Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 658
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39273598

RESUMEN

C-C Chemokine Receptor 7 (CCR7) mediates T-cell acute lymphoblastic leukemia (T-ALL) invasion of the central nervous system (CNS) mediated by chemotactic migration to C-C chemokine ligand 19 (CCL19). To determine if a CCL19 antagonist, CCL198-83, could inhibit CCR7-induced chemotaxis and signaling via CCL19 but not CCL21, we used transwell migration and Ca2+ mobilization signaling assays. We found that in response to CCL19, human T-ALL cells employ ß2 integrins to invade human brain microvascular endothelial cell monolayers. In vivo, using an inducible mouse model of T-ALL, we found that we were able to increase the survival of the mice treated with CCL198-83 when compared to non-treated controls. Overall, our results describe a targetable cell surface receptor, CCR7, which can be inhibited to prevent ß2-integrin-mediated T-ALL invasion of the CNS and potentially provides a platform for the pharmacological inhibition of T-ALL cell entry into the CNS.


Asunto(s)
Antígenos CD18 , Quimiocina CCL19 , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores CCR7 , Receptores CCR7/metabolismo , Receptores CCR7/genética , Animales , Humanos , Ratones , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Quimiocina CCL19/metabolismo , Antígenos CD18/metabolismo , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Línea Celular Tumoral , Quimiotaxis/efectos de los fármacos , Quimiocina CCL21/metabolismo , Movimiento Celular/efectos de los fármacos , Invasividad Neoplásica
2.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(8): 1529-1536, 2024 Aug 20.
Artículo en Chino | MEDLINE | ID: mdl-39276048

RESUMEN

OBJECTIVE: To explore the correlation of baseline CCL19+ dendritic cell (CCL19+ DC) infiltration in lung adenocarcinoma microenvironment with immunotherapy efficacy and CD8+ T cell infiltration. METHODS: We retrospectively analyzed the data of patients with lung adenocarcinoma hospitalized at First Affiliated Hospital of Henan University of Science and Technology from January, 2020 to December, 2023, and collected tissue samples from 96 patients undergoing immunotherapy for assessing CCL19+ DC and CD8+ T cell infiltration using immunofluorescence assay. We evaluated the predictive value of baseline CCL19+ DCs for patient responses to immunotherapy using receiver-operating characteristics (ROC) curves and analyzed the correlations of baseline CCL19+ DC expression with immunotherapy efficacy and CD8+ T cell and cytotoxic T lymphocyte (CTL) infiltrations. In co-culture systems of lung adenocarcinoma PC9 cells, CD8+ T cells and DCs (overexpressing CCL19 with or without anti PD-1 antibody treatment), the expressions of granzyme B, perforin, IFN-γ, and Ki-67 in T cells were analyzed using flow cytometry. RESULTS: The patients with partial or complete remission following immunotherapy had a significantly higher baseline CCL19+ DC infiltration level in lung adenocarcinoma tissues than those with poor responses. CCL19+ DC infiltration had an area under ROC curve of 0.785, a sensitivity of 75.6%, and a specificity of 62.8% for predicting immunotherapy efficacy. The expression of CD8+ T cell surface molecules Granzyme B (P<0.01), Perforin (P<0.01), IFN-γ (P<0.01) and Ki-67 (P<0.001) in patients with high expression of CCL19+ DC were higher than those in patients with low expression of CCL19+ DC. The baseline CCL19+ DC infiltration level was positively correlated with immunotherapy efficacy (P=0.003), CTL infiltration of (r=0.6657, P<0.001) and CD8+ T cell infiltration (P=0.007). In the co-cultured cells, CCL19 overexpression combined with anti-PD1 treatment of the DCs more strongly enhanced cytotoxicity and proliferation of CD8+ T lymphocytes than either of the single treatments (P<0.01 or 0.001). CONCLUSION: The baseline CCL19+ DC infiltration level in lung adenocarcinoma microenvironment is positively correlated with immunotherapy efficacy and CTL infiltration and can thus predict the response to immunotherapy.


Asunto(s)
Adenocarcinoma del Pulmón , Quimiocina CCL19 , Células Dendríticas , Inmunoterapia , Neoplasias Pulmonares , Humanos , Células Dendríticas/inmunología , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Quimiocina CCL19/metabolismo , Inmunoterapia/métodos , Adenocarcinoma del Pulmón/terapia , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Estudios Retrospectivos , Microambiente Tumoral/inmunología , Linfocitos T CD8-positivos/inmunología , Femenino , Masculino , Persona de Mediana Edad , Granzimas/metabolismo
3.
Zhongguo Fei Ai Za Zhi ; 27(7): 504-513, 2024 Jul 20.
Artículo en Chino | MEDLINE | ID: mdl-39147704

RESUMEN

BACKGROUND: Neoantigen reactive T cell (NRT) has the ability to inhibit the growth of tumors expressing specific neoantigens. However, due to the difficult immune infiltration and the inhibition of tumor microenvironment, the therapeutic effect of NRT in solid tumors is limited. In this study, we designed NRT cells (7×19 NRT) that can express both interleukin-7 (IL-7) and chemokine C-C motif ligand 19 (CCL19) in mouse lung cancer cells, and evaluated the difference in anti-tumor effect between 7×19 NRT cells and conventional NRT cells. METHODS: We performed next-generation sequencing and neoantigen prediction for mouse Lewis lung carcinoma (LLC), prepared RNA vaccine, cultured NRT cells, constructed retroviral vectors encoding IL-7 and CCL19, transduced NRT cells and IL-7 and CCL19 were successfully expressed, and 7×19 NRT was successfully obtained. The anti-tumor effect was evaluated in vivo and in vitro in mice. RESULTS: The 7×19 NRT cells significantly enhanced the proliferation and invasion ability of T cells by secreting IL-7 and CCL19, achieved significant tumor inhibition in the mouse lung cancer and extended the survival period of mice. The T cell infiltration into tumor tissue and the necrosis of tumor tissue increased significantly after 7×19 NRT treatment. In addition, both 7×19 NRT treatment and conventional NRT treatment were safe. CONCLUSIONS: The anti-solid tumor ability of NRT cells is significantly enhanced by the arming of IL-7 and CCL19, which is a safe and effective genetic modification of NRT.


Asunto(s)
Quimiocina CCL19 , Interleucina-7 , Neoplasias Pulmonares , Ratones Endogámicos C57BL , Linfocitos T , Animales , Ratones , Interleucina-7/genética , Interleucina-7/inmunología , Quimiocina CCL19/genética , Quimiocina CCL19/inmunología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Linfocitos T/inmunología , Línea Celular Tumoral , Carcinoma Pulmonar de Lewis/inmunología , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/terapia , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/genética , Femenino , Proliferación Celular , Humanos
4.
Cancer Cell ; 42(8): 1370-1385.e9, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39137726

RESUMEN

Tertiary lymphoid structures (TLSs) are associated with enhanced immunity in tumors. However, their formation and functions in colorectal cancer liver metastasis (CRLM) remain unclear. Here, we reveal that intra- and peri-tumor mature TLSs (TLS+) are associated with improved clinical outcomes than TLS- tumors. Using single-cell-RNA-sequencing and spatial-enhanced-resolution-omics-sequencing (Stereo-seq), we reveal that TLS+ tumors are enriched with IgG+ plasma cells (PCs), while TLS- tumors are characterized with IgA+ PCs. By generating TLS-associated PC-derived monoclonal antibodies in vitro, we show that TLS-PCs secrete tumor-targeting antibodies. As the proof-of-concept, we demonstrate the anti-tumor activities of TLS-PC-mAb6 antibody in humanized mouse model of colorectal cancer. We identify a fibroblast lineage secreting CCL19 that facilitates lymphocyte trafficking to TLSs. CCL19 treatment promotes TLS neogenesis and prevents tumor growth in mice. Our data uncover the central role of CCL19+ fibroblasts in TLS formation, which in turn generates therapeutic antibodies to restrict CRLM.


Asunto(s)
Quimiocina CCL19 , Neoplasias Colorrectales , Inmunoglobulina G , Neoplasias Hepáticas , Estructuras Linfoides Terciarias , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Animales , Estructuras Linfoides Terciarias/inmunología , Estructuras Linfoides Terciarias/patología , Humanos , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Ratones , Inmunoglobulina G/inmunología , Quimiocina CCL19/metabolismo , Quimiocina CCL19/genética , Fibroblastos/metabolismo , Fibroblastos/inmunología , Anticuerpos Monoclonales/farmacología , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Femenino , Línea Celular Tumoral
5.
Cytokine ; 181: 156669, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38875750

RESUMEN

OBJECTIVES: Alveolar echinococcosis (AE) represents one of the deadliest helminthic infections, characterized by an insidious onset and high lethality. METHODS: This study utilized the Gene Expression Omnibus (GEO) database, applied Weighted Correlation Network Analysis (WGCNA) and Differential Expression Analysis (DEA), and employed the Matthews Correlation Coefficient (MCC) to identify CCL17 and CCL19 as key genes in AE. Immunohistochemistry and immunofluorescence co-localization techniques were used to examine the expression of CCL17 and CCL19 in liver tissue lesions of AE patients. Additionally, a mouse model of multilocular echinococcus larvae infection was developed to study the temporal expression patterns of these genes, along with liver fibrosis and inflammatory responses. RESULTS: The in vitro model simulating echinococcal larva infection mirrored the hepatic microenvironment post-infection with multilocular echinococcal tapeworms. Quantitative RT-PCR analysis showed that liver fibrosis occurred in AE patients, with proximal activation and increased expression of CCL17 and CCL19 over time post-infection. Notably, expression peaked during the late stages of infection. Similarly, F4/80, a macrophage marker, exhibited corresponding trends in expression. Upon stimulation of normal hepatocytes by vesicular larvae in cellular experiments, there was a significant increase in CCL17 and CCL19 expression at 12 h post-infection, mirroring the upregulation observed with F4/80. CONCLUSION: CCL17 and CCL19 facilitate macrophage aggregation via the chemokine pathway and their increased expression correlates with the progression of infection, suggesting their potential as biomarkers for AE progression.


Asunto(s)
Biomarcadores , Quimiocina CCL17 , Quimiocina CCL19 , Progresión de la Enfermedad , Animales , Humanos , Ratones , Biomarcadores/metabolismo , Quimiocina CCL19/metabolismo , Quimiocina CCL17/metabolismo , Quimiocina CCL17/genética , Equinococosis/metabolismo , Cirrosis Hepática/parasitología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Modelos Animales de Enfermedad , Hígado/parasitología , Hígado/metabolismo , Hígado/patología , Equinococosis Hepática/metabolismo , Equinococosis Hepática/parasitología , Femenino , Masculino , Hepatocitos/metabolismo , Hepatocitos/parasitología
6.
Immunol Cell Biol ; 102(7): 578-592, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38726582

RESUMEN

Women are more prone to develop rheumatoid arthritis, with peak incidence occurring around menopause. Estrogen has major effects on the immune system and is protective against arthritis. We have previously shown that treatment with estrogen inhibits inflammation and joint destruction in murine models of arthritis, although the mechanisms involved remain unclear. Fibroblastic reticular cells (FRCs) are specialized stromal cells that generate the three-dimensional structure of lymph nodes (LNs). FRCs are vital for coordinating immune responses from within LNs and are characterized by the expression of the chemokine CCL19, which attracts immune cells. The aim of this study was to determine whether the influence of estrogen on innate and adaptive immune cells in arthritis is mediated by estrogen signaling in FRCs. Conditional knockout mice lacking estrogen receptor α (ERα) in CCL19-expressing cells (Ccl19-CreERαfl/fl) were generated and tested. Ccl19-CreERαfl/fl mice and littermate controls were ovariectomized, treated with vehicle or estradiol and subjected to the 28-day-long antigen-induced arthritis model to enable analyses of differentiated T- and B-cell populations and innate cells in LNs by flow cytometry. The results reveal that while the response to estradiol treatment in numbers of FRCs per LN is significantly reduced in mice lacking ERα in FRCs, estrogen does not inhibit joint inflammation or markedly affect immune responses in this arthritis model. Thus, this study validates the Ccl19-CreERαfl/fl strain for studying estrogen signaling in FRCs within inflammatory diseases, although the chosen arthritis model is deemed unsuitable for addressing this question.


Asunto(s)
Inmunidad Adaptativa , Receptor alfa de Estrógeno , Estrógenos , Fibroblastos , Inmunidad Innata , Ratones Noqueados , Transducción de Señal , Animales , Estrógenos/metabolismo , Ratones , Femenino , Fibroblastos/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/genética , Artritis Experimental/inmunología , Quimiocina CCL19/metabolismo , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/inmunología , Ratones Endogámicos C57BL , Antígenos/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo
7.
Immun Inflamm Dis ; 12(5): e1264, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38780041

RESUMEN

AIM: Metastasis is the leading cause of mortality in hepatocellular carcinoma (HCC). The metastasis-associated immune signature in HCC is worth exploring. METHODS: Bioinformatic analysis was conducted based on the single-cell transcriptome data derived from HCC patients in different stages. Cellular composition, pseudotime state transition, and cell-cell interaction were further analyzed and verified. RESULTS: Generally, HCC with metastasis exhibited suppressive immune microenvironment, while HCC without metastasis exhibited active immune microenvironment. Concretely, effector regulatory T cells (eTregs) were found to be enriched in HCC with metastasis. PHLDA1 was identified as one of exhaustion-specific genes and verified to be associated with worse prognosis in HCC patients. Moreover, A novel cluster of CCR7+ dendritic cells (DCs) was identified with high expression of maturation and migration marker genes. Pseudotime analysis showed that inhibition of differentiation occurred in CCR7+ DCs rather than cDC1 in HCC with metastasis. Furthermore, interaction analysis showed that the reduction of CCR7+ DCs lead to impaired CCR7/CCL19 interaction in HCC with metastasis. CONCLUSIONS: HCC with metastasis exhibited upregulation of exhaustion-specific genes of eTregs and inhibition of CCL signal of a novel DC cluster, which added new dimensions to the immune landscape and provided new immune therapeutic targets in advanced HCC.


Asunto(s)
Carcinoma Hepatocelular , Células Dendríticas , Neoplasias Hepáticas , Análisis de la Célula Individual , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidad , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Microambiente Tumoral/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Metástasis de la Neoplasia , Transcriptoma , Receptores CCR7/genética , Receptores CCR7/metabolismo , Regulación Neoplásica de la Expresión Génica/inmunología , Perfilación de la Expresión Génica , Linfocitos T Reguladores/inmunología , Pronóstico , Biología Computacional/métodos , Quimiocina CCL19/genética , Quimiocina CCL19/metabolismo
8.
J Cancer Res Clin Oncol ; 150(2): 66, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300311

RESUMEN

OBJECTIVE: The tumor microenvironment (TME) in cholangiocarcinoma (CHOL) is typically characterized by a low level of immune infiltration, which accounts for the dismal prognosis of this patient population. This study sought to investigate the mechanisms underlying the reduced infiltration of immune cells into the CHOL TME. METHODS: We constructed a Least Absolute Shrinkage and Selection Operator (LASSO) regression model to identify prognosis-related differentially expressed genes (DEGs). The 'Corrplot' package was employed to analyze the correlation between dermatopontin (DPT) and immune infiltration in CHOL. The Tumor and Immune System Interaction Database (TISIDB) was used to evaluate the association between DPT and immunology. Single-cell analysis was conducted to localize CCL19 secretions. Western blot and qPCR were utilized to detect DPT expression, while immunofluorescence was performed to investigate the cellular localization of DPT. Additionally, ELISA analysis was employed to assess the alteration in CCL19 secretion in cancer-associated fibroblasts (CAFs) and macrophages. RESULTS: Our findings revealed that CHOL patients with low DPT expression had a poorer prognosis. Enrichment analysis demonstrated a positive correlation between DPT levels and the infiltration of immunomodulators and immune cells. Moreover, high DPT levels were associated with enhanced anti-PD-1/PD-L1 immunotherapeutic responses. Furthermore, DPT expression impacted the landscape of gene mutations, showing a negative association with tumor grade, stage, and lymph node metastasis. Based on the results of protein peptides analysis and cell experiments, it was inferred that the downregulation of DPT in CHOL cells effectively suppressed the secretion of CCL19 in macrophages. CONCLUSIONS: DPT is a novel prognosis-related biomarker for CHOL patients, and this study provides preliminary insights into the mechanism by which DPT promotes the infiltration of immune cells into the CHOL TME.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Conductos Biliares Intrahepáticos , Quimiocina CCL19 , Colangiocarcinoma/genética , Regulación hacia Abajo , Macrófagos , Microambiente Tumoral
9.
Brain Behav Immun ; 118: 69-77, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38369248

RESUMEN

Sleep strongly supports the formation of adaptive immunity, e.g., after vaccination. However, the underlying mechanisms remain largely obscure. Here we show in healthy humans that sleep compared to nocturnal wakefulness specifically promotes the migration of various T-cell subsets towards the chemokine CCL19, which is essential for lymph-node homing and, thus, for the initiation and maintenance of adaptive immune responses. Migration towards the inflammatory chemokine CCL5 remained unaffected. Incubating the cells with plasma from sleeping participants likewise increased CCL19-directed migration, an effect that was dependent on growth hormone and prolactin signaling. These findings show that sleep selectively promotes the lymph node homing potential of T cells by increasing hormonal release, and thus reveal a causal mechanism underlying the supporting effect of sleep on adaptive immunity in humans.


Asunto(s)
Quimiocina CCL19 , Hormona del Crecimiento , Prolactina , Sueño , Humanos , Movimiento Celular , Quimiocina CCL19/metabolismo , Hormona del Crecimiento/metabolismo , Prolactina/metabolismo , Sueño/fisiología
10.
Arthritis Rheumatol ; 76(6): 857-868, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38268500

RESUMEN

OBJECTIVE: The study objective was to assess the role of CCL19+ lymph node stromal cells of the joint-draining popliteal lymph node (pLN) for the development of arthritis. METHODS: CCL19+ lymph node stromal cells were spatiotemporally depleted for five days in the pLN before the onset of collagen-induced arthritis (CIA) using Ccl19-Cre × iDTR mice. In addition, therapeutic treatment with recombinant CCL19-immunoglobulin G (IgG), locally injected in the footpad, was used to confirm the results. RNA sequencing of lymph node stromal cells combined with T cell coculture assays using tropomyosin receptor kinase (Trk) family inhibitors together with in vivo local pLN small interfering RNA (siRNA) treatments were used to elucidate the pathway by which CCL19+ lymph node stromal cells initiate the onset of arthritis. RESULTS: Spatiotemporal depletion of CCL19+ lymph node stromal cells prevented disease onset in CIA mice. These inhibitory effects could be mimicked by local CCL19-IgG treatment. The messenger RNA sequencing analyses showed that CCL19+ lymph node stromal cells down-regulated the expression of the tropomyosin receptor kinase A (TrkA) just before disease onset. Blocking TrkA in lymph node stromal cells led to increased T cell proliferation in in vitro coculture assays. Similar effects were observed with the pan-Trk inhibitor larotrectinib in cocultures of lymph node stromal cells of patients with rheumatoid arthritis and T cells. Finally, local pLN treatment with TrkA inhibitor and TrkA siRNA led to exacerbated arthritis scores. CONCLUSION: CCL19+ lymph node stromal cells are crucially involved in the development of inflammatory arthritis. Therefore, targeting of CCL19+ lymph node stromal cells via TRK could provide a tool to prevent arthritis.


Asunto(s)
Artritis Experimental , Quimiocina CCL19 , Ganglios Linfáticos , Células del Estroma , Animales , Ratones , Artritis Experimental/patología , Quimiocina CCL19/genética , Ganglios Linfáticos/patología , Receptor trkA/genética , Receptor trkA/metabolismo , ARN Interferente Pequeño/farmacología , Linfocitos T
11.
J Allergy Clin Immunol ; 153(2): 487-502.e9, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37956733

RESUMEN

BACKGROUND: Allergic asthma is driven largely by allergen-specific TH2 cells, which develop in regional lymph nodes on the interaction of naive CD4+ T cells with allergen-bearing dendritic cells that migrate from the lung. This migration event is dependent on CCR7 and its chemokine ligand, CCL21. However, is has been unclear whether the other CCR7 ligand, CCL19, has a role in allergic airway disease. OBJECTIVE: This study sought to define the role of CCL19 in TH2 differentiation and allergic airway disease. METHODS: Ccl19-deficient mice were studied in an animal model of allergic asthma. Dendritic cells or fibroblastic reticular cells from wild-type and Ccl19-deficient mice were cultured with naive CD4+ T cells, and cytokine production was measured by ELISA. Recombinant CCL19 was added to CD4+ T-cell cultures, and gene expression was assessed by RNA-sequencing and quantitative PCR. Transcription factor activation was assessed by flow cytometry. RESULTS: Lungs of Ccl19-deficient mice had less allergic airway inflammation, reduced airway hyperresponsiveness, and less IL-4 and IL-13 production compared with lungs of Ccl19-sufficient animals. Naive CD4+ T cells cocultured with Ccl19-deficient dendritic cells or fibroblastic reticular cells produced lower amounts of type 2 cytokines than did T cells cocultured with their wild-type counterparts. Recombinant CCL19 increased phosphorylation of STAT5 and induced expression of genes associated with TH2 cell and IL-2 signaling pathways. CONCLUSIONS: These results reveal a novel, TH2 cell-inducing function of CCL19 in allergic airway disease and suggest that strategies to block this pathway might help to reduce the incidence or severity of allergic asthma.


Asunto(s)
Asma , Hipersensibilidad , Animales , Ratones , Quimiocina CCL19/genética , Receptores CCR7 , Ligandos , Asma/genética , Inflamación/patología , Pulmón , Hipersensibilidad/metabolismo , Alérgenos/metabolismo , Diferenciación Celular , Células Th2 , Células Dendríticas
12.
Biomaterials ; 305: 122433, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38160625

RESUMEN

The lack of safe and efficient therapeutic agent delivery platforms restricts combined therapy's effect, and combined cancer therapy's multi-component delivery effect needs improvement. The novel gene delivery system SS-HPT-F/pMIP-3ß-KR was proposed to construct fluorine-containing degradable cationic polymers SS-HPT-F by a mild and simple amino-epoxy ring-opening reaction. By modifying the fluorinated alkyl chain, the delivery efficiency of the plasmid was greatly improved, and the cytoplasmic transport of biomolecules was completed. At the same time, a combination plasmid (MIP-3ß-KillerRed) was innovatively designed for the independent expression of immune and photodynamic proteins. Which was efficiently transported to the tumor site by SS-HPT-F. The MIP-3ß is expressed as an immune chemokine realize the immune mobilization behavior. The photosensitive protein KillerRed expressed in the tumor killed cancer cells under irradiation and released the exocrine immune factor MIP-3ß. The immunogenic cell death (ICD) produced by photodynamic therapy (PDT) also induced the immune response of the organism. The synergistic effect of PDT and MIP-3ß mobilized the immune properties of the organism, providing light-enhanced immune combination therapy against malignant tumors. Therefore, in subcutaneous tumor-bearing and metastatic animal models, the carrier tumor growth and mobilize organism produce an immune response without systemic toxicity. This work reports the first efficient gene delivery system that achieves light-enhanced immunotherapy.


Asunto(s)
Fotoquimioterapia , Animales , Quimiocina CCL19 , Línea Celular Tumoral , Inmunoterapia , Terapia Combinada , Fármacos Fotosensibilizantes/farmacología
13.
Zhonghua Xue Ye Xue Za Zhi ; 44(10): 820-824, 2023 Oct 14.
Artículo en Chino | MEDLINE | ID: mdl-38049333

RESUMEN

Objective: This study systematically explore the efficacy and safety of fourth-generation chimeric antigen receptor T-cells (CAR-T), which express interleukin 7 (IL7) and chemokine C-C motif ligand 19 (CCL19) and target CD19, in relapsed or refractory large B-cell lymphoma. Methods: Our center applied autologous 7×19 CAR-T combined with tirelizumab to treat 11 patients with relapsed or refractory large B-cell lymphoma. The efficacy and adverse effects were explored. Results: All 11 enrolled patients completed autologous 7×19 CAR-T preparation and infusion. Nine patients completed the scheduled six sessions of tirolizumab treatment, one completed four sessions, and one completed one session. Furthermore, five cases (45.5%) achieved complete remission, and three cases (27.3%) achieved partial remission with an objective remission rate of 72.7%. Two cases were evaluated for disease progression, and one died two months after reinfusion because of uncontrollable disease. The median follow-up time was 31 (2-34) months, with a median overall survival not achieved and a median progression-free survival of 28 (1-34) months. Two patients with partial remission achieved complete remission at the 9th and 12th months of follow-up. Therefore, the best complete remission rate was 63.6%. Cytokine-release syndrome and immune effector cell-associated neurotoxicity syndrome were controllable, and no immune-related adverse reactions occurred. Conclusion: Autologous 7×19 CAR-T combined with tirelizumab for treating relapsed or refractory large B-cell lymphoma achieved good efficacy with controllable adverse reactions.


Asunto(s)
Inmunoterapia Adoptiva , Linfoma de Células B Grandes Difuso , Humanos , Anticuerpos Monoclonales/uso terapéutico , Antígenos CD19 , Quimiocina CCL19 , Interleucina-7 , Linfoma de Células B Grandes Difuso/terapia , Receptor de Muerte Celular Programada 1 , Receptores Quiméricos de Antígenos
14.
Aging (Albany NY) ; 15(21): 12369-12387, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37944262

RESUMEN

BACKGROUND: CCL19 is a chemokine involved in cancer research due to its important role in the tumor microenvironment (TME) and clinical relevance in cancers. This study aimed to analyze transcription expression, genomic alteration, association with tumor immune microenvironment of CCL19 expression and its prediction value for prognosis and responses to immunotherapy for patients with cancers. METHODS: RNA sequencing data and corresponding clinicopathological information of a total of large-scale cancer patients were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. Multiplex immunofluorescence (mIF) was implemented to identify differential infiltration of Treg, CD8+ T cells, and tumor-associated macrophages, while CCL19 immunohistochemistry was conducted on 182 breast cancer samples from a real-world cohort. RESULTS: Based on large-scale multi-center survival analysis of cancer patients, we found the prognosis of patients with high CCL19 expression was prominently better than those with low CCL19 expression. For patients from multiple independent cohorts, suppressed CCL19 expression exerts significant progressive phenotype and apoptosis activity of cancers, especially in breast and ovarian cancer. Interestingly, anti-tumor immune cells, specifically the CD8+ T cells and macrophages, were clustered from TME by elevated CCL19 expression. Additionally, higher CCL19 levels reflected heightened immune activity and substantial heterogeneity. CONCLUSIONS: In conclusion, our findings support the notion that elevated CCL19 expression is linked to favorable outcomes and enhanced anti-tumor immunity, characterized by increased CD8+ T cells within the TME. This suggests the potential of CCL19 as a prognostic marker, predictive biomarker for immunotherapy, therapeutic target of cancers.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Ováricas , Humanos , Femenino , Pronóstico , Microambiente Tumoral , Quimiocinas , Quimiocina CCL19
15.
Cell Biol Toxicol ; 39(6): 3101-3119, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37853185

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR)-T-cell therapy is a revolutionary treatment that has become a mainstay of advanced cancer treatment. Conventional glypican-3 (GPC3)-CAR-T cells have not produced ideal clinical outcomes in advanced hepatocellular carcinoma (HCC), and the mechanism is unclear. This study aims to investigate the clinical utility of novel GPC3-7-19-CAR-T cells constructed by our team and to explore the mechanisms underlying their antitumor effects. METHODS: We engineered a novel GPC3-targeting CAR including an anti-GPC3 scFv, CD3ζ, CD28 and 4-1BB that induces co-expression of IL-7 at a moderate level (500 pg/mL) and CCL19 at a high level (15000 pg /mL) and transduced it into human T cells. In vitro, cell killing efficacy was validated by the xCELLigence RTCA system, LDH nonradioactive cytotoxicity assay and was confirmed in primary HCC organoid models employing a 3D microfluid chip. In vivo, the antitumor capacity was assessed in a humanized NSG mouse xenograft model. Finally, we initiated a phase I clinical trial to evaluate the safety and effect of GPC3-7-19-CAR-T cells in the clinic. RESULTS: GPC3-7-19-CAR-T cells had 1.5-2 times higher killing efficiency than GPC3-CAR-T cells. The tumor formation rates in GPC3-7-19-CAR-T cells treated model were reduced (3/5vs.5/5), and the average tumor volumes were 0.74 cm3 ± 1.17 vs. 0.34 cm3 ± 0.25. Of note, increased proportion of CD4+ TEM and CD8+ TCM cells was infiltrated in GPC3-7-19-CAR-T cells group. GPC3-7-19-CAR-T cells obviously reversed the immunosuppressive tumor microenvironment (TME) by reducing polymorphonuclear (PMN)-myeloid-derived suppressor cells (MDSCs) and regulatory T (Treg) cells infiltration and recruiting more dendritic cells (DCs) to HCC xenograft tumor tissues. In one patient with advanced HCC, GPC3-7-19-CAR-T-cell treatment resulted in tumor reduction 56 days after intravenous infusion. CONCLUSIONS: In conclusion, GPC3-7-19-CAR-T cells achieved antitumor effects superior to those of conventional GPC3-CAR-T cells by reconstructing the TME induced by the dominant CD4+ TEM and CD8+ TCM cell subsets. Most importantly, GPC3-7-19-CAR-T cells exhibited good safety and antitumor efficacy in HCC patients in the clinic. ► Novel GPC3-7-19-CAR-T cells designed with mediate level of IL-7 secretion and high level of CCL19 secretion, which could recruit more mature DCs to assist killing on GPC3+HCCs. ►DC cells recruited by CCL19 could interact with CD4+ T cells and promote the differentiation of CD4+TEFF cells into CD4+TEM and CD8+TCM subsets, leading a better anti-tumor effect on GPC3+HCCs. ►Compared with conventional GPC3-CAR-T, GPC3-7-CCL19-CAR-T cells could reverse tumor immunosuppressive microenvironment by reducing PMN-MDSC and Treg cell infiltration.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores Quiméricos de Antígenos , Humanos , Animales , Ratones , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Interleucina-7 , Glipicanos , Línea Celular Tumoral , Microambiente Tumoral , Quimiocina CCL19
16.
BMC Med Genomics ; 16(1): 254, 2023 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-37864213

RESUMEN

BACKGROUND: The study of CCR7/CCL19 chemokine axis and breast cancer (BC) prognosis and metastasis is a current hot topic. We constructed a ceRNA network and risk-prognosis model based on CCR7/CCL19. METHODS: Based on the lncRNA, miRNA and mRNA expression data downloaded from the TCGA database, we used the starbase website to find the lncRNA and miRNA of CCR7/CCL19 and established the ceRNA network. The 1008 BC samples containing survival data were divided into Train group (504 cases) and Test group (504 cases) using R "caret" package. Then we constructed a prognostic risk model using RNA screened by univariate Cox analysis in the Train group and validated it in the Test and All groups. In addition, we explored the correlation between riskScores and clinical trials and immune-related factors (22 immune-infiltrating cells, tumor microenvironment, 13 immune-related pathways and 24 HLA genes). After transfection with knockdown CCR7, we observed the activity and migration ability of MDA-MB-231 and MCF-7 cells using CCK8, scratch assays and angiogenesis assays. Finally, qPCR was used to detect the expression levels of five RNAs in the prognostic risk model in MDA-MB-231 and MCF-7 cell. RESULTS: Patients with high expression of CCR7 and CCL19 had significantly higher overall survival times than those with low expression. The ceRNA network is constructed by 3 pairs of mRNA-miRNA pairs and 8 pairs of miRNA-lncRNA. After multivariate Cox analysis, we obtained a risk prognostic model: riskScore= -1.544 *`TRG-AS1`+ 0.936 * AC010327.5 + 0.553 *CCR7 -0.208 *CCL19 -0.315 *`hsa-let-7b-5p. Age, stage and riskScore can all be used as independent risk factors for BC prognosis. By drug sensitivity analysis, we found 5 drugs targeting CCR7 (convolamine, amikacin, AH-23,848, ondansetron, flucloxacillin). After transfection with knockdown CCR7, we found a significant reduction in cell activity and migration capacity in MDA-MB-231 cells. CONCLUSION: We constructed the first prognostic model based on the CCR7/CCL19 chemokine axis in BC and explored its role in immune infiltration, tumor microenvironment, and HLA genes.


Asunto(s)
Neoplasias de la Mama , MicroARNs , ARN Largo no Codificante , Humanos , Femenino , Quimiocina CCL19/genética , Quimiocina CCL19/metabolismo , Neoplasias de la Mama/patología , Pronóstico , Receptores CCR7/genética , Receptores CCR7/metabolismo , ARN Largo no Codificante/genética , MicroARNs/genética , MicroARNs/metabolismo , Biomarcadores de Tumor/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Microambiente Tumoral
17.
Sheng Wu Gong Cheng Xue Bao ; 39(9): 3787-3799, 2023 Sep 25.
Artículo en Chino | MEDLINE | ID: mdl-37805854

RESUMEN

The aim of this study was to investigate the functional characteristics and in vitro specific killing effect of EGFRvIII CAR-T cells co-expressing interleukin-15 and chemokine CCL19, in order to optimize the multiple functions of CAR-T cells and improve the therapeutic effect of CAR-T cells targeting EGFRvIII on glioblastoma (GBM). The recombinant lentivirus plasmid was obtained by genetic engineering, transfected into 293T cells to obtain lentivirus and infected T cells to obtain the fourth generation CAR-T cells targeting EGFRvIII (EGFRvIII-IL-15-CCL19 CAR-T). The expression rate of CAR molecules, proliferation, chemotactic ability, in vitro specific killing ability and anti-apoptotic ability of the fourth and second generation CAR-T cells (EGFRvIII CAR-T) were detected by flow cytometry, cell counter, chemotaxis chamber and apoptosis kit. The results showed that compared with EGFRvIII CAR-T cells, EGFRvIII-IL-15-CCL19 CAR-T cells successfully secreted IL-15 and CCL19, and had stronger proliferation, chemotactic ability and anti-apoptosis ability in vitro (all P < 0.05), while there was no significant difference in killing ability in vitro. Therefore, CAR-T cells targeting EGFRvIII and secreting IL-15 and CCL19 are expected to improve the therapeutic effect of glioblastoma and provide an experimental basis for clinical trials.


Asunto(s)
Glioblastoma , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/metabolismo , Glioblastoma/genética , Glioblastoma/terapia , Glioblastoma/metabolismo , Interleucina-15/genética , Interleucina-15/metabolismo , Quimiocina CCL19/metabolismo , Línea Celular Tumoral , Linfocitos T/metabolismo
18.
Eur J Neurol ; 30(10): 3149-3160, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37399099

RESUMEN

BACKGROUND: The homeostatic chemokines CCL19 and CCL21 are involved in carotid plaque vulnerability and post-ischemic neuroinflammatory responses. This study aimed to examine the prognostic values of CCL19 and CCL21 in ischemic stroke. METHODS: Plasma CCL19 and CCL21 were measured in 4483 ischemic stroke patients from two independent cohorts of CATIS (China Antihypertensive Trial in Acute Ischemic Stroke) and IIPAIS (Infectious Factors, Inflammatory Markers, and Prognosis of Acute Ischemic Stroke), and participants were followed up at 3 months after stroke. The primary outcome was the composite outcome of death or major disability. The associations of CCL19 and CCL21 levels with the primary outcome were examined. RESULTS: In CATIS, multivariable-adjusted odds ratios of the primary outcome in the highest quartiles of CCL19 and CCL21 compared with the lowest quartiles were 2.06 and 2.62, respectively. In IIPAIS, odds ratios of the primary outcome in the highest quartiles of CCL19 and CCL21 were 2.81 and 2.78 compared with the lowest quartiles, respectively. In the pooled analysis of the two cohorts, odds ratios of the primary outcome associated with the highest quartiles of CCL19 and CCL21 were 2.24 and 2.66, respectively. Similar findings were observed in the analysis with major disability, death, and the composite outcome of death or cardiovascular events as the secondary study outcomes. Adding CCL19 and CCL21 to conventional risk factors significantly improved risk reclassification and discrimination for adverse outcomes. CONCLUSIONS: Both CCL19 and CCL21 levels were independently associated with adverse outcomes within 3 months after ischemic stroke and should be further investigated for risk stratification and potential therapeutic targets of ischemic stroke.


Asunto(s)
Quimiocina CCL19 , Quimiocina CCL21 , Accidente Cerebrovascular Isquémico , Humanos , Quimiocina CCL19/sangre , Quimiocina CCL21/sangre , Pueblos del Este de Asia , Pronóstico , Estudios Prospectivos
19.
Prev Med ; 173: 107577, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37329987

RESUMEN

Chronic tissue fibrosis is a common pathological feature of connective tissue diseases and malignant tumors, and its prevention has been a major focus of relevant research.However, the details of the mechanism of action of tissue-colonizing immune cells in fibroblast migration are unclear. In this study, connective tissue disease tissue specimens and solid tumor specimens were selected to observe the relationship between mast cells and interstitial fibrosis and the expression characteristics of mast cells. Our findings suggest that the number of mast cells in the tissue correlates with the degree of pathological fibrosis and that mast cells specifically express the chemokines CCL19 and CCL21, especially CCL19. CCR7+ fibroblasts are highly expressed in mast cell clusters. The mast cell line HMC-1 regulates CD14+ monocyte-derived fibroblasts via CCL19. In disease tissue fibrosis, mast cell activation may increase the expression of chemokines, especially CCL19, in the tissue, thereby inducing a large number of CCR7-positive fibroblasts to migrate to specific tissues. This study lays a foundation for the mechanism of tissue fibrosis and provides evidence for the mechanism by which mast cells induce fibroblast migration.Through the experimental results of this paper, we can combine the induction factors of chronic tissue fibrosis and put forward targeted health prevention strategies.


Asunto(s)
Quimiocinas , Mastocitos , Humanos , Mastocitos/metabolismo , Receptores CCR7/metabolismo , Quimiocinas/metabolismo , Movimiento Celular , Fibrosis , Quimiocina CCL19
20.
PLoS Biol ; 21(5): e3002111, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37159457

RESUMEN

Atypical chemokine receptors (ACKRs) scavenge chemokines and can contribute to gradient formation by binding, internalizing, and delivering chemokines for lysosomal degradation. ACKRs do not couple to G-proteins and fail to induce typical signaling induced by chemokine receptors. ACKR3, which binds and scavenges CXCL12 and CXCL11, is known to be expressed in vascular endothelium, where it has immediate access to circulating chemokines. ACKR4, which binds and scavenges CCL19, CCL20, CCL21, CCL22, and CCL25, has also been detected in lymphatic and blood vessels of secondary lymphoid organs, where it clears chemokines to facilitate cell migration. Recently, GPR182, a novel ACKR-like scavenger receptor, has been identified and partially deorphanized. Multiple studies point towards the potential coexpression of these 3 ACKRs, which all interact with homeostatic chemokines, in defined cellular microenvironments of several organs. However, an extensive map of ACKR3, ACKR4, and GPR182 expression in mice has been missing. In order to reliably detect ACKR expression and coexpression, in the absence of specific anti-ACKR antibodies, we generated fluorescent reporter mice, ACKR3GFP/+, ACKR4GFP/+, GPR182mCherry/+, and engineered fluorescently labeled ACKR-selective chimeric chemokines for in vivo uptake. Our study on young healthy mice revealed unique and common expression patterns of ACKRs in primary and secondary lymphoid organs, small intestine, colon, liver, and kidney. Furthermore, using chimeric chemokines, we were able to detect distinct zonal expression and activity of ACKR4 and GPR182 in the liver, which suggests their cooperative relationship. This study provides a broad comparative view and a solid stepping stone for future functional explorations of ACKRs based on the microanatomical localization and distinct and cooperative roles of these powerful chemokine scavengers.


Asunto(s)
Transducción de Señal , Animales , Ratones , Quimiocina CCL19/metabolismo , Movimiento Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...