Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 604
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(29): e2321647121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38995965

RESUMEN

Precise segregation of chromosomes during mitosis requires assembly of a bipolar mitotic spindle followed by correct attachment of microtubules to the kinetochores. This highly spatiotemporally organized process is controlled by various mitotic kinases and molecular motors. We have recently shown that Casein Kinase 1 (CK1) promotes timely progression through mitosis by phosphorylating FAM110A leading to its enrichment at spindle poles. However, the mechanism by which FAM110A exerts its function in mitosis is unknown. Using structure prediction and a set of deletion mutants, we mapped here the interaction of the N- and C-terminal domains of FAM110A with actin and tubulin, respectively. Next, we found that the FAM110A-Δ40-61 mutant deficient in actin binding failed to rescue defects in chromosomal alignment caused by depletion of endogenous FAM110A. Depletion of FAM110A impaired assembly of F-actin in the proximity of spindle poles and was rescued by expression of the wild-type FAM110A, but not the FAM110A-Δ40-61 mutant. Purified FAM110A promoted binding of F-actin to microtubules as well as bundling of actin filaments in vitro. Finally, we found that the inhibition of CK1 impaired spindle actin formation and delayed progression through mitosis. We propose that CK1 and FAM110A promote timely progression through mitosis by mediating the interaction between spindle microtubules and filamentous actin to ensure proper mitotic spindle formation.


Asunto(s)
Citoesqueleto de Actina , Microtúbulos , Mitosis , Huso Acromático , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Humanos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Células HeLa , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Quinasa de la Caseína I/metabolismo , Quinasa de la Caseína I/genética , Unión Proteica
2.
J Biol Chem ; 300(6): 107391, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777144

RESUMEN

The duration of the transcription-repression cycles that give rise to mammalian circadian rhythms is largely determined by the stability of the PERIOD (PER) protein, the rate-limiting components of the molecular clock. The degradation of PERs is tightly regulated by multisite phosphorylation by casein kinase 1 (CK1δ/ε). In this phosphoswitch, phosphorylation of a PER2 degron [degron 2 (D2)] causes degradation, while phosphorylation of the PER2 familial advanced sleep phase (FASP) domain blocks CK1 activity on the degron, stabilizing PER2. However, this model and many other studies of PER2 degradation do not include the second degron of PER2 that is conserved in PER1, termed degron 1 (D1). We examined how these two degrons contribute to PER2 stability, affect the balance of the phosphoswitch, and how they are differentiated by CK1. Using PER2-luciferase fusions and real-time luminometry, we investigated the contribution of both D2 and of CK1-PER2 binding. We find that D1, like D2, is a substrate of CK1 but that D1 plays only a 'backup' role in PER2 degradation. Notably, CK1 bound to a PER1:PER2 dimer protein can phosphorylate PER1 D1 in trans. This scaffolded phosphorylation provides additional levels of control to PER stability and circadian rhythms.


Asunto(s)
Proteínas Circadianas Period , Estabilidad Proteica , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Fosforilación , Humanos , Células HEK293 , Proteolisis , Animales , Quinasa de la Caseína I/metabolismo , Quinasa de la Caseína I/genética , Ritmo Circadiano , Ratones , Degrones
3.
Sci Rep ; 14(1): 9497, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664418

RESUMEN

Raine syndrome (RNS) is a rare autosomal recessive osteosclerotic dysplasia. RNS is caused by loss-of-function disease-causative variants of the FAM20C gene that encodes a kinase that phosphorylates most of the secreted proteins found in the body fluids and extracellular matrix. The most common RNS clinical features are generalized osteosclerosis, facial dysmorphism, intracerebral calcifications and respiratory defects. In non-lethal RNS forms, oral traits include a well-studied hypoplastic amelogenesis imperfecta (AI) and a much less characterized gingival phenotype. We used immunomorphological, biochemical, and siRNA approaches to analyze gingival tissues and primary cultures of gingival fibroblasts of two unrelated, previously reported RNS patients. We showed that fibrosis, pathological gingival calcifications and increased expression of various profibrotic and pro-osteogenic proteins such as POSTN, SPARC and VIM were common findings. Proteomic analysis of differentially expressed proteins demonstrated that proteins involved in extracellular matrix (ECM) regulation and related to the TGFß/SMAD signaling pathway were increased. Functional analyses confirmed the upregulation of TGFß/SMAD signaling and subsequently uncovered the involvement of two closely related transcription cofactors important in fibrogenesis, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Knocking down of FAM20C confirmed the TGFß-YAP/TAZ interplay indicating that a profibrotic loop enabled gingival fibrosis in RNS patients. In summary, our in vivo and in vitro data provide a detailed description of the RNS gingival phenotype. They show that gingival fibrosis and calcifications are associated with, and most likely caused by excessed ECM production and disorganization. They furthermore uncover the contribution of increased TGFß-YAP/TAZ signaling in the pathogenesis of the gingival fibrosis.


Asunto(s)
Anomalías Múltiples , Proteínas Adaptadoras Transductoras de Señales , Fisura del Paladar , Hipoplasia del Esmalte Dental , Exoftalmia , Fibroblastos , Fibrosis , Encía , Osteosclerosis , Proteómica , Transducción de Señal , Factores de Transcripción , Factor de Crecimiento Transformador beta , Proteínas Señalizadoras YAP , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Encía/metabolismo , Encía/patología , Proteómica/métodos , Fibrosis/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Osteosclerosis/metabolismo , Osteosclerosis/genética , Osteosclerosis/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Hipoplasia del Esmalte Dental/metabolismo , Hipoplasia del Esmalte Dental/genética , Hipoplasia del Esmalte Dental/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Microcefalia/metabolismo , Microcefalia/genética , Microcefalia/patología , Femenino , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Masculino , Transactivadores/metabolismo , Transactivadores/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Quinasa de la Caseína I/metabolismo , Quinasa de la Caseína I/genética , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Amelogénesis Imperfecta/metabolismo , Amelogénesis Imperfecta/genética , Amelogénesis Imperfecta/patología , Células Cultivadas
4.
Gene ; 915: 148396, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38552750

RESUMEN

Family with sequence similarity 20 member C (FAM20C) is a Golgi casein kinase that phosphorylates extracellularly-secreted regulatory proteins involved in bone development and mineralization, but its specific role in bone development is still largely unknown. In this study, to examine the specific mechanisms that FAM20C influences bone development, we cross-bred Osx-Cre with FAM20Cflox/flox mice to establish a Osx-Cre; FAM20Cflox/flox knockout (oKO) mouse model; FAM20C was KO in pre-osteoblasts. oKO development was examined at 1-10 weeks, in which compared to control FAM20Cflox/flox, they had lower body weights and bone tissue mineralization. Furthermore, oKO had lower bone volume fractions, thickness, and trabecular numbers, along with higher degrees of trabecular separation. These mice also had decreased femoral metaphyseal cartilage proliferation layer, along with thickened hypertrophic layer and increased apoptotic cell counts. Transcriptomic analysis found that differentially-expressed genes in oKO were concentrated in the osteoclast differentiation pathway, in line with increased osteoclast presence. Additionally, up-regulation of osteoclast-related, and down-regulation of osteogenesis-related genes, were identified, in which the most up-regulated genes were signal regulatory protein ß-1 family (Sirpb1a-c) and mitogen-activated protein kinase 13. Overall, FAM20C KO in pre-osteoblasts leads to abnormal long bone development, likely due to subsequent up-regulation of osteoclast differentiation-associated genes.


Asunto(s)
Desarrollo Óseo , Proteínas de Unión al Calcio , Quinasa de la Caseína I , Diferenciación Celular , Ratones Noqueados , Osteoblastos , Osteoclastos , Osteogénesis , Regulación hacia Arriba , Animales , Ratones , Desarrollo Óseo/genética , Quinasa de la Caseína I/metabolismo , Quinasa de la Caseína I/genética , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogénesis/genética , Masculino , Femenino
5.
Neurobiol Dis ; 192: 106430, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325718

RESUMEN

Amyotrophic lateral sclerosis is a fatal neurodegenerative disease without a cure to reverse its progression. Its main hallmark is the nuclear protein TDP-43, which undergoes different post-translational modifications leading to a loss of function in the nucleus and an increase in toxicity in the cytoplasm. Previous reports have indicated that pathogenic TDP-43 exhibits prion-like propagation in various contexts. With the aim of advancing therapeutics focused on preventing the propagation of TDP-43 pathology, we studied the potential role of pathogenic TDP-43 in lymphoblasts from sporadic ALS patients. We used lymphoblastoid cell lines from sporadic ALS patients as a source of pathogenic forms of TDP-43, and healthy human cells (lymphoblasts, myoblasts, neuroblastoma SH-SY5Y, or osteosarcoma U2OS) as recipient cells to investigate the seeding and spread of TDP-43 proteinopathy. Furthermore, we evaluated the potential of targeting TDP-43 phosphorylation with a CK-1 inhibitor to prevent the propagation of the pathology. The results presented herein indicate that pathogenic forms of TDP-43 are secreted into the extracellular medium of sporadic ALS lymphoblasts and could be transported by extracellular vesicles, spreading TDP-43 pathology to healthy cells. Moreover, tunneling nanotubes have also been discovered in pathological cells and may be involved in the transport of TDP-43. Interestingly, targeting TDP-43 phosphorylation with an in-house designed CK-1 inhibitor (IGS2.7) was sufficient to halt TDP-43 pathology transmission, in addition to its known effects on restoring the homeostasis of TDP-43 protein in patients-derived cells.


Asunto(s)
Esclerosis Amiotrófica Lateral , Neuroblastoma , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Quinasa de la Caseína I , Proteínas de Unión al ADN/metabolismo
6.
Prenat Diagn ; 44(3): 369-372, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38163266

RESUMEN

Raine syndrome (MIM 259775) is a rare autosomal recessive disorder, first described by Raine et al. in 1989, with an estimated prevalence of <1/1,000,000. This is due to pathogenic variants in FAM20C characterized by osteosclerosis, typical craniofacial features, and brain calcifications. Here, we report a novel variant in FAM20C, describe a uniquely severe craniofacial and CNS phenotype of Raine syndrome, and correlate it with prenatal findings. Fetal phenotyping was based on ultrasound and MRI. Solo exome sequencing was performed from DNA extracted from postmortem skin biopsy. Targeted parental variant testing was subsequently performed. A homozygous missense variant NM_020223.4 (c.1445 G > A (p.Gly482Glu)) was identified in FAM20C associated with Raine syndrome. The infant had the characteristic dysmorphic features seen in Raine syndrome. He had particularly significant CNS manifestations consisting of multisuture craniosynostosis with protrusion of the brain parenchyma through fontanelles and cranial lacunae. Histological sections of the brain showed marked periventricular gliosis with regions of infarction, hemorrhage, and cavitation with global periventricular leukomalacia. Numerous dystrophic calcifications were diffusely present. Here, we demonstrate the identification of a novel variant in FAM20C in an infant with the characteristic features seen in Raine syndrome. The patient expands the characteristic phenotype of Raine syndrome to include a uniquely severe CNS phenotype, first identified on prenatal imaging.


Asunto(s)
Anomalías Múltiples , Encefalopatías , Fisura del Paladar , Anomalías Craneofaciales , Exoftalmia , Microcefalia , Osteosclerosis , Sinostosis , Masculino , Lactante , Humanos , Embarazo , Femenino , Proteínas de la Matriz Extracelular/genética , Quinasa de la Caseína I/genética , Osteosclerosis/diagnóstico por imagen , Osteosclerosis/genética , Encéfalo/diagnóstico por imagen , Fenotipo , Sinostosis/complicaciones , Cráneo
7.
Biomolecules ; 14(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38254663

RESUMEN

The transplantation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) has shown promise in preclinical models of myocardial infarction, but graft myocardium exhibits incomplete host-graft electromechanical integration and a propensity for pro-arrhythmic behavior. Perhaps contributing to this situation, hPSC-CM grafts show low expression of connexin 43 (Cx43), the major gap junction (GJ) protein, in ventricular myocardia. We hypothesized that Cx43 expression and function could be rescued by engineering Cx43 in hPSC-CMs with a series of phosphatase-resistant mutations at three casein kinase 1 phosphorylation sites (Cx43-S3E) that have been previously reported to stabilize Cx43 GJs and reduce arrhythmias in transgenic mice. However, contrary to our predictions, transgenic Cx43-S3E hPSC-CMs exhibited reduced Cx43 expression relative to wild-type cells, both at baseline and following ischemic challenge. Cx43-S3E hPSC-CMs showed correspondingly slower conduction velocities, increased automaticity, and differential expression of other connexin isoforms and various genes involved in cardiac excitation-contraction coupling. Cx43-S3E hPSC-CMs also had phosphorylation marks associated with Cx43 GJ internalization, a finding that may account for their impaired GJ localization. Taken collectively, our data indicate that the Cx43-S3E mutation behaves differently in hPSC-CMs than in adult mouse ventricular myocytes and that multiple biological factors likely need to be addressed synchronously to ensure proper Cx43 expression, localization, and function.


Asunto(s)
Quinasa de la Caseína I , Conexina 43 , Miocitos Cardíacos , Adulto , Animales , Humanos , Ratones , Quinasa de la Caseína I/genética , Conexina 43/genética , Conexinas , Uniones Comunicantes , Ratones Transgénicos , Mutación
8.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37979156

RESUMEN

Whole-genome duplication (WGD) followed by speciation allows us to examine the parallel evolution of ohnolog pairs. In the yeast family Saccharomycetaceae, HRR25 is a rare case of repeated ohnolog maintenance. This gene has reverted to a single copy in Saccharomyces cerevisiae where it is now essential, but has been maintained as pairs in at least 7 species post-WGD. In S. cerevisiae, HRR25 encodes the casein kinase 1δ/ε and plays a role in a variety of functions through its kinase activity and protein-protein interactions (PPIs). We hypothesized that the maintenance of duplicated HRR25 ohnologs could be a result of repeated subfunctionalization. We tested this hypothesis through a functional complementation assay in S. cerevisiae, testing all pairwise combinations of 25 orthologs (including 7 ohnolog pairs). Contrary to our expectations, we observed no cases of pair-dependent complementation, which would have supported the subfunctionalization hypothesis. Instead, most post-WGD species have one ohnolog that failed to complement, suggesting their nonfunctionalization or neofunctionalization. The ohnologs incapable of complementation have undergone more rapid protein evolution, lost most PPIs that were observed for their functional counterparts and singletons from post-WGD and non-WGD species, and have nonconserved cellular localization, consistent with their ongoing loss of function. The analysis in Naumovozyma castellii shows that the noncomplementing ohnolog is expressed at a lower level and has become nonessential. Taken together, our results indicate that HRR25 orthologs are undergoing gradual nonfunctionalization.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Saccharomyces cerevisiae/genética , Duplicación de Gen , Genoma Fúngico , Evolución Molecular , Saccharomycetales/genética , Proteínas de Saccharomyces cerevisiae/genética , Quinasa de la Caseína I/genética
9.
EMBO Rep ; 24(11): e57250, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37712432

RESUMEN

MicroRNAs (miRNAs) together with Argonaute (AGO) proteins form the core of the RNA-induced silencing complex (RISC) to regulate gene expression of their target RNAs post-transcriptionally. Argonaute proteins are subjected to intensive regulation via various post-translational modifications that can affect their stability, silencing efficacy and specificity for targeted gene regulation. We report here that in Caenorhabditis elegans, two conserved serine/threonine kinases - casein kinase 1 alpha 1 (CK1A1) and casein kinase 2 (CK2) - regulate a highly conserved phosphorylation cluster of 4 Serine residues (S988:S998) on the miRNA-specific AGO protein ALG-1. We show that CK1A1 phosphorylates ALG-1 at sites S992 and S995, while CK2 phosphorylates ALG-1 at sites S988 and S998. Furthermore, we demonstrate that phospho-mimicking mutants of the entire S988:S998 cluster rescue the various developmental defects observed upon depleting CK1A1 and CK2. In humans, we show that CK1A1 also acts as a priming kinase of this cluster on AGO2. Altogether, our data suggest that phosphorylation of AGO within the cluster by CK1A1 and CK2 is required for efficient miRISC-target RNA binding and silencing.


Asunto(s)
Proteínas de Caenorhabditis elegans , MicroARNs , Animales , Humanos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Quinasa de la Caseína I/genética , Quinasa de la Caseína I/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Silenciador del Gen , Serina/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
10.
Sci Bull (Beijing) ; 68(18): 2077-2093, 2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37599176

RESUMEN

Casein kinase 1 (CK1) is serine/threonine protein kinase highly conserved among eukaryotes, and regulates multiple developmental and signaling events through phosphorylation of target proteins. Arabidopsis early flowering 1 (EL1)-like (AELs) are plant-specific CK1s with varied functions, but identification and validation of their substrates is a major bottleneck in elucidating their physiological roles. Here, we conducted a quantitative phosphoproteomic analysis in data-independent acquisition mode to systematically identify CK1 substrates. We extracted proteins from seedlings overexpressing individual AEL genes (AEL1/2/3/4-OE) or lacking AEL function (all ael single mutants and two triple mutants) to identify the high-confidence phosphopeptides with significantly altered abundance compared to wild-type Col-0. Among these, we selected 3985 phosphopeptides with higher abundance in AEL-OE lines or lower abundance in ael mutants compared with Col-0 as AEL-upregulated phosphopeptides, and defined 1032 phosphoproteins. Eight CK1s substrate motifs were enriched among AEL-upregulated phosphopeptides and verified, which allowed us to predict additional candidate substrates and functions of CK1s. We functionally characterized a newly identified substrate C3H17, a CCCH-type zinc finger transcription factor, through biochemical and genetic analyses, revealing a role for AEL-promoted C3H17 protein stability and transactivation activity in regulating embryogenesis. As CK1s are highly conserved across eukaryotes, we searched the rice, mouse, and human protein databases using newly identified CK1 substrate motifs, yielding many more candidate substrates than currently known, largely expanding our understanding of the common and distinct functions exerted by CK1s in Arabidopsis and humans, facilitating future mechanistic studies of CK1-mediated phosphorylation in different species.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Humanos , Animales , Ratones , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Quinasa de la Caseína I/genética , Fosfopéptidos/química , Desarrollo de la Planta/genética
11.
Int J Mol Sci ; 24(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37240249

RESUMEN

FAM20C (family with sequence similarity 20, member C) is a serine/threonine-specific protein kinase that is ubiquitously expressed and mainly associated with biomineralization and phosphatemia regulation. It is mostly known due to pathogenic variants causing its deficiency, which results in Raine syndrome (RNS), a sclerosing bone dysplasia with hypophosphatemia. The phenotype is recognized by the skeletal features, which are related to hypophosphorylation of different FAM20C bone-target proteins. However, FAM20C has many targets, including brain proteins and the cerebrospinal fluid phosphoproteome. Individuals with RNS can have developmental delay, intellectual disability, seizures, and structural brain defects, but little is known about FAM20C brain-target-protein dysregulation or about a potential pathogenesis associated with neurologic features. In order to identify the potential FAM20C actions on the brain, an in silico analysis was conducted. Structural and functional defects reported in RNS were described; FAM20C targets and interactors were identified, including their brain expression. Gene ontology of molecular processes, function, and components was completed for these targets, as well as for potential involved signaling pathways and diseases. The BioGRID and Human Protein Atlas databases, the Gorilla tool, and the PANTHER and DisGeNET databases were used. Results show that genes with high expression in the brain are involved in cholesterol and lipoprotein processes, plus axo-dendritic transport and the neuron part. These results could highlight some proteins involved in the neurologic pathogenesis of RNS.


Asunto(s)
Microcefalia , Proteínas Quinasas , Humanos , Proteínas Quinasas/metabolismo , Microcefalia/genética , Encéfalo/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Quinasa de la Caseína I/genética , Quinasa de la Caseína I/metabolismo
12.
Mol Cell ; 83(10): 1677-1692.e8, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37207626

RESUMEN

PERIOD (PER) and Casein Kinase 1δ regulate circadian rhythms through a phosphoswitch that controls PER stability and repressive activity in the molecular clock. CK1δ phosphorylation of the familial advanced sleep phase (FASP) serine cluster embedded within the Casein Kinase 1 binding domain (CK1BD) of mammalian PER1/2 inhibits its activity on phosphodegrons to stabilize PER and extend circadian period. Here, we show that the phosphorylated FASP region (pFASP) of PER2 directly interacts with and inhibits CK1δ. Co-crystal structures in conjunction with molecular dynamics simulations reveal how pFASP phosphoserines dock into conserved anion binding sites near the active site of CK1δ. Limiting phosphorylation of the FASP serine cluster reduces product inhibition, decreasing PER2 stability and shortening circadian period in human cells. We found that Drosophila PER also regulates CK1δ via feedback inhibition through the phosphorylated PER-Short domain, revealing a conserved mechanism by which PER phosphorylation near the CK1BD regulates CK1 kinase activity.


Asunto(s)
Relojes Circadianos , Proteínas Circadianas Period , Animales , Humanos , Fosforilación , Retroalimentación , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Quinasa de la Caseína I/genética , Quinasa de la Caseína I/metabolismo , Ritmo Circadiano/genética , Drosophila/metabolismo , Serina/metabolismo , Mamíferos/metabolismo
13.
PLoS Genet ; 19(4): e1010740, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37099597

RESUMEN

Oxidative stress response is a fundamental biological process mediated by conserved mechanisms. The identities and functions of some key regulators remain unknown. Here, we report a novel role of C. elegans casein kinase 1 gamma CSNK-1 (also known as CK1γ or CSNK1G) in regulating oxidative stress response and ROS levels. csnk-1 interacted with the bli-3/tsp-15/doxa-1 NADPH dual oxidase genes via genetic nonallelic noncomplementation to affect C. elegans survival in oxidative stress. The genetic interaction was supported by specific biochemical interactions between DOXA-1 and CSNK-1 and potentially between their human orthologs DUOXA2 and CSNK1G2. Consistently, CSNK-1 was required for normal ROS levels in C. elegans. CSNK1G2 and DUOXA2 each can promote ROS levels in human cells, effects that were suppressed by a small molecule casein kinase 1 inhibitor. We also detected genetic interactions between csnk-1 and skn-1 Nrf2 in oxidative stress response. Together, we propose that CSNK-1 CSNK1G defines a novel conserved regulatory mechanism for ROS homeostasis.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Humanos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Oxidasas Duales/farmacología , NADP , Especies Reactivas de Oxígeno , Quinasa de la Caseína I/genética , Estrés Oxidativo/genética , NADPH Oxidasas , Tetraspaninas/genética
15.
Neurosci Lett ; 802: 137176, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36914045

RESUMEN

FAM20C (family with sequence similarity 20-member C) is a protein kinase that phosphorylates secretory proteins, including the proteins that are essential to the formation and mineralization of calcified tissues. FAM20C loss-of-function mutations cause Raine syndrome in humans, characterized by generalized osteosclerosis, distinctive craniofacial dysmorphism, along with extensive intracranial calcification. Our previous studies revealed that inactivation of Fam20c in mice led to hypophosphatemic rickets. In this study, we examined the expression of Fam20c in the mouse brain and investigated brain calcification in Fam20c-deficient mice. Reverse transcription polymerase chain reaction (RT-PCR), Western-blotting and in situ hybridization analyses demonstrated the broad expression of Fam20c in the mouse brain tissue. X-ray and histological analyses showed that the global deletion of Fam20c (mediated by Sox2-cre) resulted in brain calcification in mice after postnatal 3 months and that the calcifications were bilaterally distributed within the brain. There was mild perifocal microgliosis as well as astrogliosis around calcospherites. The calcifications were first observed in the thalamus, and later in the forebrain and hindbrain. Furthermore, brain-specific deletion (mediated by Nestin-cre) of Fam20c in mice also led to cerebral calcification at an older age (postnatal 6 months), but no obvious skeletal or dental defects. Our results suggest that the local loss of FAM20C function in the brain may directly account for intracranial calcification. We propose that FAM20C plays an essential role in maintaining normal brain homeostasis and preventing ectopic brain calcification.


Asunto(s)
Calcinosis , Fisura del Paladar , Exoftalmia , Microcefalia , Osteosclerosis , Humanos , Ratones , Animales , Microcefalia/genética , Fisura del Paladar/genética , Osteosclerosis/diagnóstico por imagen , Osteosclerosis/genética , Exoftalmia/genética , Calcinosis/genética , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Quinasa de la Caseína I/genética , Quinasa de la Caseína I/metabolismo , Proteínas de Unión al Calcio
16.
Angew Chem Int Ed Engl ; 62(11): e202217532, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36625768

RESUMEN

Casein kinases 1 (CK1) are key signaling molecules that have emerged recently as attractive therapeutic targets in particular for the treatment of hematological malignancies. Herein, we report the identification of a new class of potent and highly selective inhibitors of CK1α, δ and ϵ. Based on their optimal in vitro and in vivo profiles and their exclusive selectivity, MU1250, MU1500 and MU1742 were selected as quality chemical probes for those CK1 isoforms. At proper concentrations, MU1250 and MU1500 allow for specific targeting of CK1δ or dual inhibition of CK1δ/ϵ in cells. The compound MU1742 also efficiently inhibits CK1α and, to our knowledge, represents the first potent and highly selective inhibitor of this enzyme. In addition, we demonstrate that the central 1H-pyrrolo[2,3-b]pyridine-imidazole pharmacophore can be used as the basis of highly selective inhibitors of other therapeutically relevant protein kinases, e.g. p38α, as exemplified by the compound MU1299.


Asunto(s)
Quinasa de la Caseína I , Transducción de Señal , Quinasa de la Caseína I/metabolismo , Isoformas de Proteínas/metabolismo , Inhibidores de Proteínas Quinasas/química , Humanos
17.
J Genet Genomics ; 50(6): 422-433, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36708808

RESUMEN

Gliomas are the most prevalent and aggressive malignancies of the nervous system. Previous bioinformatic studies have revealed the crucial role of the secretory pathway kinase FAM20C in the prediction of glioma invasion and malignancy. However, little is known about the pathogenesis of FAM20C in the regulation of glioma. Here, we construct the full-length transcriptome atlas in paired gliomas and observe that 22 genes are upregulated by full-length transcriptome and differential APA analysis. Analysis of ATAC-seq data reveals that both FAM20C and NPTN are the hub genes with chromatin openness and differential expression. Further, in vitro and in vivo studies suggest that FAM20C stimulates the proliferation and metastasis of glioma cells. Meanwhile, NPTN, a novel cancer suppressor gene, counteracts the function of FAM20C by inhibiting both the proliferation and migration of glioma. The blockade of FAM20C by neutralizing antibodies results in the regression of xenograft tumors. Moreover, MAX, BRD4, MYC, and REST are found to be the potential trans-active factors for the regulation of FAM20C. Taken together, our results uncover the oncogenic role of FAM20C in glioma and shed new light on the treatment of glioma by abolishing FAM20C.


Asunto(s)
Glioma , Proteínas Nucleares , Humanos , Activación Transcripcional , Proteínas Nucleares/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Glioma/genética , Glioma/patología , Oncogenes/genética , Epigénesis Genética/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Quinasa de la Caseína I/genética , Quinasa de la Caseína I/metabolismo
18.
Nat Commun ; 13(1): 7952, 2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-36572689

RESUMEN

Raine syndrome, a lethal osteosclerotic bone dysplasia in humans, is caused by loss-of-function mutations in FAM20C; however, Fam20c deficiency in mice does not recapitulate the human disorder, so the underlying pathoetiological mechanisms remain poorly understood. Here we show that FAM20C, in addition to the reported casein kinase activity, also fine-tunes the biosynthesis of chondroitin sulfate (CS) chains to impact bone homeostasis. Specifically, FAM20C with Raine-originated mutations loses the ability to interact with chondroitin 4-O-sulfotransferase-1, and is associated with reduced 4-sulfation/6-sulfation (4S/6S) ratio of CS chains and upregulated biomineralization in human osteosarcoma cells. By contrast, overexpressing chondroitin 6-O-sulfotransferase-1 reduces CS 4S/6S ratio, and induces osteoblast differentiation in vitro and higher bone mineral density in transgenic mice. Meanwhile, a potential xylose kinase activity of FAM20C does not impact CS 4S/6S ratio, and is not associated with Raine syndrome mutations. Our results thus implicate CS 4S/6S ratio imbalances caused by FAM20C mutations as a contributor of Raine syndrome etiology.


Asunto(s)
Microcefalia , Osteosclerosis , Animales , Humanos , Ratones , Proteínas de Unión al Calcio , Quinasa de la Caseína I/genética , Sulfatos de Condroitina , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Microcefalia/genética , Osteosclerosis/genética , Sulfotransferasas/genética
19.
Nucleic Acids Res ; 50(20): 11924-11937, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36321656

RESUMEN

Biogenesis of the small ribosomal subunit in eukaryotes starts in the nucleolus with the formation of a 90S precursor and ends in the cytoplasm. Here, we elucidate the enigmatic structural transitions of assembly intermediates from human and yeast cells during the nucleoplasmic maturation phase. After dissociation of all 90S factors, the 40S body adopts a close-to-mature conformation, whereas the 3' major domain, later forming the 40S head, remains entirely immature. A first coordination is facilitated by the assembly factors TSR1 and BUD23-TRMT112, followed by re-positioning of RRP12 that is already recruited early to the 90S for further head rearrangements. Eventually, the uS2 cluster, CK1 (Hrr25 in yeast) and the export factor SLX9 associate with the pre-40S to provide export competence. These exemplary findings reveal the evolutionary conserved mechanism of how yeast and humans assemble the 40S ribosomal subunit, but reveal also a few minor differences.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteínas Ribosómicas , Subunidades Ribosómicas Pequeñas de Eucariotas , Proteínas de Saccharomyces cerevisiae , Humanos , Quinasa de la Caseína I/análisis , Quinasa de la Caseína I/metabolismo , Metiltransferasas/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Nat Commun ; 13(1): 7243, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36433954

RESUMEN

Exonic circular RNAs (circRNAs) produce predominantly non-coding RNA species that have been recently profiled in many tumors. However, their functional contribution to cancer progression is still poorly understood. Here, we identify the circRNAs expressed in soft tissue sarcoma cells and explore how the circRNAs regulate sarcoma growth in vivo. We show that circCsnk1g3 and circAnkib1 promote tumor growth by shaping a pro-tumorigenic microenvironment, possibly due to their capabilities to regulate tumor-promoting elements extrinsic to the tumor cells. Accordingly, circCsnk1g3 and circAnkib1 can control the expression of interferon-related genes and pro-inflammatory factors in the sarcoma cells, thus directing immune cell recruitment into the tumor mass, and hence their activation. Mechanistically, circRNAs may repress pro-inflammatory elements by buffering activation of the pathways mediated by RIG-I, the cytosolic viral RNA sensor. The current findings suggest that the targeting of specific circRNAs could augment the efficacy of tumor and immune response to mainstay therapies.


Asunto(s)
Carcinogénesis , Interferones , ARN Circular , Sarcoma , Neoplasias de los Tejidos Blandos , Microambiente Tumoral , Humanos , Carcinogénesis/genética , Carcinogénesis/inmunología , Interferones/genética , Interferones/inmunología , ARN Circular/genética , ARN Circular/inmunología , Sarcoma/genética , Sarcoma/inmunología , Neoplasias de los Tejidos Blandos/genética , Neoplasias de los Tejidos Blandos/inmunología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Quinasa de la Caseína I/genética , Quinasa de la Caseína I/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...