Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
J Biol Chem ; 299(11): 105234, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37690685

RESUMEN

The extracellular signal-regulated kinase (ERK) controls multiple critical processes in the cell and is deregulated in human cancers, congenital abnormalities, immune diseases, and neurodevelopmental syndromes. Catalytic activity of ERK requires dual phosphorylation by an upstream kinase, in a mechanism that can be described by two sequential Michaelis-Menten steps. The estimation of individual reaction rate constants from kinetic data in the full mechanism has proved challenging. Here, we present an analytically tractable approach to parameter estimation that is based on the phase plane representation of ERK activation and yields two combinations of six reaction rate constants in the detailed mechanism. These combinations correspond to the ratio of the specificities of two consecutive phosphorylations and the probability that monophosphorylated substrate does not dissociate from the enzyme before the second phosphorylation. The presented approach offers a language for comparing the effects of mutations that disrupt ERK activation and function in vivo. As an illustration, we use phase plane representation to analyze dual phosphorylation under heterozygous conditions, when two enzyme variants compete for the same substrate.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular , Humanos , Quinasas MAP Reguladas por Señal Extracelular/química , Fosforilación
2.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35163418

RESUMEN

Damage to organs by trauma, infection, diseases, congenital defects, aging, and other injuries causes organ malfunction and is life-threatening under serious conditions. Some of the lower order vertebrates such as zebrafish, salamanders, and chicks possess superior organ regenerative capacity over mammals. The extracellular signal-regulated kinases 1 and 2 (ERK1/2), as key members of the mitogen-activated protein kinase (MAPK) family, are serine/threonine protein kinases that are phylogenetically conserved among vertebrate taxa. MAPK/ERK signaling is an irreplaceable player participating in diverse biological activities through phosphorylating a broad variety of substrates in the cytoplasm as well as inside the nucleus. Current evidence supports a central role of the MAPK/ERK pathway during organ regeneration processes. MAPK/ERK signaling is rapidly excited in response to injury stimuli and coordinates essential pro-regenerative cellular events including cell survival, cell fate turnover, migration, proliferation, growth, and transcriptional and translational activities. In this literature review, we recapitulated the multifaceted MAPK/ERK signaling regulations, its dynamic spatio-temporal activities, and the profound roles during multiple organ regeneration, including appendages, heart, liver, eye, and peripheral/central nervous system, illuminating the possibility of MAPK/ERK signaling as a critical mechanism underlying the vastly differential regenerative capacities among vertebrate species, as well as its potential applications in tissue engineering and regenerative medicine.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Organogénesis/fisiología , Regeneración/fisiología , Vertebrados/fisiología , Animales , Quinasas MAP Reguladas por Señal Extracelular/química , Humanos , Modelos Biológicos
3.
Proteins ; 90(3): 747-764, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34708889

RESUMEN

The bilobal protein kinase-like fold in pseudokinases lack one or more catalytic residues, conserved in canonical protein kinases, and are considered enzymatically deficient. Tertiary structures of pseudokinases reveal that their loops topologically equivalent to activation segments of kinases adopt contracted configurations, which is typically extended in active conformation of kinases. Herein, anisotropic network model based normal mode analysis (NMA) was conducted on 51 active conformation structures of protein kinases and 26 crystal structures of pseudokinases. Our observations indicate that although backbone fluctuation profiles are similar for individual kinase-pseudokinase families, low intensity mean square fluctuations in pseudo-activation segment and other sub-structures impart rigidity to pseudokinases. Analyses of collective motions from functional modes reveal that pseudokinases, compared to active kinases, undergo distinct conformational transitions using the same structural fold. All-atom NMA of protein kinase-pseudokinase pairs from each family, sharing high amino acid sequence identities, yielded distinct community clusters, partitioned by residues exhibiting highly correlated fluctuations. It appears that atomic fluctuations from equivalent activation segments guide community membership and network topologies for respective kinase and pseudokinase. Our findings indicate that such adaptations in backbone and side-chain fluctuations render pseudokinases competent for catalysis-independent roles.


Asunto(s)
Proteínas Quinasas/química , Secuencia de Aminoácidos , Dominio Catalítico , Bases de Datos de Proteínas , Quinasas MAP Reguladas por Señal Extracelular/química , Quinasas Asociadas a Receptores de Interleucina-1/química , Quinasas de Proteína Quinasa Activadas por Mitógenos/química , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
4.
Br J Cancer ; 125(11): 1552-1560, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34621046

RESUMEN

BACKGROUND: Simultaneous inhibition of multiple components of the BRAF-MEK-ERK cascade (vertical inhibition) has become a standard of care for treating BRAF-mutant melanoma. However, the molecular mechanism of how vertical inhibition synergistically suppresses intracellular ERK activity, and consequently cell proliferation, are yet to be fully elucidated. METHODS: We develop a mechanistic mathematical model that describes how the mutant BRAF inhibitor, dabrafenib, and the MEK inhibitor, trametinib, affect BRAFV600E-MEK-ERK signalling. The model is based on a system of chemical reactions that describes cascade signalling dynamics. Using mass action kinetics, the chemical reactions are re-expressed as ordinary differential equations that are parameterised by in vitro data and solved numerically to obtain the temporal evolution of cascade component concentrations. RESULTS: The model provides a quantitative method to compute how dabrafenib and trametinib can be used in combination to synergistically inhibit ERK activity in BRAFV600E-mutant melanoma cells. The model elucidates molecular mechanisms of vertical inhibition of the BRAFV600E-MEK-ERK cascade and delineates how elevated BRAF concentrations generate drug resistance to dabrafenib and trametinib. The computational simulations further suggest that elevated ATP levels could be a factor in drug resistance to dabrafenib. CONCLUSIONS: The model can be used to systematically motivate which dabrafenib-trametinib dose combinations, for treating BRAFV600E-mutated melanoma, warrant experimental investigation.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Modelos Biológicos , Modelos Químicos , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/química , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Imidazoles/química , Imidazoles/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/tratamiento farmacológico , Melanoma/enzimología , Melanoma/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/química , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Mutación , Oximas/química , Oximas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/química , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Piridonas/química , Piridonas/farmacología , Pirimidinonas/química , Pirimidinonas/farmacología
5.
Mol Divers ; 25(2): 1051-1075, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32377992

RESUMEN

Aberrant activation of ERK signaling pathway usually leads to oncogenesis, and small molecular agents targeting this pathway are impeded by the emergence of drug resistance due to reactivation of ERK signaling. Compound DEL-22379 has been reported to inhibit ERK dimerization which was unaffected by drug-resistant mechanism reactivating the ERK signaling. Here, we discussed a structure-activity relationship study of DEL-22379. Forty-seven analogues were designed and synthesized. Each synthesized compound was biologically evaluated for their inhibitory rates on several tumor cell lines and compounds with high inhibitory rates were further evaluated for IC50 values. The structure-activity relationship of idolin-2-one scaffold and the impact of Z/E configuration on potency were discussed. Potential safety of two synthesized analogues was investigated and in silico docking study of five compounds was performed to understand the structural basis of ERK dimerization inhibition.


Asunto(s)
Antineoplásicos , Quinasas MAP Reguladas por Señal Extracelular/química , Indoles , Inhibidores de Proteínas Quinasas , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Indoles/química , Indoles/farmacología , Indoles/toxicidad , Masculino , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/toxicidad , Multimerización de Proteína , Relación Estructura-Actividad , Pruebas de Toxicidad Aguda
6.
Cell Physiol Biochem ; 54(3): 474-492, 2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32392404

RESUMEN

BACKGROUND/AIMS: The subcellular localization of ERK1 and ERK2 (ERKs) in cells, which is important for proper signaling, may be regulated through protein-protein interactions. However, the proteins involved and the way they are regulated to affect localization is not entirely understood. METHODS: In order to identify the interacting proteins upon varying conditions, we used co-immunoprecipitation of ERK, active ERK and its binding CRS mutant. In addition, we examined the effect of intracellular calcium on the binding using calcium chelators and ionophores, analyzing the binding using silver stain, mass spectrometry and immunoblotting. The effect of calcium on ERK localization was examined using immunofluorescent staining and Western blotting. RESULTS: We found that inactive ERK2 interacts with a large number of proteins through its CRS/CD domain, whereas the phospho-ERK2 interacts with only few substrates. Varying calcium concentrations significantly modified the repertoire of ERK2-interacting proteins, of which many were identified. The effect of calcium on ERKs' interactions influenced also the localization of ERKs, as calcium chelators enhanced nuclear translocation, while elevated calcium levels prevented it. This effect of calcium was also apparent upon the physiological lysophosphatidic acid stimulation, where ERKs translocation was delayed compared to that induced by EGF in a calcium-dependent manner. In vitro translocation assay revealed that high calcium concentrations affect ERKs' translocation by preventing the shuttling machinery through the nuclear envelope, probably due to higher binding to nuclear pore proteins such as NUP153. These results are consistent with a model in which ERKs in quiescent cells are bound to several cytoplasmic proteins. CONCLUSION: Upon stimulation, ERKs are phosphorylated and released from their cytoplasmic anchors to allow shuttling into the nucleus. This translocation is delayed when calcium levels are increased, and this modifies the localization of ERKs and therefore also their spatiotemporal regulation. Thus, calcium regulates ERKs localization, which is important for the compartmentalization of ERKs with their proper substrates, and thereby their signaling specificity.


Asunto(s)
Calcio/metabolismo , Núcleo Celular/enzimología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Transporte Activo de Núcleo Celular , Animales , Línea Celular , Núcleo Celular/metabolismo , Citoplasma/enzimología , Citoplasma/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/química , Quinasas MAP Reguladas por Señal Extracelular/genética , Sistema de Señalización de MAP Quinasas , Espectrometría de Masas , Proteínas de Complejo Poro Nuclear/metabolismo , Fosforilación , Unión Proteica , Dominios Proteicos , Ratas
7.
Proc Natl Acad Sci U S A ; 117(22): 12164-12173, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32409604

RESUMEN

Apicomplexan parasites use a specialized cilium structure called the apical complex to organize their secretory organelles and invasion machinery. The apical complex is integrally associated with both the parasite plasma membrane and an intermediate filament cytoskeleton called the inner-membrane complex (IMC). While the apical complex is essential to the parasitic lifestyle, little is known about the regulation of apical complex biogenesis. Here, we identify AC9 (apical cap protein 9), a largely intrinsically disordered component of the Toxoplasma gondii IMC, as essential for apical complex development, and therefore for host cell invasion and egress. Parasites lacking AC9 fail to successfully assemble the tubulin-rich core of their apical complex, called the conoid. We use proximity biotinylation to identify the AC9 interaction network, which includes the kinase extracellular signal-regulated kinase 7 (ERK7). Like AC9, ERK7 is required for apical complex biogenesis. We demonstrate that AC9 directly binds ERK7 through a conserved C-terminal motif and that this interaction is essential for ERK7 localization and function at the apical cap. The crystal structure of the ERK7-AC9 complex reveals that AC9 is not only a scaffold but also inhibits ERK7 through an unusual set of contacts that displaces nucleotide from the kinase active site. ERK7 is an ancient and autoactivating member of the mitogen-activated kinase (MAPK) family and its regulation is poorly understood in all organisms. We propose that AC9 dually regulates ERK7 by scaffolding and concentrating it at its site of action while maintaining it in an "off" state until the specific binding of a true substrate.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibroblastos/parasitología , Biogénesis de Organelos , Proteínas Protozoarias/metabolismo , Toxoplasma/patogenicidad , Toxoplasmosis/patología , Quinasas MAP Reguladas por Señal Extracelular/química , Quinasas MAP Reguladas por Señal Extracelular/genética , Humanos , Fosforilación , Conformación Proteica , Transporte de Proteínas , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Transducción de Señal , Toxoplasmosis/metabolismo , Toxoplasmosis/parasitología
8.
ACS Chem Biol ; 15(1): 83-92, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31775004

RESUMEN

The understanding of complex biological systems requires an ability to evaluate interacting networks of genes, proteins, and cellular reactions. Enabling technologies that support the rapid quantification of these networks will facilitate the development of biological models and help to identify treatment targets and to assess treatment plans. The biochemical process of protein phosphorylation, which underlies almost all aspects of cell signaling, is typically evaluated by immunoblotting procedures (Western blot) or more recently proteomics procedures, which provide qualitative estimates of the concentration of proteins and their modifications in cells. However, protein modifications are difficult to correlate with activity, and while immunoblotting and proteomics approaches have the potential to be quantitative, they require a complex series of steps that diminish reproducibility. Here, a complementary approach is presented that allows for the rapid quantification of a protein kinase activity in cell lysates and tumor samples. Using the activity of cellular ERK (extracellular signal-regulated kinase) as a test case, an array sensing approach that utilizes a library of differential peptide-based biosensors and chemometric tools was used to rapidly quantify nanograms of active ERK in micrograms of unfractionated cell lysates and tumor extracts. This approach has the potential both for high-throughput and for quantifying the activities of multiple protein kinases in a single biological sample. The critical advantages of this differential sensing approach over others are that it removes the need for the addition of exogenous inhibitors to suppress the activities of major off-target kinases and allows us to quantitate the amount of active kinase in tested samples rather than measuring the changes in its activity upon induction or inhibition.


Asunto(s)
Técnicas Biosensibles/métodos , Quinasas MAP Reguladas por Señal Extracelular/química , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Extractos Celulares/química , Línea Celular Tumoral , Humanos , Immunoblotting/métodos , Cinética , Fosforilación , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Reproducibilidad de los Resultados , Transducción de Señal
9.
Int J Mol Sci ; 20(22)2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31717402

RESUMEN

Protein kinases orchestrate diverse cellular functions; however, their dysregulation is linked to metabolic dysfunctions, associated with many diseases, including cancer. Mitogen-Activated Protein (MAP) kinase is a notoriously oncogenic signaling pathway in human malignancies, where the extracellular signal-regulated kinases (ERK1/2) are focal serine/threonine kinases in the MAP kinase module with numerous cytosolic and nuclear mitogenic effector proteins. Subsequently, hampering the ERK kinase activity by small molecule inhibitors is a robust strategy to control the malignancies with aberrant MAP kinase signaling cascades. Consequently, new heterocyclic compounds, containing a sulfonamide moiety, were rationally designed, aided by the molecular docking of the starting reactant 1-(4-((4-methylpiperidin-1-yl)sulfonyl)phenyl)ethan-1-one (3) at the ATP binding pocket of the ERK kinase domain, which was relying on the molecular extension tactic. The identities of the synthesized compounds (4-33) were proven by their spectral data and elemental analysis. The target compounds exhibited pronounced anti-proliferative activities against the MCF-7, HepG-2, and HCT-116 cancerous cell lines with potencies reaching a 2.96 µM for the most active compound (22). Moreover, compounds 5, 9, 10b, 22, and 28 displayed a significant G2/M phase arrest and induction of the apoptosis, which was confirmed by the cell cycle analysis and the flow cytometry. Thus, the molecular extension of a small fragment bounded at the ERK kinase domain is a valid tactic for the rational synthesis of the ERK inhibitors to control various human malignancies.


Asunto(s)
Diseño de Fármacos , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/síntesis química , Pirimidinas/farmacología , Sulfonamidas/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/química , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Dominios Proteicos , Inhibidores de Proteínas Quinasas/química , Pirimidinas/química , Relación Estructura-Actividad
10.
Eur J Pharmacol ; 865: 172735, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31614143

RESUMEN

Neurotensin is a 13 amino acid peptide which is present in many lung cancer cell lines. Neurotensin binds with high affinity to the neurotensin receptor 1, and functions as an autocrine growth factor in lung cancer cells. Neurotensin increases tyrosine phosphorylation of the epidermal growth factor receptor (EGFR) and the neurotensin receptor 1 antagonist SR48692 blocks the transactivation of the EGFR. Here the effects of reactive oxygen species on the transactivation of the EGFR and HER2 were investigated. Using non-small cell lung cancer (NSCLC) cell lines, neurotensin receptor 1 mRNA and protein were present. Using NCI-H838 cells, neurotensin or neurotensin8-13 but not neurotensin1-8 increased EGFR, ERK and HER2 tyrosine phosphorylation which was blocked by SR48692. Neurotensin addition to NCI-H838 cells increased significantly reactive oxygen species which was inhibited by SR48692, Tiron (superoxide scavenger) and diphenylene iodonium (DPI inhibits the ability of NADPH oxidase and dual oxidase enzymes to produce reactive oxygen species). Tiron or DPI impaired the ability of neurotensin to increase EGFR, ERK and HER2 tyrosine phosphorylation. Neurotensin stimulated NSCLC cellular proliferation whereas the growth was inhibited by SR48692, DPI or lapatinib (lapatinib is tyrosine kinase inhibitor of the EGFR and HER2). Lapatinib inhibited the ability of the neurotensin receptor 1 to transactivate the EGFR and HER2. The results indicate that neurotensin receptor 1 regulates the transactivation of the EGFR and HER2 in a reactive oxygen species-dependent manner.


Asunto(s)
Receptores ErbB/genética , Especies Reactivas de Oxígeno/metabolismo , Receptor ErbB-2/genética , Receptores de Neurotensina/metabolismo , Activación Transcripcional , Línea Celular Tumoral , Quinasas MAP Reguladas por Señal Extracelular/química , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Lapatinib/farmacología , Neurotensina/farmacología , Fosforilación/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Tirosina/metabolismo
11.
Nitric Oxide ; 93: 34-43, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31542422

RESUMEN

Nitric Oxide (NO) is involved in many physiological and pathological processes. It is generated by a family of NO synthases (NOS), being the inducible isoform, iNOS, responsible for higher amounts of NO. Here, we report that pharmacological inhibition of NO production by l-NAME reduces both viability and MAPK activated signalling pathways in iNOS positive human and murine cancer cell lines. In vivo, using syngeneic models, in parallel with tumor reduction induced by l-NAME, collagen deposition and α-SMA positive stromal cells are observed. This observation takes place only when tumor cells express iNOS. In vitro, l-NAME induces viability and differentiation on fibroblast. Our results reveal that NO inhibition contributes to stimulate proliferation and activation of fibroblasts in parallel with tumor reduction of iNOS positive breast cancer.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Inhibidores Enzimáticos/uso terapéutico , Fibroblastos/efectos de los fármacos , NG-Nitroarginina Metil Éster/uso terapéutico , Animales , Antineoplásicos/farmacología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Colágeno/metabolismo , Inhibidores Enzimáticos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/química , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos BALB C , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fosforilación/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
12.
PLoS One ; 14(8): e0221331, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31425543

RESUMEN

Leishmaniasis caused by obligate intracellular parasites of genus Leishmania is one of the most neglected tropical diseases threatening 350 million people worldwide. Protein kinases have drawn much attention as potential drug targets due to their important role in various cellular processes. In Leishmania sp. mitogen-activated protein kinase 4 is essential for the parasite survival because of its involvement in various regulatory, apoptotic and developmental pathways. The current study reveals the identification of natural inhibitors of L. donovani mitogen-activated protein kinase-4 (LdMPK4). We have performed in silico docking of 110 natural inhibitors of Leishmania parasite that have been reported earlier and identified two compounds Genistein (GEN) and Chrysin (CHY). The homology model of LdMPK4 was developed, followed by binding affinity studies, and pharmacokinetic properties of the inhibitors were calculated by maintaining ATP as a standard molecule. The modelled structure was deposited in the protein model database with PMDB ID: PM0080988. Molecular dynamic simulation of the enzyme-inhibitor complex along with the free energy calculations over 50 ns showed that GEN and CHY are more stable in their binding. These two molecules, GEN and CHY, can be considered as lead molecules for targeting LdMPK4 enzyme and could emerge as potential LdMPK4 inhibitors.


Asunto(s)
Antiprotozoarios/farmacología , Descubrimiento de Drogas/métodos , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Proteínas Protozoarias/antagonistas & inhibidores , Secuencia de Aminoácidos/genética , Antiprotozoarios/química , Quinasas MAP Reguladas por Señal Extracelular/química , Quinasas MAP Reguladas por Señal Extracelular/genética , Flavonoides/química , Flavonoides/farmacología , Genisteína/química , Genisteína/farmacología , Leishmania donovani/genética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Terapia Molecular Dirigida , Unión Proteica , Conformación Proteica en Hélice alfa , Proteínas Protozoarias/química , Homología de Secuencia de Aminoácido
13.
Proteomics ; 19(17): e1900086, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31318149

RESUMEN

Mitogen-activated protein (MAP) kinase signaling is critical for various cellular responses, including cell proliferation, differentiation, and cell death. The MAP kinase cascade is conserved in the eukaryotic kingdom as a three-tiered kinase module-MAP kinase kinase kinase, MAP kinase kinase, and MAP kinase-that transduces signals via sequential phosphorylation upon stimulation. Dual phosphorylation of MAP kinase on the conserved threonine-glutamic acid-tyrosine (TEY) motif is essential for its catalytic activity and signal activation; however, the molecular mechanism by which the two residues are phosphorylated remains elusive. In the present study, the pattern of dual phosphorylation of extracellular signal-regulated kinase (ERK) is profiled on the TEY motif using stable isotope dilution (SID)-selective reaction monitoring (SRM) mass spectrometry (MS) to elucidate the order and magnitude of endogenous ERK phosphorylation in cellular model systems. The SID-SRM-MS analysis of phosphopeptides demonstrates that tyrosine phosphorylation in the TEY motif is dynamic, while threonine phosphorylation is static. Analyses of the mono-phosphorylatable mutants ERKT202A and ERKY204F indicate that phosphorylation of tyrosine is not affected by the phosphorylation state of threonine, while threonine phosphorylation depends on tyrosine phosphorylation. The data suggest that dual phosphorylation of ERK is a highly ordered and restricted mechanism determined by tyrosine phosphorylation.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ácido Glutámico/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Treonina/metabolismo , Tirosina/metabolismo , Animales , Quinasas MAP Reguladas por Señal Extracelular/química , Quinasas MAP Reguladas por Señal Extracelular/genética , Ácido Glutámico/química , Ácido Glutámico/genética , Células HeLa , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/química , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Mutación , Células PC12 , Fosforilación , Ratas , Transducción de Señal , Treonina/química , Treonina/genética , Tirosina/química , Tirosina/genética
14.
Proc Natl Acad Sci U S A ; 116(31): 15514-15523, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31296562

RESUMEN

The most frequent extracellular signal-regulated kinase 2 (ERK2) mutation occurring in cancers is E322K (E-K). ERK2 E-K reverses a buried charge in the ERK2 common docking (CD) site, a region that binds activators, inhibitors, and substrates. Little is known about the cellular consequences associated with this mutation, other than apparent increases in tumor resistance to pathway inhibitors. ERK2 E-K, like the mutation of the preceding aspartate (ERK2 D321N [D-N]) known as the sevenmaker mutation, causes increased activity in cells and evades inactivation by dual-specificity phosphatases. As opposed to findings in cancer cells, in developmental assays in Drosophila, only ERK2 D-N displays a significant gain of function, revealing mutation-specific phenotypes. The crystal structure of ERK2 D-N is indistinguishable from that of wild-type protein, yet this mutant displays increased thermal stability. In contrast, the crystal structure of ERK2 E-K reveals profound structural changes, including disorder in the CD site and exposure of the activation loop phosphorylation sites, which likely account for the decreased thermal stability of the protein. These contiguous mutations in the CD site of ERK2 are both required for docking interactions but lead to unpredictably different functional outcomes. Our results suggest that the CD site is in an energetically strained configuration, and this helps drive conformational changes at distal sites on ERK2 during docking interactions.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Mutación/genética , Animales , Animales Modificados Genéticamente , Cristalografía por Rayos X , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Activación Enzimática , Estabilidad de Enzimas , Quinasas MAP Reguladas por Señal Extracelular/química , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Modelos Moleculares , Proteínas Mutantes/metabolismo
15.
Proc Natl Acad Sci U S A ; 116(31): 15463-15468, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31311868

RESUMEN

Conformational selection by small molecules expands inhibitory possibilities for protein kinases. Nuclear magnetic resonance (NMR) measurements of the mitogen-activated protein (MAP) kinase ERK2 have shown that activation by dual phosphorylation induces global motions involving exchange between two states, L and R. We show that ERK inhibitors Vertex-11e and SCH772984 exploit the small energetic difference between L and R to shift the equilibrium in opposing directions. An X-ray structure of active 2P-ERK2 complexed with AMP-PNP reveals a shift in the Gly-rich loop along with domain closure to position the nucleotide in a more catalytically productive conformation relative to inactive 0P-ERK2:ATP. X-ray structures of 2P-ERK2 complexed with Vertex-11e or GDC-0994 recapitulate this closure, which is blocked in a complex with a SCH772984 analog. Thus, the L→R shift in 2P-ERK2 is associated with movements needed to form a competent active site. Solution measurements by hydrogen-exchange mass spectrometry (HX-MS) reveal distinct binding interactions for Vertex-11e, GDC-0994, and AMP-PNP with active vs. inactive ERK2, where the extent of HX protection correlates with R state formation. Furthermore, Vertex-11e and SCH772984 show opposite effects on HX near the activation loop. Consequently, these inhibitors differentially affect MAP kinase phosphatase activity toward 2P-ERK2. We conclude that global motions in ERK2 reflect conformational changes at the active site that promote productive nucleotide binding and couple with changes at the activation loop to allow control of dephosphorylation by conformationally selective inhibitors.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/química , Inhibidores de Proteínas Quinasas/farmacología , Regulación Alostérica/efectos de los fármacos , Sitios de Unión , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Medición de Intercambio de Deuterio , Humanos , Espectrometría de Masas , Modelos Biológicos , Nucleótidos/química , Nucleótidos/metabolismo , Fosforilación/efectos de los fármacos , Estructura Secundaria de Proteína
16.
J Math Biol ; 79(4): 1515-1549, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31346693

RESUMEN

This work concerns the question of how two important dynamical properties, oscillations and bistability, emerge in an important biological signaling network. Specifically, we consider a model for dual-site phosphorylation and dephosphorylation of extracellular signal-regulated kinase (ERK). We prove that oscillations persist even as the model is greatly simplified (reactions are made irreversible and intermediates are removed). Bistability, however, is much less robust-this property is lost when intermediates are removed or even when all reactions are made irreversible. Moreover, bistability is characterized by the presence of two reversible, catalytic reactions: as other reactions are made irreversible, bistability persists as long as one or both of the specified reactions is preserved. Finally, we investigate the maximum number of steady states, aided by a network's "mixed volume" (a concept from convex geometry). Taken together, our results shed light on the question of how oscillations and bistability emerge from a limiting network of the ERK network-namely, the fully processive dual-site network-which is known to be globally stable and therefore lack both oscillations and bistability. Our proofs are enabled by a Hopf bifurcation criterion due to Yang, analyses of Newton polytopes arising from Hurwitz determinants, and recent characterizations of multistationarity for networks having a steady-state parametrization.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Redes y Vías Metabólicas , Modelos Teóricos , Transducción de Señal , Fenómenos Bioquímicos , Estabilidad de Enzimas , Quinasas MAP Reguladas por Señal Extracelular/química , Quinasas MAP Reguladas por Señal Extracelular/genética , Humanos , Cinética , Fosforilación
17.
Int J Mol Sci ; 20(12)2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31200510

RESUMEN

Epithelial-mesenchymal transition (EMT) is a reversible cellular process, characterized by changes in gene expression and activation of proteins, favoring the trans-differentiation of the epithelial phenotype to a mesenchymal phenotype. This process increases cell migration and invasion of tumor cells, progression of the cell cycle, and resistance to apoptosis and chemotherapy, all of which support tumor progression. One of the signaling pathways involved in tumor progression is the MAPK pathway. Within this family, the ERK subfamily of proteins is known for its contributions to EMT. The ERK subfamily is divided into typical (ERK 1/2/5), and atypical (ERK 3/4/7/8) members. These kinases are overexpressed and hyperactive in various types of cancer. They regulate diverse cellular processes such as proliferation, migration, metastasis, resistance to chemotherapy, and EMT. In this context, in vitro and in vivo assays, as well as studies in human patients, have shown that ERK favors the expression, function, and subcellular relocalization of various proteins that regulate EMT, thus promoting tumor progression. In this review, we discuss the mechanistic roles of the ERK subfamily members in EMT and tumor progression in diverse biological systems.


Asunto(s)
Transición Epitelial-Mesenquimal , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Neoplasias/metabolismo , Animales , Quinasas MAP Reguladas por Señal Extracelular/química , Quinasas MAP Reguladas por Señal Extracelular/genética , Humanos , Sistema de Señalización de MAP Quinasas , Neoplasias/genética , Neoplasias/patología
18.
ACS Appl Mater Interfaces ; 11(12): 11125-11135, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30799601

RESUMEN

Many biological events such as mutations or aberrant post-translational modifications can alter the conformation and/or folding stability of proteins and their subsequent biological function, which may trigger the onset of diseases like cancer. Evaluating protein folding is hence crucial for the diagnosis of these diseases. Yet, it is still challenging to detect changes in protein folding, especially if they are subtle, in a simple and highly sensitive manner with the current assays. Herein, we report a new colloidal-based interfacial biosensing approach for qualitative and quantitative profiling of various types of changes in protein folding; from denaturation to variant conformations in native proteins, such as protein activation via mutations or phosphorylation. The approach is based on the direct interfacial interaction of proteins freely available in solution with added tannic-acid-capped gold nanoparticles, to interrogate their folding status in their solubilized form. We found that under the optimized conditions, proteins can modulate colloids solvation according to their folding or conformational status, which can be visualized in a single step, by the naked eye, with minimal protein input requirements (limit of detection of 1 ng/µL). Protein folding detection was achieved regardless of protein topology and size without using conformation-specific antibodies and mutational analysis, which are the most common assays for sensing malfunctioning proteins. The approach showed excellent sensitivity, superior to circular dichroism, for the detection of the very subtle conformational changes induced by activating mutations and phosphorylation in epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase (ERK) proteins. This enabled their detection even in complex samples derived from lung cancer cells, which contained up to 95% excess of their wild-type forms. A broader clinical translation was shown via monitoring the action of conformation-restoring drugs, such as tyrosine kinase inhibitors, on EGFR conformation and its downstream protein network, using the ERK protein as a surrogate.


Asunto(s)
Técnicas Biosensibles/métodos , Coloides/química , Receptores ErbB/química , Quinasas MAP Reguladas por Señal Extracelular/química , Dicroismo Circular , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Oro/química , Nanopartículas del Metal/química , Fosforilación , Conformación Proteica , Pliegue de Proteína , Taninos/química
19.
Carbohydr Polym ; 207: 502-509, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30600033

RESUMEN

More and more evidences suggested that sulfated natural glycans had impact on angiogenesis. However, the molecular targets and functional mechanism of glycans are still vague. JCS1S2 was the sulfated mannoglucan featured with a backbone of 1, 4-linked ß-Manp and 1, 4-linked α-Glcp with sulfation at C-6 of ß-Manp and α-Glcp residues, respectively. The degree of substitution of this sulfated polysaccharide was 1.74 and its molecular weight was 56.2 kDa. We provided evidences that JCS1S2 could disrupt angiogenesis both in vitro and in vivo. This sulfated polysaccharide inhibited migration and tube formation of human microvascular endothelial cells (HMEC-1) whereas showed no effect on the cells proliferation. Further study uncovered that JCS1S2 bound to both VEGF (vascular endothelial growth factor) (KD value: 4.82 × 10-9) and VEGFR2 (Vascular Endothelial Growth Factor Receptor 2) (KD value: 1.50 × 10-7) to inactivate VEGFR2 phosphorylation. In addition, JCS1S2 blocked downstream signaling and impaired the expression of VEGF and its transcription factor AP-1 (Activator protein-1). These results demonstrated that JCS1S2 interrupted angiogenesis via blocking VEGF signaling transduction and could be a potential anti-angiogenetic agent for disease treatment.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Polisacáridos/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Pollos , Regulación hacia Abajo , Células Endoteliales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/química , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Polisacáridos/química , Polisacáridos/metabolismo , Unión Proteica , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/química
20.
Methods Mol Biol ; 1821: 131-140, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30062409

RESUMEN

Recent findings suggest that phosphorylation might further contribute to the tight regulation of Rho GTPases. Interestingly, sequence analysis of Rac1 shows that T108 within the 106PNTP109 motif of Rac1 is likely an ERK phosphorylation site and Rac1 also has an ERK docking site 183KKRKRKCLLL192 (D-site) at the C-terminus. Protein phosphorylation could be assayed by many different methods. Here, we describe an in vitro kinase assay we used to assess Rac1 phosphorylation by ERK. Rac1 phosphorylation is detected based on the transfer of a radiolabeled phosphate from ATP to Rac1 by the phosphotransferase activity of the kinase EKR. This in vitro kinase assay uses commercially available purified active ERK. Substrate Rac1 was generated and purified as a glutathione S-transferase (GST) fusion protein. [γ-32P]ATP is used to radiolabel Rac1. Phosphorylation of Rac1 is viewed by autoradiography.


Asunto(s)
Adenosina Trifosfato/química , Quinasas MAP Reguladas por Señal Extracelular/química , Proteína de Unión al GTP rac1/química , Secuencias de Aminoácidos , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Marcaje Isotópico/métodos , Fosforilación , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA