had genes to synthesize antagonistic metabolites such as bacilysin, surfactin, yndj, fengycin, iturin, and bacillomycin D. Combinations of Bacillus and Pseudomonas strains, namely, XY-2-3 + P4, GJ-1-15 + P4, XY-13 + P3, and XY-13 + P4, exhibited a good compatibility. These four combinations exhibited antagonistic effects against 11 pathogenic fungi, including various strains of F. oxysporum, Fusarium solani, and Rhizoctonia. Inoculation of these bacterial combinations significantly reduced the incidence of Fusarium wilt in watermelon, promoted plant growth, and improved soil nutrient availability. XY-13 + P4 was the most effective combination against Fusarium wilt in watermelon with the inhibition rate of 78.17%. The number of leaves; aboveground fresh and dry weights; chlorophyll, soil total nitrogen, and soil available phosphorus content increased by 26.8%, 72.12%, 60.47%, 16.97%, 20.16%, and 16.50%, respectively, after XY-13 + P4 inoculation compared with the uninoculated control. Moreover, total root length, root surface area, and root volume of watermelon seedlings were the highest after XY-13 + P3 inoculation, exhibiting increases by 265.83%, 316.79%, and 390.99%, respectively, compared with the uninoculated control. CONCLUSIONS: XY-13 + P4 was the best bacterial combination for controlling Fusarium wilt in watermelon, promoting the growth of watermelon seedlings, and improving soil nutrient availability.


Asunto(s)
Bacillus , Citrullus , Resistencia a la Enfermedad , Fusarium , Enfermedades de las Plantas , Pseudomonas , Fusarium/crecimiento & desarrollo , Citrullus/microbiología , Citrullus/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Bacillus/fisiología , Bacillus/genética , Bacillus/crecimiento & desarrollo , Pseudomonas/crecimiento & desarrollo , Pseudomonas/fisiología , Antibiosis , Pseudomonas fluorescens/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Plantones/microbiología , Antifúngicos/farmacología
19.
Proc Natl Acad Sci U S A ; 121(13): e2320410121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38498718

RESUMEN

Biofilms of sulfate-reducing bacterium (SRB) like Desulfovibrio vulgaris Hildenborough (DvH) can facilitate metal corrosion in various industrial and environmental settings leading to substantial economic losses. Although the mechanisms of biofilm formation by DvH are not yet well understood, recent studies indicate the large adhesin, DvhA, is a key determinant of biofilm formation. The dvhA gene neighborhood resembles the biofilm-regulating Lap system of Pseudomonas fluorescens but is curiously missing the c-di-GMP-binding regulator LapD. Instead, DvH encodes an evolutionarily unrelated c-di-GMP-binding protein (DVU1020) that we hypothesized is functionally analogous to LapD. To study this unusual Lap system and overcome experimental limitations with the slow-growing anaerobe DvH, we reconstituted its predicted SRB Lap system in a P. fluorescens strain lacking its native Lap regulatory components (ΔlapGΔlapD). Our data support the model that DvhA is a cell surface-associated LapA-like adhesin with a N-terminal "retention module" and that DvhA is released from the cell surface upon cleavage by the LapG-like protease DvhG. Further, we demonstrate DVU1020 (named here DvhD) represents a distinct class of c-di-GMP-binding, biofilm-regulating proteins that regulates DvhG activity in response to intracellular levels of this second messenger. This study provides insight into the key players responsible for biofilm formation by DvH, thereby expanding our understanding of Lap-like systems.


Asunto(s)
Pseudomonas fluorescens , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Sulfatos/metabolismo , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Biopelículas , Proteínas Portadoras/metabolismo , GMP Cíclico/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
20.
Colloids Surf B Biointerfaces ; 237: 113831, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38508084

RESUMEN

Biofilms are complex porous materials formed by microorganisms, polysaccharides, proteins, eDNA, inorganic matter, and water. They are ubiquitous in various environmental niches and are known to grow at solid-liquid, solid-air and air-liquid interfaces, often causing problems in several industrial and sanitary fields. Their removal is a challenge in many applications and numerous studies have been conducted to identify promising chemical species as cleaning agents. While these substances target specific components of biofilm structure, the role of water content in biofilm, and how it can influence wettability and detergent absorption have been quite neglected in the literature. Estimating water content in biofilm is a challenging task due to its heterogeneity in morphology and chemical composition. In this study, we controlled water content in Pseudomonas fluorescens AR 11 biofilms grown on submerged glass slides by regulating environmental relative humidity after drying. Interfacial properties of biofilm were investigated by measuring wetting of water and soybean oil. The morphology of biofilm structure was evaluated using Confocal Laser Scanning Microscopy and Scanning Electron Microscopy. The results showed that biofilm water content has a significant and measurable effect on its wettability, leading to the hypothesis that a preliminary control of water content can play a crucial role in biofilm removal process.


Asunto(s)
Pseudomonas fluorescens , Humectabilidad , Pseudomonas fluorescens/fisiología , Humedad , Biopelículas , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...