Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
New Phytol ; 243(5): 1980-1990, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38952235

RESUMEN

Ectomycorrhizal (ECM) fungi distribute tree-derived carbon (C) via belowground hyphal networks in forest ecosystems. Here, we asked the following: (1) Is C transferred belowground to a neighboring tree retained in fungal structures or transported within the recipient tree? (2) Is the overlap of ectomycorrhizal fungi in mycorrhizal networks related to the amount of belowground C transfer? We used potted sapling pairs of European beech (Fagus sylvatica) and North-American Douglas-fir (Pseudotsuga menziesii) for 13CO2 pulse-labeling. We compared 13C transfer from beech (donor) to either beech or Douglas-fir (recipient) and identified the ECM species. We measured the 13C enrichment in soil, plant tissues, and ECM fractions of fungal-containing parts and plant transport tissues. In recipients, only fungal-containing tissue of ectomycorrhizas was significantly enriched in 13C and not the plant tissue. Douglas-fir recipients shared on average one ECM species with donors and had a lower 13C enrichment than beech recipients, which shared on average three species with donors. Our results support that recently assimilated C transferred belowground is shared among fungi colonizing tree roots but not among trees. In mixed forests with beech and Douglas-fir, the links for C movement might be hampered due to low mycorrhizal overlap with consequences for soil C cycling.


Asunto(s)
Isótopos de Carbono , Carbono , Fagus , Micorrizas , Pseudotsuga , Micorrizas/fisiología , Fagus/microbiología , Pseudotsuga/microbiología , Carbono/metabolismo , Suelo/química , Europa (Continente)
2.
Tree Physiol ; 44(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38874315

RESUMEN

Disentangling the factors influencing the climate sensitivity of trees is crucial to understanding the susceptibility of forests to climate change. Reducing tree-to-tree competition and mixing tree species are two strategies often promoted to reduce the drought sensitivity of trees, but it is unclear how effective these measures are in different ecosystems. Here, we studied the growth and physiological responses to climate and severe droughts of silver fir and Douglas-fir growing in pure and mixed conditions at three sites in Switzerland. We used tree-ring width data and carbon (δ13C), oxygen (δ18O) and hydrogen (δ2H) stable isotope ratios from tree-ring cellulose to gain novel information on water relations and the physiology of trees in response to drought and how tree species mixture and competition modulate these responses. We found significant differences in isotope ratios between trees growing in pure and mixed conditions for the two species, although these differences varied between sites, e.g. trees growing in mixed conditions had higher δ13C values and tree-ring width than trees growing in pure conditions for two of the sites. For both species, differences between trees in pure and mixed conditions regarding their sensitivity to temperature, precipitation, climatic water balance and vapor pressure deficit were minor. Furthermore, trees growing in pure and mixed conditions showed similar responses of tree-ring width and isotope ratios to the past severe droughts of 2003, 2015 and 2018. Competition had only a significantly negative effect on δ13C of silver fir, which may suggest a decrease in photosynthesis due to higher competition for light and nutrients. Our study highlights that tree species mixture may have only moderate effects on the radial growth and physiological responses of silver fir and Douglas-fir to climatic conditions and that site condition effects may dominate over mixture effects.


Asunto(s)
Isótopos de Carbono , Celulosa , Cambio Climático , Isótopos de Oxígeno , Pseudotsuga , Árboles , Pseudotsuga/crecimiento & desarrollo , Pseudotsuga/fisiología , Pseudotsuga/metabolismo , Celulosa/metabolismo , Isótopos de Carbono/análisis , Árboles/crecimiento & desarrollo , Árboles/fisiología , Árboles/metabolismo , Isótopos de Oxígeno/análisis , Sequías , Abies/crecimiento & desarrollo , Abies/fisiología , Abies/metabolismo , Suiza
3.
New Phytol ; 243(2): 705-719, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38803110

RESUMEN

Understanding the genetic basis of how plants defend against pathogens is important to monitor and maintain resilient tree populations. Swiss needle cast (SNC) and Rhabdocline needle cast (RNC) epidemics are responsible for major damage of forest ecosystems in North America. Here we investigate the genetic architecture of tolerance and resistance to needle cast diseases in Douglas-fir (Pseudotsuga menziesii) caused by two fungal pathogens: SNC caused by Nothophaeocryptopus gaeumannii, and RNC caused by Rhabdocline pseudotsugae. We performed case-control genome-wide association analyses and found disease resistance and tolerance in Douglas-fir to be polygenic and under strong selection. We show that stomatal regulation as well as ethylene and jasmonic acid pathways are important for resisting SNC infection, and secondary metabolite pathways play a role in tolerating SNC once the plant is infected. We identify a major transcriptional regulator of plant defense, ERF1, as the top candidate for RNC resistance. Our findings shed light on the highly polygenic architectures underlying fungal disease resistance and tolerance and have important implications for forestry and conservation as the climate changes.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas , Pseudotsuga , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Pseudotsuga/genética , Pseudotsuga/microbiología , Pseudotsuga/fisiología , Ascomicetos/fisiología , Ascomicetos/patogenicidad , Árboles/genética , Adaptación Fisiológica/genética , Herencia Multifactorial , Regulación de la Expresión Génica de las Plantas , Genes de Plantas
4.
BMC Ecol Evol ; 24(1): 70, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807083

RESUMEN

BACKGROUND: Selection of climate-change adapted ecotypes of commercially valuable species to date relies on DNA-assisted screening followed by growth trials. For trees, such trials can take decades, hence any approach that supports focussing on a likely set of candidates may save time and money. We use a non-stationary statistical analysis with spatially varying coefficients to identify ecotypes that indicate first regions of similarly adapted varieties of Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco) in North America. For over 70,000 plot-level presence-absences, spatial differences in the survival response to climatic conditions are identified. RESULTS: The spatially-variable coefficient model fits the data substantially better than a stationary, i.e. constant-effect analysis (as measured by AIC to account for differences in model complexity). Also, clustering the model terms identifies several potential ecotypes that could not be derived from clustering climatic conditions itself. Comparing these six identified ecotypes to known genetically diverging regions shows some congruence, as well as some mismatches. However, comparing ecotypes among each other, we find clear differences in their climate niches. CONCLUSION: While our approach is data-demanding and computationally expensive, with the increasing availability of data on species distributions this may be a useful first screening step during the search for climate-change adapted varieties. With our unsupervised learning approach being explorative, finely resolved genotypic data would be helpful to improve its quantitative validation.


Asunto(s)
Cambio Climático , Pseudotsuga , Pseudotsuga/genética , Ecotipo , Adaptación Fisiológica , Modelos Biológicos , América del Norte
5.
Glob Chang Biol ; 30(4): e17227, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38558300

RESUMEN

Methods using genomic information to forecast potential population maladaptation to climate change or new environments are becoming increasingly common, yet the lack of model validation poses serious hurdles toward their incorporation into management and policy. Here, we compare the validation of maladaptation estimates derived from two methods-Gradient Forests (GFoffset) and the risk of non-adaptedness (RONA)-using exome capture pool-seq data from 35 to 39 populations across three conifer taxa: two Douglas-fir varieties and jack pine. We evaluate sensitivity of these algorithms to the source of input loci (markers selected from genotype-environment associations [GEA] or those selected at random). We validate these methods against 2- and 52-year growth and mortality measured in independent transplant experiments. Overall, we find that both methods often better predict transplant performance than climatic or geographic distances. We also find that GFoffset and RONA models are surprisingly not improved using GEA candidates. Even with promising validation results, variation in model projections to future climates makes it difficult to identify the most maladapted populations using either method. Our work advances understanding of the sensitivity and applicability of these approaches, and we discuss recommendations for their future use.


Asunto(s)
Bosques , Pseudotsuga , Adaptación Fisiológica/genética , Genómica , Cambio Climático
6.
Tree Physiol ; 44(5)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38662576

RESUMEN

To increase the resilience of forests to drought and other hazards, foresters are increasingly planting mixed stands. This requires knowledge about the drought response of tree species in pure and mixed-culture neighborhoods. In addition, drought frequently interacts with continued atmospheric nitrogen (N) deposition. To disentangle these factors for European beech, Norway spruce and Douglas fir, we conducted a replicated 3-factorial sapling growth experiment with three moisture levels, (high, medium, and low), two N levels (high and ambient), and pure and mixed-culture neighborhoods. We measured biomass, stomatal conductance (GS), shoot water potential (at predawn: ΨPD, midday, and turgor loss point: ΨTLP), branch xylem embolism resistance (Ψ50) and minimum epidermal conductance (Gmin). The three species differed most with respect to Gmin (10-fold higher in beech than in the conifers), hydroscape area (larger in beech), and the time elapsed to reach stomatal closure (TΨGS90) and ΨTLP (TTLP; shorter in beech), while Ψ50 and ΨTLP were remarkably similar. Neighborhood (pure vs mixed-culture) influenced biomass production, water status and hydraulic traits, notably GS (higher in Douglas fir, but lower in spruce and beech, in mixtures than pure culture), hydraulic safety margin (smaller for beech in mixtures), and TΨGS90 and TTLP (shorter for spruce in mixture). High N generally increased GS, but no consistent N effects on leaf water status and hydraulic traits were detected, suggesting that neighbor identity had a larger effect on plant water relations than N availability. We conclude that both tree neighborhood and N availability modulate the drought response of beech, spruce, and Douglas fir. Species mixing can alleviate the drought stress of some species, but often by disadvantaging other species. Thus, our study suggests that stabilizing and building resilience of production forests against a drier and warmer climate may depend primarily on the right species choice; species mixing can support the agenda.


Asunto(s)
Sequías , Fagus , Nitrógeno , Picea , Pseudotsuga , Árboles , Agua , Picea/fisiología , Picea/crecimiento & desarrollo , Fagus/fisiología , Fagus/crecimiento & desarrollo , Nitrógeno/metabolismo , Agua/metabolismo , Pseudotsuga/fisiología , Pseudotsuga/crecimiento & desarrollo , Árboles/fisiología , Árboles/crecimiento & desarrollo , Resistencia a la Sequía
7.
J Econ Entomol ; 117(3): 942-950, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38547050

RESUMEN

The Douglas-fir twig weevil (Cylindrocopturus furnissi Buchanan) (Coleoptera: Curculionidae) has recently emerged as a significant pest of Christmas trees grown in the Pacific Northwest United States. The larvae girdle and disfigure twigs, which adversely affects tree marketability. Trees produced for export are also routinely destroyed for phytosanitary reasons when C. furnissi is discovered at border crossings. Due to historically being a sporadic and benign pest on planted and natural Douglas-fir (Psuedotsuga menziesii), there is a lack of chemical management options. In laboratory experiments, we assessed the knockdown effects (ability to kill or incapacitate) of 4 insecticides commonly used on Christmas trees: one assay tested knockdown after direct contact for 24 h, and the other assay tested knockdown after being allowed to feed on treated twigs with 2 days, 7 days, and 14 days residuals. Concurrently, we monitored temperature and adult C. furnissi emergence at a noble fir bough farm for 2 years to estimate the ideal degree-day window for applying insecticides. Bifenthrin and esfenvalerate knocked down all weevils on contact within just 4 h, whereas chlorpyrifos and acephate failed to achieve 100% knockdown within 24 h. Only acephate failed to knock down more weevils than the control (water) after feeding on treated twigs, regardless of the insecticide residue age. Degree-day modeling revealed a variable emergence window between the 2 years but 50% of adult emergence occurred between approximately 1,000-1,100 degree days (1st January, 50 °F (10 °C), single sine). Future work should assess the resulting management recommendation: apply bifenthrin or esfenvalerate once annually just after 1,000 growing degree days for 2 or more years prior to harvest.


Asunto(s)
Insecticidas , Pseudotsuga , Gorgojos , Animales , Larva/crecimiento & desarrollo , Control de Insectos , Piretrinas
8.
Sci Rep ; 14(1): 3546, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347026

RESUMEN

In today's age of ecological transition, the use of materials such as renewable wood in construction is particularly relevant, but also a challenge in the healthcare sector where the hygiene dimension also comes into play. In this study we have investigated the survival of multi-resistant bacteria commonly responsible for healthcare-associated infections (HAIs) (ESBL-positive Klebsiella pneumoniae and glycopeptide-resistant Enterococcus faecalis) on two different types of wood (Douglas fir : Pseudotsuga menziesii and Maritime Pine : Pinus pinaster) compared to other materials (smooth: stainless steel and rough: pumice stone) and the effect of a disinfection protocol on the bacterial survival on Pseudotsuga menziesii. Approximately 108 bacteria were inoculated on each material and bacterial survival was observed over several days (D0, D1, D2, D3, D6, D7 and D15). Each analysis was performed in triplicate for each time and material. The results show an important reduction of the bacterial inoculum for Klebsiella pneumoniae and Enterococcus faecalis on Douglas fir, in contrast with the results obtained on maritime pine, stainless steel and pumice stone. No bacterial survival was detected on Douglas fir after application of a hospital disinfection protocol. These different results show that wood may have a place in the future of healthcare construction. Further studies would be interesting to better understand the different properties of wood.


Asunto(s)
Pinus , Pseudotsuga , Silicatos , Acero Inoxidable , Bacterias
9.
Phytochemistry ; 219: 113963, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38171409

RESUMEN

An investigation on the secondary metabolites from a rice culture broth of the endophytic fungus Neurospora terricola HDF-Br-2 derived from the vulnerable conifer Pseudotsuga gaussenii led to the isolation and characterization of 34 structurally diverse polyketides (1-34). Seven of them are previously undescribed, including five unprecedented dihydropyran-containing (terricoxanthones A-E, 1-5, resp.) and one rare tetrahydrofuran-containing (terricoxanthone F, 6) dimeric xanthones. The structures were elucidated by spectroscopic methods and single-crystal X-ray diffraction analyses. Terricoxanthones each were obtained as a racemic mixture. Their plausible biosynthetic relationships were briefly proposed. Compounds 6, aspergillusone A (8), and alatinone (27) displayed considerable inhibition against Candida albicans with MIC values of 8-16 µg/mL. 4-Hydroxyvertixanthone (12) and 27 exhibited significant inhibitory activities against Staphylococcus aureus, with MIC values of 4-8 µg/mL. Furthermore, compounds 8 and 27 could disrupt biofilm of S. aureus and C. albicans at 128 µg/mL. The findings not only extend the skeletons of xanthone dimers and contribute to the diversity of metabolites of endophytes associated with the endangered Chinese conifer P. gaussenii, but could further reveal the important role of protecting plant species diversity in support of chemical diversity and potential sources of new therapeutics.


Asunto(s)
Neurospora , Pseudotsuga , Tracheophyta , Xantonas , Staphylococcus aureus , Hongos , Xantonas/química , Estructura Molecular , Pruebas de Sensibilidad Microbiana
10.
New Phytol ; 241(6): 2395-2409, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38247230

RESUMEN

Tree seedlings from populations native to drier regions are often assumed to be more drought tolerant than those from wetter provenances. However, intraspecific variation in drought tolerance has not been well-characterized despite being critical for developing climate change mitigation and adaptation strategies, and for predicting the effects of drought on forests. We used a large-scale common garden drought-to-death experiment to assess range-wide variation in drought tolerance, measured by decline of photosynthetic efficiency, growth, and plastic responses to extreme summer drought in seedlings of 73 natural populations of the two main varieties of Douglas-fir (Pseudotsuga menziesii var. menziesii and var. glauca). Local adaptation to drought was weak in var. glauca and nearly absent in menziesii. Var. glauca showed higher tolerance to drought but slower growth than var. menziesii. Clinal variation in drought tolerance and growth species-wide was mainly associated with temperature rather than precipitation. A higher degree of plasticity for growth was observed in var. menziesii in response to extreme drought. Genetic variation for drought tolerance in seedlings within varieties is maintained primarily within populations. Selective breeding within populations may facilitate adaptation to drought more than assisted gene flow.


Asunto(s)
Sequías , Pseudotsuga , Plantones , Bosques , Árboles , Fotosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...