Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 521
Filtrar
1.
PeerJ ; 12: e18004, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39253601

RESUMEN

Background: Dental pulp inflammation, often initiated by Gram-negative microorganisms and lipopolysaccharides (LPS), can lead to pulpitis and, subsequently, dental pulp necrosis, compromising tooth structure and increasing susceptibility to fracture. Asiatic acid, derived from Centella asiatica, has demonstrated pharmacological properties, including anti-inflammatory and antioxidant effects, making it a potential candidate for mitigating LPS-induced pulp inflammation. This in vivo study aims to investigate the impact of Asiatic acid on the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in Rattus norvegicus with LPS-induced pulp inflammation. Methods: This quasi-laboratory experimental in vivo study employed a post-test-only control group design to investigate the effects of Asiatic acid on LPS-induced pulp inflammation in Wistar rats. Thirty rats were randomly divided into six groups subjected to various interventions. LPS was administered to all groups for 6 h except the standard control group (CG, n = 5). The negative control group (NCG, n = 5) received only glass ionomer cement. The positive control group (PCG, n = 5) received Eugenol with glass ionomer cement. Intervention groups 1, 2, and 3 (IG1, IG2, IG3; n = 5 each) received Asiatic acid at concentrations of 0.5%, 1%, and 2%, respectively, with glass ionomer cement. Dental pulp inflammation was confirmed through immunological (tumor necrosis factor alpha (TNF-α) levels), histopathological (inflammatory parameters), and physiological (pain assessment using the rat grimace scale) analyses. Additionally, Nrf2 levels were examined using enzyme-linked immunosorbent assay (ELISA). Results: Asiatic acid administration significantly influenced Nrf2 levels in rats with LPS-induced pulp inflammation. Nrf2 levels were significantly higher in groups treated with 0.5% (IG1) (8.810 ± 1.092 ng/mL; p = 0.047), 1.0% (IG2) (9.132 ± 1.285 ng/mL; p = 0.020), and 2.0% (IG3) (11.972 ± 1.888 ng/mL; p = 0.000) Asiatic acid compared to NCG (7.146 ± 0.706). Notably, Nrf2 levels were also significantly higher in the 2.0% Asiatic acid group (IG3) compared to the PCG treated with Eugenol (8.846 ± 0.888 ng/mL; p = 0.001), as well as IG1 (p = 0.001) and IG2 (p = 0.002). However, no significant difference was observed between administering 0.5% Asiatic acid (IG1), 1.0% Asiatic acid (IG2), and Eugenol (PCG). Conclusion: This research showed that Asiatic acid significantly impacted the Nrf2 levels in rats with LPS-induced pulp inflammation. This suggests that it has the potential to be used as a therapeutic agent for reducing dental pulp inflammation. These findings support the need to further explore Asiatic acid as a promising intervention for maintaining dental pulp health.


Asunto(s)
Lipopolisacáridos , Factor 2 Relacionado con NF-E2 , Triterpenos Pentacíclicos , Pulpitis , Ratas Wistar , Animales , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/uso terapéutico , Lipopolisacáridos/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Ratas , Pulpitis/tratamiento farmacológico , Pulpitis/patología , Pulpitis/metabolismo , Pulpitis/inducido químicamente , Masculino , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Pulpa Dental/efectos de los fármacos , Pulpa Dental/metabolismo , Pulpa Dental/patología , Inflamación/tratamiento farmacológico , Inflamación/patología , Inflamación/inducido químicamente
2.
Immun Inflamm Dis ; 12(9): e1312, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39254474

RESUMEN

OBJECTIVE: This study was designed to evaluate TFAP2A-AS1 expression in the dental pulp of teeth with or without pulpitis and to determine the function of TFAP2A-AS1 in pulp cells. METHODS: GSE92681 was analyzed to filter out differentially expressed lncRNAs. Pulp samples from teeth with pulpitis and healthy teeth (control) were examined using real-time (RT) quantitative polymerase chain reaction (qPCR). Human dental pulp stem cells (hDPSCs) were cultured in a specific medium for osteogenic induction, or treated with lipopolysaccharide (LPS) to simulate inflammation. The viability and apoptosis of human DPSCs (hDPSCs) were determined by XTT assay and apoptosis detection kit. Inflammation was induced by LPS and assessed by measuring the expression and release of inflammatory cytokines after TFAP2A-AS1 knockdown. Osteogenic differentiation of hDPSCs was investigated by determining expression levels of osteogenic markers and alkaline phosphatase (ALP) activity after TFAP2A-AS1 overexpression. The downstream microRNA (miRNA) was predicted. Dual-luciferase reporter was used to confirm the binding between miR-32-5p and TFAP2A-AS1. RESULTS: The expression of TFAP2A-AS1 was evaluated in inflamed pulp using RT-qPCR. TFAP2A-AS1 had a discriminatory ability for healthy individuals and patients with pulpitis. The expression of TFAP2A-AS1 decreased upon the osteogenic differentiation of hDPSCs, and increased upon the LPS induction. TFAP2A-AS1 can reverse the osteogenic differentiation of hDPSCs, as evidenced by decreased levels of dentine sialophosphoprotein, dentin matrix protein-1, and ALP activity. TFAP2A-AS1 knockdown can promote cell proliferation of hDPSCs and relieve LPS-induced inflammation, as evidenced by decreased levels of TNF-α, IL-1ß, and IL-6. miR-32-5p was identified as a downstream miRNA of TFAP2A-AS1. CONCLUSION: This study demonstrated the expression and potential function of TFAP2A-AS1 in the human dental pulp. TFAP2A-AS1 can inhibit odontogenic differentiation but promote inflammation in pulp cells.


Asunto(s)
Pulpa Dental , MicroARNs , Pulpitis , ARN Largo no Codificante , Factor de Transcripción AP-2 , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética , Pulpa Dental/metabolismo , Pulpa Dental/patología , Pulpitis/metabolismo , Pulpitis/genética , Pulpitis/patología , Factor de Transcripción AP-2/metabolismo , Factor de Transcripción AP-2/genética , Diferenciación Celular/genética , Osteogénesis/genética , Apoptosis/genética , Regulación de la Expresión Génica , Células Cultivadas , Lipopolisacáridos , Células Madre/metabolismo
3.
PeerJ ; 12: e17953, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39221277

RESUMEN

Tooth-related inflammatory disorders, including caries, pulpitis, apical periodontitis (AP), and periodontitis (PD), are primarily caused by resident oral microorganisms. Although these dental inflammatory conditions are typically not life-threatening, neglecting them can result in significant complications and greatly reduce an individual's quality of life. Nuclear factor κB (NF-κB), a family formed by various combinations of Rel proteins, is extensively involved in inflammatory diseases and even cancer. This study reviews recent data on NF-κB signaling and its role in dental pulp stem cells (DPSCs), dental pulp fibroblasts (DPFs), odontoblasts, human periodontal ligament cells (hPDLCs), and various experimental animal models. The findings indicate that NF-κB signaling is abnormally activated in caries, pulpitis, AP, and PD, leading to changes in related cellular differentiation. Under specific conditions, NF-κB signaling occasionally interacts with other signaling pathways, affecting inflammation, bone metabolism, and tissue regeneration processes. In summary, data collected over recent years confirm the central role of NF-κB in dental inflammatory diseases, potentially providing new insights for drug development targeting NF-κB signaling pathways in the treatment of these conditions. Keywords: NF-κB, dental caries, pulpitis, apical periodontitis, periodontitis.


Asunto(s)
Caries Dental , FN-kappa B , Periodontitis Periapical , Periodontitis , Transducción de Señal , Humanos , FN-kappa B/metabolismo , Caries Dental/metabolismo , Caries Dental/patología , Caries Dental/inmunología , Periodontitis/metabolismo , Periodontitis/inmunología , Periodontitis/patología , Animales , Periodontitis Periapical/metabolismo , Periodontitis Periapical/patología , Periodontitis Periapical/inmunología , Pulpitis/metabolismo , Pulpitis/patología , Pulpitis/inmunología , Pulpa Dental/inmunología , Pulpa Dental/metabolismo , Pulpa Dental/patología , Inflamación/metabolismo , Inflamación/inmunología
4.
BMC Oral Health ; 24(1): 890, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097700

RESUMEN

This study aims to investigate the effect of Mineral Trioxide Aggregate (MTA), a bioactive endodontic cement, and Concentrated Growth Factor (CGF), a second-generation autologous growth factor, on pulpotomy-induced pulp inflammation. The study utilized the maxillary anterior central teeth of thirty-six young male Sprague Dawley rats. Forty-eight teeth were randomly assigned to two groups (12 rats/group; 24 teeth/group) based on the capping material (MTA or CGF). Subsequently, two subgroups (MTAG and CGFG) were formed per group (12 teeth/group) based on the time following pulpotomy (2-weeks and 4-weeks). The central teeth of the 12 animals assigned to the control group (CG) were not manipulated in any way, both in the 2-week group and in the 4-week group. Tissue samples extracted from rats at the end of the experiment were stained with H&E for histopathological analysis. For immunohistochemical analysis, primary antibodies for TNF-α and NF-kß/65 were incubated. Data obtained from semi-quantitative analysis were assessed for normal distribution using Skewness-Kurtosis values, Q-Q plot, Levene's test, and the Shapiro-Wilk test on statistical software. A P value < 0.05 was considered significant. When compared with the control group, both MTAG and CGFG showed increased edematous and inflammatory areas. In MTAG, edematous and inflammatory areas decreased significantly from the 2nd week (2(2-2), 2(1-2)) to the 4th week (1(1-1), 1(0-1)), while in CGFG, edematous areas decreased (2(2-3), 1.5(1-2)), and inflammatory areas increased significantly (2(2-3), 3(2-2.5)). When compared with the control group, TNF-α and NF-kß/p65 positivity were higher in both MTAG and CGFG. In MTAG, TNF-α [2(1.5-2)] and NF-kß/p65 [1.5(1-2)] positivity decreased significantly from the 2nd week to the 4th week [TNF-α: 1(1-1), NF-kß/p65: 1(1-2)], while no significant change was observed in CGFG. In conclusion, this study revealed a reduction in cells showing TNF-α and NF-kß/p65 positivity in the MTA treatment group compared to the CGF group. Although MTA demonstrated more favorable results than CGF in mitigating pulpal inflammation within the scope of this study, further experimental and clinical investigations are warranted to obtain comprehensive data regarding CGF.


Asunto(s)
Compuestos de Aluminio , Compuestos de Calcio , Óxidos , Pulpotomía , Silicatos , Animales , Masculino , Ratas , Compuestos de Aluminio/farmacología , Compuestos de Calcio/farmacología , Compuestos de Calcio/uso terapéutico , Combinación de Medicamentos , Péptidos y Proteínas de Señalización Intercelular , FN-kappa B/metabolismo , Óxidos/farmacología , Pulpitis/patología , Pulpitis/metabolismo , Pulpotomía/métodos , Distribución Aleatoria , Ratas Sprague-Dawley , Silicatos/farmacología , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
5.
DNA Cell Biol ; 43(8): 369-386, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38959180

RESUMEN

Teeth are vulnerable to structural compromise, primarily attributed to carious lesions, in which microorganisms originating from the oral cavity deteriorate the mineralized structures of enamel and dentin, subsequently infiltrating the underlying soft connective tissue, known as the dental pulp. Nonetheless, dental pulp possesses the necessary capabilities to detect and defend against bacteria and their by-products, using a variety of intricate defense mechanisms. The pulp houses specialized cells known as odontoblasts, which encounter harmful substances produced by oral bacteria. These cells identify pathogens at an early stage and commence the immune system response. As bacteria approach the pulp, various cell types within the pulp, such as different immune cells, stem cells, fibroblasts, as well as neuronal and vascular networks, contribute a range of defense mechanisms. Therefore, the immune system is present in the healthy pulp to restrain the initial spread of pathogens, and then in the inflamed pulp, it prepares the conditions for necrosis or regeneration, so inflammatory response mechanisms play a critical role in maintaining tissue homeostasis. This review aims to consolidate the existing literature on the immune system in dental pulp, encompassing current knowledge on this topic that explains the diverse mechanisms of recognition and defense against pathogens exhibited by dental pulp cells, elucidates the mechanisms of innate and adaptive immunity in inflamed pulp, and highlights the difference between inflamed and normal pulp tissue.


Asunto(s)
Pulpa Dental , Pulpa Dental/inmunología , Pulpa Dental/patología , Humanos , Sistema Inmunológico/inmunología , Animales , Pulpitis/inmunología , Pulpitis/patología , Inmunidad Innata , Inmunidad Adaptativa , Inflamación/inmunología , Inflamación/patología
6.
Life Sci ; 352: 122797, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38917871

RESUMEN

Caries and pulpitis remain a major global disease burden and affect the quality of life of patients. Odontoblasts are key players in the progression of caries and pulpitis, not only secreting and mineralizing to form dentin, but also acting as a wall of defense to initiate immune defenses. Mitochondrion is an information processor for numerous cellular activities, and dysregulation of mitochondrion homeostasis not only affects cellular metabolism but also triggers a wide range of diseases. Elucidating mitochondrial homeostasis in odontoblasts can help deepen scholars' understanding of odontoblast-associated diseases. Articles on mitochondrial homeostasis in odontoblasts were evaluated for information pertinent to include in this narrative review. This narrative review focused on understanding the complex interplay between mitochondrial homeostasis in odontoblasts under physiological and pathological conditions. Furthermore, mitochondria-centered therapeutic strategies (including mitochondrial base editing, targeting platforms, and mitochondrial transplantation) were emphasized by resolving key genes that regulate mitochondrial function. Mitochondria are involved in odontoblast differentiation and function, and act as mitochondrial danger-associated molecular patterns (mtDAMPs) to mediate odontoblast pathological progression. Novel mitochondria-centered therapeutic strategies are particularly attractive as emerging therapeutic approaches for the maintenance of mitochondrial homeostasis. It is expected to probe key events of odontoblast differentiation and advance the clinical resolution of dentin formation and mineralization disorders and odontoblast-related diseases.


Asunto(s)
Homeostasis , Mitocondrias , Odontoblastos , Odontoblastos/metabolismo , Odontoblastos/fisiología , Humanos , Homeostasis/fisiología , Mitocondrias/metabolismo , Mitocondrias/patología , Animales , Caries Dental/patología , Caries Dental/metabolismo , Diferenciación Celular , Pulpitis/metabolismo , Pulpitis/patología
7.
Sci Rep ; 14(1): 14702, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926433

RESUMEN

The aim of this study is to introduce a dental capping agent for the treatment of pulp inflammation (pulpitis). Nanohydroxyapatite with Elaeagnus angustifolia L. extract (nHAEA) loaded with metronidazole (nHAEA@MTZ) was synthesized and evaluated using a lipopolysaccharide (LPS) in vitro model of pulpitis. nHAEA was synthesized through sol-gel method and analyzed using Scanning Electron Microscopy, Transmission Electron Microscopy, and Brunauer Emmett Teller. Inflammation in human dental pulp stem cells (HDPSCs) induced by LPS. A scratch test assessed cell migration, RT PCR measured cytokines levels, and Alizarin red staining quantified odontogenesis. The nHAEA nanorods were 17-23 nm wide and 93-146 nm length, with an average pore diameter of 27/312 nm, and a surface area of 210.89 m2/g. MTZ loading content with controlled release, suggesting suitability for therapeutic applications. nHAEA@MTZ did not affect the odontogenic abilities of HDPSCs more than nHAEA. However, it was observed that nHAEA@MTZ demonstrated a more pronounced anti-inflammatory effect. HDPSCs treated with nanoparticles exhibited improved migration compared to other groups. These findings demonstrated that nHAEA@MTZ could be an effective material for pulp capping and may be more effective than nHAEA in reducing inflammation and activating HDPSCs to enhance pulp repair after pulp damage.


Asunto(s)
Pulpa Dental , Durapatita , Metronidazol , Extractos Vegetales , Pulpitis , Extractos Vegetales/farmacología , Extractos Vegetales/química , Humanos , Pulpitis/tratamiento farmacológico , Pulpitis/metabolismo , Pulpitis/patología , Metronidazol/farmacología , Pulpa Dental/efectos de los fármacos , Pulpa Dental/metabolismo , Pulpa Dental/citología , Durapatita/química , Nanopartículas/química , Tecnología Química Verde , Portadores de Fármacos/química , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Movimiento Celular/efectos de los fármacos , Células Cultivadas
8.
Br J Pharmacol ; 181(17): 3246-3262, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38744683

RESUMEN

BACKGROUND AND PURPOSE: Pulpitis is associated with tooth hypersensitivity and results in pulpal damage. Thermosensitive transient receptor potential (TRP) ion channels expressed in the dental pulp may be key transducers of inflammation and nociception. We aimed at investigating the expression and role of thermo-TRPs in primary human dental pulp cells (hDPCs) in normal and inflammatory conditions. EXPERIMENTAL APPROACH: Inflammatory conditions were induced in hDPC cultures by applying polyinosinic:polycytidylic acid (poly(I:C)). Gene expression and pro-inflammatory cytokine release were measured by RT-qPCR and ELISA. Functions of TRPA1 channels were investigated by monitoring changes in intracellular Ca2+ concentration. Mitochondrial superoxide production was measured using a fluorescent substrate. Cellular viability was assessed by measuring the activity of mitochondrial dehydrogenases and cytoplasmic esterases. TRPA1 activity was modified by agonists, antagonists, and gene silencing. KEY RESULTS: Transcripts of TRPV1, TRPV2, TRPV4, TRPC5, and TRPA1 were highly expressed in control hDPCs, whereas TRPV3, TRPM2, and TRPM3 expressions were much lower, and TRPM8 was not detected. Poly(I:C) markedly up-regulated TRPA1 but not other thermo-TRPs. TRPA1 agonist-induced Ca2+ signals were highly potentiated in inflammatory conditions. Poly(I:C)-treated cells displayed increased Ca2+ responses to H2O2, which was abolished by TRPA1 antagonists. Inflammatory conditions induced oxidative stress, stimulated mitochondrial superoxide production, resulted in mitochondrial damage, and decreased cellular viability of hDPCs. This inflammatory cellular damage was partly prevented by the co-application of TRPA1 antagonist or TRPA1 silencing. CONCLUSION AND IMPLICATIONS: Pharmacological blockade of TRPA1 channels may be a promising therapeutic approach to alleviate pulpitis and inflammation-associated pulpal damage.


Asunto(s)
Pulpa Dental , Estrés Oxidativo , Pulpitis , Canal Catiónico TRPA1 , Regulación hacia Arriba , Humanos , Estrés Oxidativo/efectos de los fármacos , Canal Catiónico TRPA1/metabolismo , Canal Catiónico TRPA1/antagonistas & inhibidores , Pulpitis/metabolismo , Pulpitis/patología , Pulpa Dental/citología , Pulpa Dental/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Células Cultivadas , Canales de Potencial de Receptor Transitorio/metabolismo , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Poli I-C/farmacología , Supervivencia Celular/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Calcio/metabolismo , Superóxidos/metabolismo
9.
Biochem Biophys Res Commun ; 717: 150044, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38718567

RESUMEN

Pulpitis constitutes a significant challenge in clinical management due to its impact on peripheral nerve tissue and the persistence of chronic pain. Despite its clinical importance, the correlation between neuronal activity and the expression of voltage-gated sodium channel 1.7 (Nav1.7) in the trigeminal ganglion (TG) during pulpitis is less investigated. The aim of this study was to examine the relationship between experimentally induced pulpitis and Nav1.7 expression in the TG and to investigate the potential of selective Nav1.7 modulation to attenuate TG abnormal activity associated with pulpitis. Acute pulpitis was induced at the maxillary molar (M1) using allyl isothiocyanate (AITC). The mice were divided into three groups: control, pulpitis model, and pulpitis model treated with ProTx-II, a selective Nav1.7 channel inhibitor. After three days following the surgery, we conducted a recording and comparative analysis of the neural activity of the TG utilizing in vivo optical imaging. Then immunohistochemistry and Western blot were performed to assess changes in the expression levels of extracellular signal-regulated kinase (ERK), c-Fos, collapsin response mediator protein-2 (CRMP2), and Nav1.7 channels. The optical imaging result showed significant neurological excitation in pulpitis TGs. Nav1.7 expressions exhibited upregulation, accompanied by signaling molecular changes suggestive of inflammation and neuroplasticity. In addition, inhibition of Nav1.7 led to reduced neural activity and subsequent decreases in ERK, c-Fos, and CRMP2 levels. These findings suggest the potential for targeting overexpressed Nav1.7 channels to alleviate pain associated with pulpitis, providing practical pain management strategies.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7 , Pulpitis , Animales , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/genética , Ratones , Masculino , Pulpitis/metabolismo , Pulpitis/patología , Ganglio del Trigémino/metabolismo , Neuronas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intercelular
10.
J Cell Mol Med ; 28(9): e18350, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38700030

RESUMEN

Mechanical force induces hypoxia in the pulpal area by compressing the apical blood vessels of the pulp, triggering pulpal inflammation during orthodontic tooth movement. However, this inflammation tends to be restorable. Macrophages are recognized as pivotal immunoreactive cells in the dental pulp. Whether they are involved in the resolution of pulpal inflammation in orthodontic teeth remains unclear. In this study, we investigated macrophage polarization and its effects during orthodontic tooth movement. It was demonstrated that macrophages within the dental pulp polarized to M2 type and actively participated in the process of pulpal inflammation resolution. Inflammatory reactions were generated and vascularization occurred in the pulp during orthodontic tooth movement. Macrophages in orthodontic pulp show a tendency to polarize towards M2 type as a result of pulpal hypoxia. Furthermore, by blocking M2 polarization, we found that macrophage M2 polarization inhibits dental pulp-secreting inflammatory factors and enhances VEGF production. In conclusion, our findings suggest that macrophages promote pulpal inflammation resolution by enhancing M2 polarization and maintaining dental health during orthodontic tooth movement.


Asunto(s)
Pulpa Dental , Inflamación , Macrófagos , Técnicas de Movimiento Dental , Pulpa Dental/metabolismo , Pulpa Dental/patología , Animales , Macrófagos/metabolismo , Inflamación/patología , Inflamación/metabolismo , Ratones , Polaridad Celular , Masculino , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pulpitis/patología , Pulpitis/metabolismo , Activación de Macrófagos
11.
J Oral Biosci ; 66(1): 98-104, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37979655

RESUMEN

OBJECTIVES: Immunoglobulin (Ig)A nephropathy has been associated with oral infections such as periodontitis, but its pathogenesis is not fully understood; no treatments exist. This study analyzes the influence of IgA nephropathy, an autoimmune disease, on the pathogenesis of pulpitis and apical periodontitis. METHODS: Two groups of mice were used in pulp infection experiments: high serum IgA nephropathy model mice (HIGA) and control mice (BALB/c). Histologic analyses of the pulp and apical periodontal tissues were performed on days 3, 5, 7, 14, and 28 following oral bacterial infection. The dynamics of odontoblasts, apoptotic cells, and IgA expression were analyzed using anti-Nestin, TUNEL, and anti-IgA staining, respectively. RESULTS: Inflammatory cells infiltrated the exposed pulp at day three in both groups and by 14 days, these cells had infiltrated from the pulp to the apical periodontal tissue. The area of necrotic pulp tissue increased significantly in the control group at seven days. Odontoblasts decreased from day three onwards and disappeared by 28 days in both groups. The number of apoptotic cells in the pulp and apical periodontal tissues was significantly higher in the experimental group at day 28. The experimental group exhibited a significant increase in IgA production in the pulp after 14 days. Bone resorption in the apical periodontal tissue was significantly decreased in the experimental group at day 28. CONCLUSIONS: The results of this study suggest that IgA nephropathy may modulate the inflammatory response and sustain long-term biological defense responses in pulpitis and apical periodontitis in HIGA mice.


Asunto(s)
Glomerulonefritis por IGA , Periodontitis Periapical , Pulpitis , Ratones , Animales , Pulpitis/complicaciones , Pulpitis/patología , Glomerulonefritis por IGA/etiología , Glomerulonefritis por IGA/metabolismo , Glomerulonefritis por IGA/patología , Periodontitis Periapical/complicaciones , Periodontitis Periapical/patología , Pulpa Dental/metabolismo , Pulpa Dental/patología , Inmunoglobulina A
12.
J Endod ; 50(3): 344-350, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38142887

RESUMEN

INTRODUCTION: This study aims to investigate the ability of umbilical cord mesenchymal stem cells (UC-MSC) to enhance the regeneration of pulp-dentin complex in immature permanent teeth with irreversible pulpitis. METHODS: A total of 32 mandibular premolar teeth with immature apices in 5 dogs were used in this in-vivo randomized controlled trial (RCT). Eight healthy teeth without pre-existing pathosis served as the positive control samples and received no treatment, while in another 8 teeth, the pulp was completely extirpated (negative control). Class V cavities were prepared to induce inflammation in the remaining 16 teeth (groups 3 and 4) and the pulp was extirpated 2-4 mm short of the radiographic apex. Of the 16, the 8 teeth in group 4 received 1 mL of cord blood stem cells with a hydrogel scaffold. Blood clots were covered with mineral trioxide aggregates at the cementoenamel junction in the experimental groups, and teeth were filled with RMGI and composite. Three months later, block sections were removed for histologic evaluations for the evaluation of postoperative apical closure, degree of inflammation, and presence of normal pulp tissue. The data were statistically analyzed with the chi-square test (P < .05). RESULTS: All teeth with complete pulp extirpation demonstrated pulpal necrosis with no postoperative closure of their apices, while apical closure was seen in all the teeth in the remaining groups. There was a statistically significant (P < .001) difference in the presence of inflammation and normal pulp tissue between the experimental groups. The teeth in group 3 showed normal pulp tissue extending to the level of MTA, but there was inflammation within the canal space. In contrast, the teeth in the UC-MSC group demonstrated organized, normal pulp tissue with no inflammation. CONCLUSION: Based on these results, the regeneration of the pulp-dentin complex is possible with no inflammation when UC-MSCs are used and 2-4 mm of the apical pulp remains intact in immature teeth with irreversible pulpitis.


Asunto(s)
Pulpitis , Endodoncia Regenerativa , Animales , Perros , Pulpitis/cirugía , Pulpitis/patología , Endodoncia Regenerativa/métodos , Pulpa Dental/patología , Necrosis de la Pulpa Dental/terapia , Necrosis de la Pulpa Dental/patología , Inflamación/patología
13.
J Vis Exp ; (200)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37955368

RESUMEN

Pulpitis, a common cause of natural tooth loss, leads to necrosis and loss of bioactivity in the inflamed dental pulp. Unraveling the mechanisms underlying pulpitis and its efficient treatment is an ongoing focus of endodontic research. Therefore, understanding the inflammatory process within the dental pulp is vital for improving pulp preservation. Compared to other in vitro experiments, a murine pulpitis model offers a more authentic and genetically diverse context to observe the pathological progression of pulpitis. However, using mice, despite their cost-effectiveness and accessibility, poses difficulties due to their small size, poor coordination, and low tolerance, complicating intraoral and dental procedures. This protocol introduces a novel design and application of a mouth-gag to expose mouse pulp, facilitating more efficient intraoral procedures. The mouth-gag, comprised of a dental arch readily available to most dentists and can significantly expedite surgical preparation, even for first-time procedures. Micro-CT, hematoxylin-eosin (HE) staining, and immunofluorescence staining were used to identify changes in morphology and cell expression. The aim of this article is to help researchers establish a more reproducible and less demanding procedure for creating a pulp inflammation model using this novel mouth-gag.


Asunto(s)
Pulpitis , Ratones , Animales , Pulpitis/metabolismo , Pulpitis/patología , Inflamación , Boca/metabolismo , Pulpa Dental/metabolismo
14.
Oral Health Prev Dent ; 21(1): 357-364, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37916546

RESUMEN

PURPOSE: With success rates comparable to that of root canal treatment, vital pulp therapy (VPT) has gained clinical interest and has been used in the management of young permanent teeth with inflamed pulps. The aim of the present study was to retrospectively evaluate the radiographic success of VPT in young first permanent molars 24 months post-treatment and correlate findings with tooth and treatment-related characteristics. MATERIALS AND METHODS: Dental records of all patients with first permanent molars which received VPT in the Department of Paediatric Dentistry (National and Kapodistrian University of Athens) were retrieved. Demographic characteristics and data regarding the treatment performed were recorded. Patients' radiographs were evaluated at 6, 12 and 24 months post-treatment by two qualified paediatric dentists blinded regarding the treatment performed. Radiographic success, reasons for failure and continuation of root development were evaluated. Differences were tested using the Χ2 and Student's t-test, and possible correlations were determined by calculating the odds ratio. RESULTS: Overall radiographic success rate at 24 months was 77%, ranging between 50% for direct pulp capping and 92% for full pulpotomy. Differences were not statistically significant. Continuation of root development was recorded in almost 1/3 of the teeth and completion in almost 1/5. No statistically significant association was recorded between the outcome and any tooth and treatment-related variables. CONCLUSION: VPT seems to be a reliable option in the long term for the treatment of deep carious lesions in young permanent molars.


Asunto(s)
Caries Dental , Pulpitis , Niño , Humanos , Estudios Retrospectivos , Pulpitis/diagnóstico por imagen , Pulpitis/terapia , Pulpitis/patología , Resultado del Tratamiento , Exposición de la Pulpa Dental/patología , Exposición de la Pulpa Dental/terapia , Diente Molar/diagnóstico por imagen , Caries Dental/diagnóstico por imagen , Caries Dental/terapia , Caries Dental/patología
15.
J Vet Dent ; 40(3): 227-235, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36814404

RESUMEN

Microscopic alterations in the dental pulp of dogs have not been extensively studied. The aim of this study was to investigate microscopic alterations of the dental pulp in dogs' teeth. One hundred and ten surgically extracted teeth (20 incisors, 23 canines, 28 premolars, and 39 molars) from 74 dogs, of different ages, with a history of chronic periodontitis (66 dogs), periapical abscesses (2 dogs), pulpitis (2 dogs), oral cavity neoplasms (2 dogs), dens invaginatus (1 dog), and dental fractures (1 dog) were included. Eight-one maxillary and 29 mandibular teeth were included. Coronal, radicular, and coronal plus radicular calculus were present in 28.2%, 17.3%, and 54.5% of the teeth, respectively. In total 78 teeth (71%) had pulp alterations, including fibrosis (26%), calcification (14%), necrosis associated with the absence of odontoblasts (14%), presence of predentin and dentin inside the cavity (8%), odontoblastic hyperplasia (3%), pigmentation (3%), pulpitis (2%), and pulp stones (1%). Forty-nine (60.5%) of the maxillary teeth and all of the mandibular teeth had pulp alterations. The premolars were most affected, and the molars least affected, by pulp alterations. Pulp fibrosis, calcification, and necrosis were observed in teeth irrespective of the distribution of dental calculus.


Asunto(s)
Caries Dental , Enfermedades de los Perros , Pulpitis , Perros , Animales , Pulpa Dental , Pulpitis/patología , Pulpitis/veterinaria , Necrosis/patología , Necrosis/veterinaria , Caries Dental/patología , Caries Dental/veterinaria , Fibrosis , Enfermedades de los Perros/cirugía , Enfermedades de los Perros/patología
16.
J Endod ; 49(1): 26-35, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36356690

RESUMEN

INTRODUCTION: Inflammation of the dental pulp due to caries is a highly prevalent pathology which causes intense pain. Here, we sought to correlate the clinical picture with the histopathology of the affected tissue. The interaction between nociceptive neurons and immune cells is fundamental to regulate the inflammatory response, but little is known about the glial network involved in this process, and its impact on caries pathogenesis. METHODS: This study characterized Schwann cells and other neuroimmune components in human dental pulps with reversible and symptomatic irreversible pulpitis (IP). Twenty eight human teeth were extracted for reasons beyond the scope of this study. Twelve were diagnosed as reversible and symptomatic IP respectively, and 4 as controls. The teeth were decalcified, processed for immunolabeling and analyzed with confocal microscopy. RESULTS: Symptomatic IP was characterized by a significantly higher density of neutrophils, and the release of neutrophil extracellular traps. Between IP and healthy controls, there were significant differences in the density of Schwann cells, macrophages, and neutrophils, in addition to morphological alterations. In IP, Schwann cell arborization extended toward the pulpodentinal interface along with more spindle-shaped cell bodies, while some macrophages displayed a distinct fusiform phenotype. CONCLUSIONS: The dental pulp has a complex multicellular organization and its pulpodentinal interface acts as a barrier in which Schwann and immune cells are distributed strategically to stop the progress of pathogens. A synergistic interaction of Schwann cells with immune cells creates a novel perspective to better understand the role of these glial cells and their active participation in pulpal inflammation.


Asunto(s)
Caries Dental , Pulpitis , Humanos , Pulpitis/patología , Pulpa Dental/patología , Caries Dental/patología , Inflamación/patología , Fenotipo
17.
J Dent ; 125: 104241, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35878703

RESUMEN

INTRODUCTION: Pulpitis results from the infiltration of mixed populations of bacteria which trigger inflammation in the dental pulp, causing significant disruption to these tissues. Clinically, pulpitis frequently leads to devitalization or extraction, as disinfection of the dental pulp while maintaining its vitality is extremely difficult. Here we describe the use of an electrocatalytic titanium dioxide (TiO2)-based apparatus adapted from water purification technology, which can efficiently deliver anti-microbial oxidants (e.g., hydroxyl radicals) when low voltages are applied. As these oxidants are also potentially harmful to pulp cells, oxidant exposure protocols that disrupt oral bacteria, yet are innocuous to dental pulp cells must be established. METHODS: Stem cells from Human Exfoliated Deciduous teeth (SHEDs) and mixed salivary bacteria were exposed to apparatus generated oxidants for time points of 15, 100 or 300 s. SHED apoptosis, necrosis, and vitality post exposure were analyzed by florescent marker staining and flow cytometry. Destruction of mixed salivary bacteria was analyzed by post exposure counts of adherent bacterial cells. RESULTS: When applied to SHEDs the apparatus generated oxidants do not significantly induce apoptosis or necrosis at any exposure time. SHED cell vitality is not decreased with apparatus exposure. Exposure to apparatus generated oxidants destroys mixed salivary bacteria, with significant destruction seen at 15 s and maximal destruction achieved at 100 s. CONCLUSIONS: This technology has the potential to be useful in the disinfection of deep lesions and pulp tissues, efficiently producing oxidants which eliminate bacteria but do not harm native pulp cells after relatively brief exposures. CLINICAL SIGNIFICANCE: Incomplete disinfection of inflamed dental pulp is a significant cause of pulp destruction, leading to devitalization or extraction. Novel technology which enhances the disinfection of the pulp may provide clinicians with treatments options that preserve pulp vitality and tooth structure.


Asunto(s)
Pulpitis , Pulpa Dental/patología , Humanos , Necrosis/patología , Oxidantes/farmacología , Pulpitis/patología , Células Madre/patología
18.
Cell Biol Int ; 46(1): 34-45, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34643311

RESUMEN

Wnts include more than 19 types of secreted glycoproteins that are involved in a wide range of pathological processes in oral and maxillofacial diseases. The transmission of Wnt signalling from the extracellular matrix into the nucleus includes canonical pathways and noncanonical pathways, which play an important role in tooth development, alveolar bone regeneration, and related diseases. In recent years, with the in-depth study of Wnt signalling in oral and maxillofacial-related diseases, many new conclusions and perspectives have been reached, and there are also some controversies. This article aims to summarise the roles of Wnt signalling in various oral diseases, including periodontitis, dental pulp disease, jaw disease, cleft palate, and abnormal tooth development, to provide researchers with a better and more comprehensive understanding of Wnts in oral and maxillofacial diseases.


Asunto(s)
Boca/metabolismo , Enfermedades Periodontales/metabolismo , Síndrome de la Disfunción de Articulación Temporomandibular/metabolismo , Enfermedades Dentales/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Animales , Caries Dental/genética , Caries Dental/metabolismo , Caries Dental/patología , Regulación de la Expresión Génica , Humanos , Boca/patología , Odontogénesis , Periodontitis Periapical/genética , Periodontitis Periapical/metabolismo , Periodontitis Periapical/patología , Enfermedades Periodontales/genética , Enfermedades Periodontales/patología , Pulpitis/genética , Pulpitis/metabolismo , Pulpitis/patología , Síndrome de la Disfunción de Articulación Temporomandibular/genética , Síndrome de la Disfunción de Articulación Temporomandibular/patología , Enfermedades Dentales/genética , Enfermedades Dentales/patología , Proteínas Wnt/genética
19.
J Vet Dent ; 39(1): 21-33, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34825611

RESUMEN

Our prospective study analyzed clinical, radiographic, and histological characteristics of 102 intrinsically stained teeth. Sixty-nine dogs ranging from one to fifteen years of age were included in this study. Little more than half of the intrinsically stained teeth had no evidence of coronal injury (53.9%, 55/102). We found that most intrinsically stained teeth were histologically nonvital (87.6%, 85/97) and approximately 2/3 of these (57.7%, 56/97) had no histological endodontic or periodontal inflammation at the time of evaluation. Radiographic evidence of endodontic disease was present in 57% (58/102) of the intrinsically stained teeth. Radiographic evidence of periodontal disease was present in 48% (49/102) of intrinsically stained teeth and 28% (29/102) had radiographic evidence of tooth resorption. 18.6% (19/102) of intrinsically stained teeth were radiographically normal. Evidence of pulp necrosis was common in these intrinsically stained teeth, while only occasional teeth (12.4%, 12/97) had histologically confirmed pulpitis. All teeth with radiographic evidence of periapical lucency had pulp necrosis. Based on our histological findings, the majority of intrinsically stained teeth 87.6% are truly nonvital.


Asunto(s)
Enfermedades de la Pulpa Dental , Enfermedades de los Perros , Pulpitis , Decoloración de Dientes , Animales , Pulpa Dental , Enfermedades de la Pulpa Dental/veterinaria , Necrosis de la Pulpa Dental/patología , Necrosis de la Pulpa Dental/veterinaria , Enfermedades de los Perros/diagnóstico por imagen , Enfermedades de los Perros/patología , Perros , Estudios Prospectivos , Pulpitis/patología , Pulpitis/veterinaria , Decoloración de Dientes/patología , Decoloración de Dientes/veterinaria
20.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34884488

RESUMEN

In dental pulp, diverse types of cells mediate the dental pulp immunity in a highly complex and dynamic manner. Yet, 3D spatiotemporal changes of various pulpal immune cells dynamically reacting against foreign pathogens during immune response have not been well characterized. It is partly due to the technical difficulty in detailed 3D comprehensive cellular-level observation of dental pulp in whole intact tooth beyond the conventional histological analysis using thin tooth slices. In this work, we validated the optical clearing technique based on modified Murray's clear as a valuable tool for a comprehensive cellular-level analysis of dental pulp. Utilizing the optical clearing, we successfully achieved a 3D visualization of CD11c+ dendritic cells in the dentin-pulp complex of a whole intact murine tooth. Notably, a small population of unique CD11c+ dendritic cells extending long cytoplasmic processes into the dentinal tubule while located at the dentin-pulp interface like odontoblasts were clearly visualized. 3D visualization of whole murine tooth enabled a reliable observation of these rarely existing cells with a total number less than a couple of tens in one tooth. These CD11c+ dendritic cells with processes in the dentinal tubule were significantly increased in the dental pulpitis model induced by mechanical and chemical irritation. Additionally, the 3D visualization revealed a distinct spatial 3D arrangement of pulpal CD11c+ cells in the pulp into a front-line barrier-like formation in the pulp within 12 h after the irritation. Collectively, these observations demonstrated the unique capability of optical clearing-based comprehensive 3D cellular-level visualization of the whole tooth as an efficient method to analyze 3D spatiotemporal changes of various pulpal cells in normal and pathological conditions.


Asunto(s)
Antígeno CD11c/metabolismo , Células Dendríticas/inmunología , Pulpa Dental/inmunología , Imagenología Tridimensional/métodos , Pulpitis/inmunología , Diente/inmunología , Animales , Células Dendríticas/metabolismo , Células Dendríticas/patología , Pulpa Dental/metabolismo , Pulpa Dental/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Pulpitis/metabolismo , Pulpitis/patología , Diente/metabolismo , Diente/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...