Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.430
Filtrar
1.
Nat Commun ; 15(1): 4340, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773142

RESUMEN

Macrophage-orchestrated inflammation contributes to multiple diseases including sepsis. However, the underlying mechanisms remain to be defined clearly. Here, we show that macrophage TP53-induced glycolysis and apoptosis regulator (TIGAR) is up-regulated in murine sepsis models. When myeloid Tigar is ablated, sepsis induced by either lipopolysaccharide treatment or cecal ligation puncture in male mice is attenuated via inflammation inhibition. Mechanistic characterizations indicate that TIGAR directly binds to transforming growth factor ß-activated kinase (TAK1) and promotes tumor necrosis factor receptor-associated factor 6-mediated ubiquitination and auto-phosphorylation of TAK1, in which residues 152-161 of TIGAR constitute crucial motif independent of its phosphatase activity. Interference with the binding of TIGAR to TAK1 by 5Z-7-oxozeaenol exhibits therapeutic effects in male murine model of sepsis. These findings demonstrate a non-canonical function of macrophage TIGAR in promoting inflammation, and confer a potential therapeutic target for sepsis by disruption of TIGAR-TAK1 interaction.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Modelos Animales de Enfermedad , Lipopolisacáridos , Quinasas Quinasa Quinasa PAM , Macrófagos , Sepsis , Animales , Sepsis/inmunología , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Masculino , Ratones , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Ratones Endogámicos C57BL , Fosforilación , Humanos , Ubiquitinación , Zearalenona/análogos & derivados , Zearalenona/farmacología , Zearalenona/administración & dosificación , Factor 6 Asociado a Receptor de TNF/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Inflamación/metabolismo , Inflamación/patología , Monoéster Fosfórico Hidrolasas/metabolismo , Ratones Noqueados , Lactonas , Resorcinoles
2.
Biol Direct ; 19(1): 34, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698487

RESUMEN

BACKGROUND: LncRNA PCED1B-AS1 is abnormally expressed in multiple cancers and has been confirmed as an oncogene. Our study aimed to investigate the regulatory mechanism of lncRNA PCED1B-AS1 in gastric cancer. METHODS: TCGA database was used to analyze the abnormal expression of lncRNA PCED1B-AS1 in gastric cancer. By database prediction and mass spectrometric analysis, miR-3681-3p and MAP2K7 are potential downstream target molecules of lncRNA PCED1B-AS1 and verified by dual-luciferase report assay. RT-qPCR analysis and western blot were performed to detect the expressions of PCED1B-AS1 and MAP2K7 in gastric cancer cell lines and tissues. CCK-8 kit was applied to measure the cell viability. Wound healing and Transwell experiment were used to detect the migration and invasion. Western blot and immunohistochemical staining were performed to detect the expressions of EMT-related proteins in tissues. The changes of tumor proliferation were detected by xenograft experiment in nude mice. RESULTS: PCED1B-AS1 expression was higher but miR-3681-3 expression was lower in gastric cancer cell lines or tissues, compared to normal group. Function analysis verified PCED1B-AS1 promoted cell proliferation and inhibited cell apoptosis in gastric cancer cells in vitro and in vivo. LncRNA PCED1B-AS1 could bind directly to miR-3681-3p, and MAP2K7 was found to be a downstream target of miR-3681-3p. MiR-3681-3p mimics or si-MAP2K7 could partly reverse the effect of PCED1B-AS1 on gastric cancer cells. CONCLUSION: PCED1B-AS1 accelerated cell proliferation and inhibited cell apoptosis through sponging miR-3681-3p to upregulate MAP2K7 expression in gastric cancer, which indicated PCED1B-AS1/miR-3681-3p/MAP2K7 axis may serve as a potential therapeutic target for gastric cancer.


Asunto(s)
Transición Epitelial-Mesenquimal , Quinasas Quinasa Quinasa PAM , Ratones Desnudos , MicroARNs , ARN Largo no Codificante , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral , Animales , Ratones , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Invasividad Neoplásica , Movimiento Celular , Metástasis de la Neoplasia
3.
Aging (Albany NY) ; 16(9): 7915-7927, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38728237

RESUMEN

OBJECTIVE: This research aimed to explore IL-21/miR-361-5p/MAP3K9 expression in shoulder arthritis and identify its regulatory pathways. METHODS: We established a rat shoulder arthritis model, then quantified IL21 and miR-361-5p in synovial fluid using ELISA and monitored the arthritis development. Additionally, IL21's effect on miR-361-5p levels in cultured human chondrocytes (HC-a) was assessed. Chondrocyte cell cycle status and apoptosis were measured via flow cytometry. Interactions between miR-361-5p and MAP3K9 were confirmed through dual-luciferase reporting and bioinformatic scrutiny. Protein levels of MAP3K9, p-ERK1/2, p-NF-κB, MMP1, and MMP9 were analyzed by Western blots. RESULTS: IL21 levels were elevated, while miR-361-5p was reduced in the synovial fluid from arthritic rats compared to healthy rats. IL21 was shown to suppress miR-361-5p in chondrocytes leading to hindered cell proliferation and increased apoptosis. Western blots indicated that miR-361-5p curbed MAP3K9 expression, reducing MMP activity by attenuating the ERK1/2/NF-κB pathway in chondrocytes. CONCLUSION: IL21 upregulation and miR-361-5p downregulation characterize shoulder arthritis, resulting in MAP3K9 overexpression. This chain of molecular events boosts MMP expression in chondrocytes and exacerbates the condition's progression.


Asunto(s)
Condrocitos , Quinasas Quinasa Quinasa PAM , MicroARNs , Animales , MicroARNs/metabolismo , MicroARNs/genética , Ratas , Humanos , Condrocitos/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Interleucinas/metabolismo , Interleucinas/genética , Apoptosis/genética , Progresión de la Enfermedad , Masculino , Proliferación Celular/genética , Ratas Sprague-Dawley
4.
Nat Commun ; 15(1): 4216, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760394

RESUMEN

Antimicrobial peptides (AMPs), ancient scavengers of bacteria, are very poorly induced in macrophages infected by Mycobacterium tuberculosis (M. tuberculosis), but the underlying mechanism remains unknown. Here, we report that L-alanine interacts with PRSS1 and unfreezes the inhibitory effect of PRSS1 on the activation of NF-κB pathway to induce the expression of AMPs, but mycobacterial alanine dehydrogenase (Ald) Rv2780 hydrolyzes L-alanine and reduces the level of L-alanine in macrophages, thereby suppressing the expression of AMPs to facilitate survival of mycobacteria. Mechanistically, PRSS1 associates with TAK1 and disruptes the formation of TAK1/TAB1 complex to inhibit TAK1-mediated activation of NF-κB pathway, but interaction of L-alanine with PRSS1, disables PRSS1-mediated impairment on TAK1/TAB1 complex formation, thereby triggering the activation of NF-κB pathway to induce expression of AMPs. Moreover, deletion of antimicrobial peptide gene ß-defensin 4 (Defb4) impairs the virulence by Rv2780 during infection in mice. Both L-alanine and the Rv2780 inhibitor, GWP-042, exhibits excellent inhibitory activity against M. tuberculosis infection in vivo. Our findings identify a previously unrecognized mechanism that M. tuberculosis uses its own alanine dehydrogenase to suppress host immunity, and provide insights relevant to the development of effective immunomodulators that target M. tuberculosis.


Asunto(s)
Alanina , Péptidos Antimicrobianos , Macrófagos , Mycobacterium tuberculosis , FN-kappa B , Tuberculosis , Mycobacterium tuberculosis/patogenicidad , Mycobacterium tuberculosis/metabolismo , Animales , Ratones , FN-kappa B/metabolismo , Humanos , Macrófagos/microbiología , Macrófagos/metabolismo , Macrófagos/inmunología , Alanina/metabolismo , Péptidos Antimicrobianos/metabolismo , Péptidos Antimicrobianos/genética , Tuberculosis/microbiología , Tuberculosis/inmunología , Alanina-Deshidrogenasa/metabolismo , Alanina-Deshidrogenasa/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Transducción de Señal , Ratones Endogámicos C57BL , Células RAW 264.7 , Femenino
5.
PLoS One ; 19(4): e0300539, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38574058

RESUMEN

Genetic and pharmacological perturbation of the cytoskeleton enhances the regenerative potential of neurons. This response requires Dual-leucine Zipper Kinase (DLK), a neuronal stress sensor that is a central regulator of axon regeneration and degeneration. The damage and repair aspects of this response are reminiscent of other cellular homeostatic systems, suggesting that a cytoskeletal homeostatic response exists. In this study, we propose a framework for understanding DLK mediated neuronal cytoskeletal homeostasis. We demonstrate that low dose nocodazole treatment activates DLK signaling. Activation of DLK signaling results in a DLK-dependent transcriptional signature, which we identify through RNA-seq. This signature includes genes likely to attenuate DLK signaling while simultaneously inducing actin regulating genes. We identify alterations to the cytoskeleton including actin-based morphological changes to the axon. These results are consistent with the model that cytoskeletal disruption in the neuron induces a DLK-dependent homeostatic mechanism, which we term the Cytoskeletal Stress Response (CSR) pathway.


Asunto(s)
Actinas , Axones , Axones/metabolismo , Nocodazol/farmacología , Actinas/metabolismo , Leucina Zippers , Regeneración Nerviosa/fisiología , Citoesqueleto/metabolismo , Homeostasis , Quinasas Quinasa Quinasa PAM/genética
6.
PeerJ ; 12: e16967, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38680890

RESUMEN

Background: Ovarian cancer (OC) is the most lethal malignancy in women owing to its diagnosis only at the advanced stage. Elucidation of its molecular pathogenesis may help identify new tumor markers and targets for therapy. Circular RNAs (circRNAs) are stable, conserved, and functional biomolecules that can be used as effective biomarkers for various cancers. Methods: In this study, a potential circRNA related to early diagnosis of OC, circMAN1A2, was analyzed. Overexpression/knockdown of circMAN1A2 in OC cells was used to decipher its effects on cell proliferation with a Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine (EdU), cell cycle, clone formation, and wound healing assay. RNA pull-down and Dual luciferase assay were used to explain the underlying mechanism by which circMAN1A2 regulates OC cell proliferation. In vivo, the effect of circMAN1A2 in OC was evaluated using nude mouse xenograft experiments. Results: CircMAN1A2 was highly expressed in OC and promoted proliferation, clone formation, and tumorigenicity of OC cells. In addition, we found that circMAN1A2 acted as a sponge for microRNA (miR)-135a-3p; miR-135a-3p directly targeted the 3' untranslated region of interleukin 1 receptor accessory protein (IL1RAP) in OC cells, thereby regulating the phosphorylation of transforming growth factor-beta activated kinase 1 (TAK1), which resulted in promotion of OC cell growth. Conclusions: CircMAN1A2 promotes OC cell proliferation by inhibiting the miR-135a-3p/IL1RAP/TAK1 axis. In conclusion, circMAN1A2 may be a biomarker for early detection of OC and a target for subsequent therapy.


Asunto(s)
Proliferación Celular , Quinasas Quinasa Quinasa PAM , MicroARNs , Neoplasias Ováricas , ARN Circular , MicroARNs/genética , MicroARNs/metabolismo , Humanos , ARN Circular/genética , ARN Circular/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Animales , Ratones , Proliferación Celular/genética , Línea Celular Tumoral , Ratones Desnudos , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Transducción de Señal/genética
7.
Cell Mol Life Sci ; 81(1): 119, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456949

RESUMEN

Activated small ubiquitin-like modifiers (SUMOs) have been implicated in neuropathological processes following ischemic stroke. However, the target proteins of SUMOylation and their contribution to neuronal injury remain to be elucidated. MLK3 (mixed-lineage kinase 3), a member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family, is a critical regulator of neuronal lesions following cerebral ischemia. Here, we found that SUMOylation of MLK3 increases in both global and focal ischemic rodent models and primary neuronal models of oxygen and glucose deprivation (OGD). SUMO1 conjugation at the Lys401 site of MLK3 promoted its activation, stimulated its downstream p38/c-Jun N-terminal kinase (JNK) cascades, and led to cell apoptosis. The interaction of MLK3 with PIAS3, a SUMO ligase, was elevated following ischemia and reperfusion. The PINIT domain of PIAS3 was involved in direct interactions with MLK3. Overexpression of the PINIT domain of PIAS3 disrupted the MLK3-PIAS3 interaction, inhibited SUMOylation of MLK3, suppressed downstream signaling, and reduced cell apoptosis and neurite damage. In rodent ischemic models, the overexpression of the PINIT domain reduced brain lesions and alleviated deficits in learning, memory, and sensorimotor functions. Our findings demonstrate that brain ischemia-induced MLK3 SUMOylation by PIAS3 is a potential target against poststroke neuronal lesions and behavioral impairments.


Asunto(s)
Isquemia Encefálica , Sumoilación , Humanos , Quinasas Quinasa Quinasa PAM/genética , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno , Transducción de Señal/fisiología , Isquemia Encefálica/metabolismo , Cognición , Chaperonas Moleculares/metabolismo , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/metabolismo
8.
Hum Genet ; 143(3): 279-291, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38451290

RESUMEN

Biallelic pathogenic variants in MAP3K20, which encodes a mitogen-activated protein kinase, are a rare cause of split-hand foot malformation (SHFM), hearing loss, and nail abnormalities or congenital myopathy. However, heterozygous variants in this gene have not been definitively associated with a phenotype. Here, we describe the phenotypic spectrum associated with heterozygous de novo variants in the linker region between the kinase domain and leucine zipper domain of MAP3K20. We report five individuals with diverse clinical features, including craniosynostosis, limb anomalies, sensorineural hearing loss, and ectodermal dysplasia-like phenotypes who have heterozygous de novo variants in this specific region of the gene. These individuals exhibit both shared and unique clinical manifestations, highlighting the complexity and variability of the disorder. We propose that the involvement of MAP3K20 in endothelial-mesenchymal transition provides a plausible etiology of these features. Together, these findings characterize a disorder that both expands the phenotypic spectrum associated with MAP3K20 and highlights the need for further studies on its role in early human development.


Asunto(s)
Craneosinostosis , Displasia Ectodérmica , Pérdida Auditiva Sensorineural , Heterocigoto , Humanos , Displasia Ectodérmica/genética , Displasia Ectodérmica/patología , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/patología , Masculino , Femenino , Craneosinostosis/genética , Fenotipo , Preescolar , Deformidades Congénitas de las Extremidades/genética , Niño , Mutación , Lactante , Quinasas Quinasa Quinasa PAM/genética
9.
Exp Hematol ; 133: 104205, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490577

RESUMEN

Protein phosphatase 6 (PP6) is a serine/threonine (Ser/Thr) protein phosphatase, and its catalytic subunit is Ppp6c. PP6 forms the PP2A subfamily with PP2A and PP4. The diverse phenotypes observed following small interfering RNA (siRNA)-based knockdown of Ppp6c in cultured mammalian cells suggest that PP6 plays roles in cell growth and DNA repair. There is also evidence that PP6 regulates nuclear factor kappa B (NF-κB) signaling and mitogen-activated protein kinases and inactivates transforming growth factor-ß-activated kinase 1 (TAK1). Loss of Ppp6c causes several abnormalities, including those of T cell and regulatory T cell function, neurogenesis, oogenesis, and spermatogenesis. PP2A has been reported to play an important role in erythropoiesis. However, the roles of PP6 in other hematopoietic cells have not been investigated. We generated Ppp6cfl/fl;Tie2-Cre (Ppp6cTKO) mice, in which Ppp6c was specifically deleted in hematopoietic and vascular endothelial cells. Ppp6cTKO mice displayed embryonic lethality. Ppp6c deficiency increased the number of dead cells and decreased the percentages of erythroid and monocytic cells during fetal hematopoiesis. By contrast, the number of Lin-Sca-1+c-Kit+ cells, which give rise to all hematopoietic cells, was slightly increased, but their colony-forming cell activity was markedly decreased. Ppp6c deficiency also increased phosphorylation of extracellular signal-regulated kinase 1/2 and c-Jun amino (N)-terminal kinase in fetal liver hematopoietic cells.


Asunto(s)
Hematopoyesis , Ratones Noqueados , Fosfoproteínas Fosfatasas , Animales , Ratones , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/deficiencia , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Madre Hematopoyéticas/metabolismo , Pérdida del Embrión/genética , Pérdida del Embrión/patología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Femenino
10.
Am J Surg Pathol ; 48(4): 437-446, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38233731

RESUMEN

Previous studies regarding the clinical behavior of Spitz neoplasms lack genomic characterization. We aim to assess our hypothesis that most MAP3K8 Spitz neoplasms are indolent despite MAP3K8 being the single most common driver of Spitz melanoma. Further, we aim to identify genomic features associated with aggressive behavior and to better characterize the morphology of these cases. We analyzed the outcomes of MAP3K8 Spitz neoplasms. We also performed a meta-analysis of the outcomes of MAP3K8 Spitz from the literature. Morphologic features were compared with other variants of Spitz using a Student t test and χ 2 test. Two of 35 cases resulted in local recurrence and one of these cases had local regional metastasis; all other cases had no evidence of recurrence (mean follow-up time: 33 mo). MAP3K8 Spitz only rarely results in aggressive behavior. Metastatic cases have genomic mutations associated with tumor progression. Morphologically, MAP3K8 Spitz neoplasms frequently showed nodular silhouette, large cell size, epithelioid morphology, and severe nuclear atypia resulting in more frequent diagnosis as Spitz melanoma. Most MAP3K8 Spitz neoplasms have excellent prognoses, apart from rare cases harboring additional genomic abnormalities associated with tumor progression.


Asunto(s)
Melanoma , Nevo de Células Epitelioides y Fusiformes , Neoplasias Cutáneas , Humanos , Melanoma/patología , Estudios Retrospectivos , Nevo de Células Epitelioides y Fusiformes/genética , Neoplasias Cutáneas/patología , Mutación , Proteínas Proto-Oncogénicas/genética , Quinasas Quinasa Quinasa PAM/genética
11.
Mol Cell ; 84(1): 142-155, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38118452

RESUMEN

Cellular homeostasis is continuously challenged by environmental cues and cellular stress conditions. In their defense, cells need to mount appropriate stress responses that, dependent on the cellular context, signaling intensity, and duration, may have diverse outcomes. The stress- and mitogen-activated protein kinase (SAPK/MAPK) system consists of well-characterized signaling cascades that sense and transduce an array of different stress stimuli into biological responses. However, the physical and chemical nature of stress signals and how these are sensed by individual upstream MAP kinase kinase kinases (MAP3Ks) remain largely ambiguous. Here, we review the existing knowledge of how individual members of the large and diverse group of MAP3Ks sense specific stress signals through largely non-redundant mechanisms. We emphasize the large knowledge gaps in assigning function and stress signals for individual MAP3K family members and touch on the potential of targeting this class of proteins for clinical benefit.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos , Quinasas Quinasa Quinasa PAM , Animales , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Transducción de Señal , Fosforilación , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Mamíferos/metabolismo
12.
Transl Psychiatry ; 13(1): 375, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057311

RESUMEN

Autism spectrum disorder (ASD) is a complex disorder of neurodevelopment, the function of long noncoding RNA (lncRNA) in ASD remains essentially unknown. In the present study, gene networks were used to explore the ASD disease mechanisms integrating multiple data types (for example, RNA expression, whole-exome sequencing signals, weighted gene co-expression network analysis, and protein-protein interaction) and datasets (five human postmortem datasets). A total of 388 lncRNAs and five co-expression modules were found to be altered in ASD. The downregulated co-expression M4 module was significantly correlated with ASD, enriched with autism susceptibility genes and synaptic signaling. Integrating lncRNAs from the M4 module and microRNA (miRNA) dysregulation data from the literature identified competing endogenous RNA (ceRNA) network. We identified the downregulated mRNAs that interact with miRNAs by the miRTarBase, miRDB, and TargetScan databases. Our analysis reveals that MIR600HG was downregulated in multiple brain tissue datasets and was closely associated with 9 autism-susceptible miRNAs in the ceRNA network. MIR600HG and target mRNAs (EPHA4, MOAP1, MAP3K9, STXBP1, PRKCE, and SCAMP5) were downregulated in the peripheral blood by quantitative reverse transcription polymerase chain reaction analysis (false discovery rate <0.05). Subsequently, we assessed the role of lncRNA dysregulation in altered mRNA levels. Experimental verification showed that some synapse-associated mRNAs were downregulated after the MIR600HG knockdown. BrainSpan project showed that the expression patterns of MIR600HG (primate-specific lncRNA) and synapse-associated mRNA were similar in different human brain regions and at different stages of development. A combination of support vector machine and random forest machine learning algorithms retrieved the marker gene for ASD in the ceRNA network, and the area under the curve of the diagnostic nomogram was 0.851. In conclusion, dysregulation of MIR600HG, a novel specific lncRNA associated with ASD, is responsible for the ASD-associated miRNA-mRNA axes, thereby potentially regulating synaptogenesis.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Endógeno Competitivo , Trastorno Autístico/genética , Trastorno del Espectro Autista/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Redes Reguladoras de Genes , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Proteínas de la Membrana/genética
13.
Physiol Genomics ; 55(12): 634-646, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37811720

RESUMEN

Congenital heart disease (CHD) is one of the most prevalent neonatal congenital anomalies. To catalog the putative candidate CHD risk genes, we collected 16,349 variants [single-nucleotide variants (SNVs) and Indels] impacting 8,308 genes in 3,166 CHD cases for a comprehensive meta-analysis. Using American College of Medical Genetics (ACMG) guidelines, we excluded the 0.1% of benign/likely benign variants and the resulting dataset consisted of 83% predicted loss of function variants and 17% missense variants. Seventeen percent were de novo variants. A stepwise analysis identified 90 variant-enriched CHD genes, of which six (GPATCH1, NYNRIN, TCLD2, CEP95, MAP3K19, and TTC36) were novel candidate CHD genes. Single-cell transcriptome cluster reconstruction analysis on six CHD tissues and four controls revealed upregulation of the top 10 frequently mutated genes primarily in cardiomyocytes. NOTCH1 (highest number of variants) and MYH6 (highest number of recurrent variants) expression was elevated in endocardial cells and cardiomyocytes, respectively, and 60% of these gene variants were associated with tetralogy of Fallot and coarctation of the aorta, respectively. Pseudobulk analysis using the single-cell transcriptome revealed significant (P < 0.05) upregulation of both NOTCH1 (endocardial cells) and MYH6 (cardiomyocytes) in the control heart data. We observed nine different subpopulations of CHD heart cardiomyocytes of which only four were observed in the control heart. This is the first comprehensive meta-analysis combining genomics and CHD single-cell transcriptomics, identifying the most frequently mutated CHD genes, and demonstrating CHD gene heterogeneity, suggesting that multiple genes contribute to the phenotypic heterogeneity of CHD. Cardiomyocytes and endocardial cells are identified as major CHD-related cell types.NEW & NOTEWORTHY Congential heart disease (CHD) is one of the most prevalent neonatal congenital anomalies. We present a comprehensive analysis combining genomics and CHD single-cell transcriptome. Our study identifies 90 potential candidate CHD risk genes of which 6 are novel. The risk genes have heterogenous expression suggestive of multiple genes contributing to the phenotypic heterogeneity of CHD. Cardiomyocytes and endocardial cells are identified as major CHD-related cell types.


Asunto(s)
Coartación Aórtica , Cardiopatías Congénitas , Recién Nacido , Humanos , Miocitos Cardíacos , Células Endoteliales , Cardiopatías Congénitas/genética , Mutación/genética , Quinasas Quinasa Quinasa PAM/genética
15.
Elife ; 122023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37555828

RESUMEN

Tumor progression locus 2 (TPL2) (MAP3K8) is a central signaling node in the inflammatory response of peripheral immune cells. We find that TPL2 kinase activity modulates microglial cytokine release and is required for microglia-mediated neuron death in vitro. In acute in vivo neuroinflammation settings, TPL2 kinase activity regulates microglia activation states and brain cytokine levels. In a tauopathy model of chronic neurodegeneration, loss of TPL2 kinase activity reduces neuroinflammation and rescues synapse loss, brain volume loss, and behavioral deficits. Single-cell RNA sequencing analysis indicates that protection in the tauopathy model was associated with reductions in activated microglia subpopulations as well as infiltrating peripheral immune cells. Overall, using various models, we find that TPL2 kinase activity can promote multiple harmful consequences of microglial activation in the brain including cytokine release, iNOS (inducible nitric oxide synthase) induction, astrocyte activation, and immune cell infiltration. Consequently, inhibiting TPL2 kinase activity could represent a potential therapeutic strategy in neurodegenerative conditions.


Asunto(s)
Quinasas Quinasa Quinasa PAM , Tauopatías , Animales , Humanos , Ratones , Encéfalo/patología , Células Cultivadas , Espinas Dendríticas/patología , Lipopolisacáridos , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones Noqueados , Microglía/metabolismo , Enfermedades Neuroinflamatorias/patología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatías/metabolismo , Tauopatías/patología , Tauopatías/fisiopatología
16.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37445830

RESUMEN

Ovarian cancer is a gynecological tumor with an incidence rate lower than those of other gynecological tumor types and the second-highest death rate. CC chemokine 2 (CCL2) is a multifunctional factor associated with the progression of numerous cancers. However, the effect of CCL2 on ovarian cancer progression is unclear. Here, we found that exogenous CCL2 and the overexpression of CCL2 promoted the proliferation and metastasis of ovarian cancer cells. On the other hand, CCL2 knockdown via CRISPR/Cas9 inhibited ovarian cancer cell proliferation, migration, and invasion. The present study demonstrated that mitogen-activated protein three kinase 19 (MAP3K19) was the key CCL2 target for regulating ovarian cancer progression through transcriptome sequencing. Additionally, MAP3K19 knockout inhibited ovarian cancer cell proliferation, migration, and invasion. Furthermore, CCL2 increased MAP3K19 expression by activating the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway. The present study showed the correlation between CCL2 and ovarian cancer, suggesting that CCL2 may be a novel target for ovarian cancer therapy.


Asunto(s)
Neoplasias de los Genitales Femeninos , Neoplasias Ováricas , Humanos , Femenino , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Mitógenos/farmacología , Sistema de Señalización de MAP Quinasas , Quimiocina CCL2/metabolismo , Transducción de Señal , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Quimiocinas/metabolismo , Línea Celular Tumoral , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo
17.
Biochim Biophys Acta Mol Basis Dis ; 1869(8): 166813, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37488049

RESUMEN

Ubiquitin-specific protease 22 (USP22) is a member of the ubiquitin specific protease family (ubiquitin-specific protease, USPs), the largest subfamily of deubiquitinating enzymes, and plays an important role in the treatment of tumors. USP22 is also expressed in the heart. However, the role of USP22 in heart disease remains unclear. In this study, we found that USP22 was elevated in hypertrophic mouse hearts and in angiotensin II (Ang II)-induced cardiomyocytes. The inhibition of USP22 expression with adenovirus significantly rescued hypertrophic phenotype and cardiac dysfunction induced by pressure overloaded. Consistent with in vivo study, silencing by USP22 shRNA expression in vitro had similar results. Molecular analysis revealed that transforming growth factor-ß-activating protein 1 (TAK1)-(JNK1/2)/P38 signaling pathway and HIF-1α was activated in the Ang II-induced hypertrophic cardiomyocytes, whereas HIF-1α expression was decreased after the inhibition of USP22. Inhibition of HIF-1α expression reduces TAK1 expression. Co-immunoprecipitation and ubiquitination studies revealed the regulatory mechanism between USP22 and HIF1α.Under hypertrophic stress conditions, USP22 enhances the stability of HIF-1α through its deubiquitination activity, which further activates the TAK1-(JNK1/2)/P38 signaling pathway to lead to cardiac hypertrophy. Inhibition of HIF-1α expression further potentiates the in vivo pathological effects caused by USP22 deficiency. In summary, this study suggests that USP22, through HIF-1α-TAK1-(JNK1/2)/P38 signaling pathway, may be potential targets for inhibiting pathological cardiac hypertrophy induced by pressure overload.


Asunto(s)
Cardiomegalia , Quinasas Quinasa Quinasa PAM , Animales , Ratones , Cardiomegalia/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Miocitos Cardíacos/metabolismo , Transducción de Señal , Proteasas Ubiquitina-Específicas/metabolismo , Proteasas Ubiquitina-Específicas/farmacología
18.
World J Microbiol Biotechnol ; 39(10): 255, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37474876

RESUMEN

We previously isolated a mutant of Saccharomyces cerevisiae strain 85_9 whose glycerol assimilation was improved through adaptive laboratory evolution. To investigate the mechanism for this improved glycerol assimilation, genome resequencing of the 85_9 strain was performed, and the mutations in the open reading frame of HOG1, SIR3, SSB2, and KGD2 genes were found. Among these, a frameshift mutation in the HOG1 open reading frame was responsible for the improved glycerol assimilation ability of the 85_9 strain. Moreover, the HOG1 gene disruption improved glycerol assimilation. As HOG1 encodes a mitogen-activated protein kinase (MAPK), which is responsible for the signal transduction cascade in response to osmotic stress, namely the high osmolarity glycerol (HOG) pathway, we investigated the effect of the disruption of PBS2 gene encoding MAPK kinase for Hog1 MAPK on glycerol assimilation, revealing that PBS2 disruption can increase glycerol assimilation. These results indicate that loss of function of Hog1 improves glycerol assimilation in S. cerevisiae. However, single disruption of the SSK2, SSK22 and STE11 genes encoding protein kinases responsible for Pbs2 phosphorylation in the HOG pathway did not increase glycerol assimilation, while their triple disruption partially improved glycerol assimilation in S. cerevisiae. In addition, the HOG1 frameshift mutation did not improve glycerol assimilation in the STL1-overexpressing RIM15 disruptant strain, which was previously constructed with high glycerol assimilation ability. Furthermore, the effectiveness of the HOG1 disruptant as a bioproduction host was validated, indicating that the HOG1 CYB2 double disruptant can produce L-lactic acid from glycerol.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Glicerol/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosforilación , Presión Osmótica , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo
19.
Front Immunol ; 14: 1167667, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304282

RESUMEN

Background and aims: In the course of clinical practice, hepatic ischemia/reperfusion (I/R) injury is a prevalent pathophysiological event and is caused by a combination of complex factors that involve multiple signaling pathways such as MAPK and NF-κB. USP29 is a deubiquitinating enzyme important during the development of tumors, neurological diseases, and viral immunity. However, it is unknown how USP29 contributes to hepatic I/R injury. Methods and results: We systematically investigated the role of the USP29/TAK1-JNK/p38 signaling pathway in hepatic I/R injury. We first found reduced USP29 expression in both mouse hepatic I/R injury and the primary hepatocyte hypoxia-reoxygenation (H/R) models. We established USP29 full knockout mice (USP29-KO) and hepatocyte-specific USP29 transgenic mice (USP29-HTG), and we found that USP29 knockout significantly exacerbates the inflammatory infiltration and injury processes during hepatic I/R injury, whereas USP29 overexpression alleviates liver injury by decreasing the inflammatory response and inhibiting apoptosis. Mechanistically, RNA sequencing results showed the effects of USP29 on the MAPK pathway, and further studies revealed that USP29 interacts with TAK1 and inhibits its k63-linked polyubiquitination, thereby preventing the activation of TAK1 and its downstream signaling pathways. Consistently, 5z-7-Oxozeaneol, an inhibitor of TAK1, blocked the detrimental effects of USP29 knockout on H/R-induced hepatocyte injury, further confirming that USP29 plays a regulatory role in hepatic I/R injury by targeting TAK1. Conclusion: Our findings imply that USP29 is a therapeutic target with promise for the management of hepatic I/R injury via TAK1-JNK/p38 pathway-dependent processes.


Asunto(s)
Quinasas Quinasa Quinasa PAM , Daño por Reperfusión , Animales , Ratones , Hígado , Quinasas Quinasa Quinasa PAM/genética , Ratones Noqueados , Ratones Transgénicos , Daño por Reperfusión/genética , Proteasas Ubiquitina-Específicas/genética
20.
Fish Shellfish Immunol ; 138: 108857, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37257570

RESUMEN

Transforming growth factor-ß activated kinase 1 (TAK1) is an adaptor molecular in the TLR-mediated NF-κB pathway which has been implicated in the regulation of a wide range of physiological and pathological processes. Proteasome 26S subunit, non-ATPase (PSMD) 13 is essential for the structural maintenance and function of the 26S proteasome. However, the mechanism of PSMD13 in innate immune regulation is not clear. In this study, the expression of PSMD13 mRNA was significantly increased under Vibrio harveyi stimulation, and PSMD13 inhibited the NF-κB pathway by targeting TAK1. Mechanically, PSMD13 significantly inhibited the K63-linked ubiquitination of TAK1, thereby inhibiting the expression of TAK1. Moreover, this discovery enriches the research of the PSMD family in regulating the innate immune response and provides a new idea for the study of the mammalian innate immune regulation mechanism.


Asunto(s)
FN-kappa B , Perciformes , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Inmunidad Innata/genética , Unión Proteica , Ubiquitinación , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA