RESUMEN
The RAF kinases are required for signal transduction through the RAS-RAF-MEK-ERK pathway, and their activity is frequently up-regulated in human cancer and the RASopathy developmental syndromes. Due to their complex activation process, developing drugs that effectively target RAF function has been a challenging endeavor, highlighting the need for a more detailed understanding of RAF regulation. This review will focus on recent structural and biochemical studies that have provided 'snapshots' into the RAF regulatory cycle, revealing structures of the autoinhibited BRAF monomer, active BRAF and CRAF homodimers, as well as HSP90/CDC37 chaperone complexes containing CRAF or BRAFV600E. In addition, we will describe the insights obtained regarding how BRAF transitions between its regulatory states and examine the roles that various BRAF domains and 14-3-3 dimers play in both maintaining BRAF as an autoinhibited monomer and in facilitating its transition to an active dimer. We will also address the function of the HSP90/CDC37 chaperone complex in stabilizing the protein levels of CRAF and certain oncogenic BRAF mutants, and in serving as a platform for RAF dephosphorylation mediated by the PP5 protein phosphatase. Finally, we will discuss the regulatory differences observed between BRAF and CRAF and how these differences impact the function of BRAF and CRAF as drivers of human disease.
Asunto(s)
Proteínas HSP90 de Choque Térmico , Proteínas Proto-Oncogénicas B-raf , Humanos , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/química , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas B-raf/química , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Multimerización de Proteína , Quinasas raf/metabolismo , Quinasas raf/química , Animales , Chaperoninas/metabolismo , Chaperoninas/química , Transducción de Señal , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/química , Neoplasias/enzimología , Neoplasias/metabolismo , Neoplasias/genética , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas Proto-Oncogénicas c-raf/química , Modelos MolecularesRESUMEN
The RAS-MAPK pathway regulates cell proliferation, differentiation and survival, and its dysregulation is associated with cancer development. The pathway minimally comprises the small GTPase RAS and the kinases RAF, MEK and ERK. Activation of RAF by RAS is notoriously intricate and remains only partially understood. There are three RAF isoforms in mammals (ARAF, BRAF and CRAF) and two related pseudokinases (KSR1 and KSR2). RAS-mediated activation of RAF depends on an allosteric mechanism driven by the dimerization of its kinase domain. Recent work on human RAFs showed that MEK binding to KSR1 promotes KSR1-BRAF heterodimerization, which leads to the phosphorylation of free MEK molecules by BRAF. Similar findings were made with the single Drosophila RAF homolog. Here we show that the fly scaffold proteins CNK and HYP stabilize the KSR-MEK interaction, which in turn enhances RAF-KSR heterodimerization and RAF activation. The cryogenic electron microscopy structure of the minimal KSR-MEK-CNK-HYP complex reveals a ring-like arrangement of the CNK-HYP complex allowing CNK to simultaneously engage KSR and MEK, thus stabilizing the binary interaction. Together, these results illuminate how CNK contributes to RAF activation by stimulating the allosteric function of KSR and highlight the diversity of mechanisms impacting RAF dimerization as well as the regulatory potential of the KSR-MEK interaction.
Asunto(s)
Proteínas de Drosophila , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Humanos , Microscopía por Crioelectrón , Quinasas raf/metabolismo , Quinasas raf/química , Unión Proteica , Multimerización de Proteína , Modelos Moleculares , Drosophila melanogaster/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas , Proteínas rasRESUMEN
RAS GTPases are proto-oncoproteins that regulate cell growth, proliferation, and differentiation in response to extracellular signals. The signaling functions of RAS, and other small GTPases, are dependent on their ability to cycle between GDP-bound and GTP-bound states. Structural analyses suggest that GTP hydrolysis catalyzed by HRAS can be regulated by an allosteric site located between helices 3, 4, and loop 7. Here we explore the relationship between intrinsic GTP hydrolysis on HRAS and the position of helix 3 and loop 7 through manipulation of the allosteric site, showing that the two sites are functionally connected. We generated several hydrophobic mutations in the allosteric site of HRAS to promote shifts in helix 3 relative to helix 4. By combining crystallography and enzymology to study these mutants, we show that closure of the allosteric site correlates with increased hydrolysis of GTP on HRAS in solution. Interestingly, binding to the RAS binding domain of RAF kinase (RAF-RBD) inhibits GTP hydrolysis in the mutants. This behavior may be representative of a cluster of mutations found in human tumors, which potentially cooperate with RAF complex formation to stabilize the GTP-bound state of RAS.
Asunto(s)
Quinasas raf , Proteínas ras , Humanos , Sitio Alostérico , Hidrólisis , Quinasas raf/química , Quinasas raf/genética , Quinasas raf/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Guanosina Trifosfato/metabolismoRESUMEN
Although RAF monomer inhibitors (type I.5, BRAF(V600)) are clinically approved for the treatment of BRAFV600-mutant melanoma, they are ineffective in non-BRAFV600 mutant cells1-3. Belvarafenib is a potent and selective RAF dimer (type II) inhibitor that exhibits clinical activity in patients with BRAFV600E- and NRAS-mutant melanomas. Here we report the first-in-human phase I study investigating the maximum tolerated dose, and assessing the safety and preliminary efficacy of belvarafenib in BRAFV600E- and RAS-mutated advanced solid tumours (NCT02405065, NCT03118817). By generating belvarafenib-resistant NRAS-mutant melanoma cells and analysing circulating tumour DNA from patients treated with belvarafenib, we identified new recurrent mutations in ARAF within the kinase domain. ARAF mutants conferred resistance to belvarafenib in both a dimer- and a kinase activity-dependent manner. Belvarafenib induced ARAF mutant dimers, and dimers containing mutant ARAF were active in the presence of inhibitor. ARAF mutations may serve as a general resistance mechanism for RAF dimer inhibitors as the mutants exhibit reduced sensitivity to a panel of type II RAF inhibitors. The combination of RAF plus MEK inhibition may be used to delay ARAF-driven resistance and suggests a rational combination for clinical use. Together, our findings reveal specific and compensatory functions for the ARAF isoform and implicate ARAF mutations as a driver of resistance to RAF dimer inhibitors.
Asunto(s)
Resistencia a Antineoplásicos/genética , Melanoma/tratamiento farmacológico , Melanoma/genética , Mutación , Proteínas Proto-Oncogénicas A-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas A-raf/genética , Quinasas raf/antagonistas & inhibidores , Animales , Línea Celular , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Melanoma/patología , Ratones , Multimerización de Proteína/efectos de los fármacos , Proteínas Proto-Oncogénicas A-raf/química , Quinasas raf/químicaRESUMEN
The binding free energy calculation of protein-ligand complexes is necessary for research into virus-host interactions and the relevant applications in drug discovery. However, many current computational methods of such calculations are either inefficient or inaccurate in practice. Utilizing implicit solvent models in the molecular mechanics generalized Born surface area (MM/GBSA) framework allows for efficient calculations without significant loss of accuracy. Here, GBNSR6, a new flavor of the generalized Born model, is employed in the MM/GBSA framework for measuring the binding affinity between SARS-CoV-2 spike protein and the human ACE2 receptor. A computational protocol is developed based on the widely studied Ras-Raf complex, which has similar binding free energy to SARS-CoV-2/ACE2. Two options for representing the dielectric boundary of the complexes are evaluated: one based on the standard Bondi radii and the other based on a newly developed set of atomic radii (OPT1), optimized specifically for protein-ligand binding. Predictions based on the two radii sets provide upper and lower bounds on the experimental references: -14.7(ΔGbindBondi)<-10.6(ΔGbindExp.)<-4.1(ΔGbindOPT1) kcal/mol. The consensus estimates of the two bounds show quantitative agreement with the experiment values. This work also presents a novel truncation method and computational strategies for efficient entropy calculations with normal mode analysis. Interestingly, it is observed that a significant decrease in the number of snapshots does not affect the accuracy of entropy calculation, while it does lower computation time appreciably. The proposed MM/GBSA protocol can be used to study the binding mechanism of new variants of SARS-CoV-2, as well as other relevant structures.
Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Algoritmos , Enzima Convertidora de Angiotensina 2/química , COVID-19/patología , COVID-19/virología , Entropía , Humanos , Ligandos , Simulación de Dinámica Molecular , Unión Proteica , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/química , Quinasas raf/química , Quinasas raf/metabolismo , Proteínas ras/química , Proteínas ras/metabolismoRESUMEN
Ras dimerization is critical for Raf activation. Here we show that the Ras binding domain of Raf (Raf-RBD) induces robust Ras dimerization at low surface densities on supported lipid bilayers and, to a lesser extent, in solution as observed by size exclusion chromatography and confirmed by SAXS. Community network analysis based on molecular dynamics simulations shows robust allosteric connections linking the two Raf-RBD D113 residues located in the Galectin scaffold protein binding site of each Raf-RBD molecule and 85 Å apart on opposite ends of the dimer complex. Our results suggest that Raf-RBD binding and Ras dimerization are concerted events that lead to a high-affinity signaling complex at the membrane that we propose is an essential unit in the macromolecular assembly of higher order Ras/Raf/Galectin complexes important for signaling through the Ras/Raf/MEK/ERK pathway.
Asunto(s)
Simulación de Dinámica Molecular , Proteínas Proto-Oncogénicas p21(ras)/química , Quinasas raf/química , Galectinas/química , Galectinas/genética , Galectinas/metabolismo , Humanos , Dominios Proteicos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Quinasas raf/genética , Quinasas raf/metabolismoRESUMEN
Cyclorasinsâ 9A5 and 9A54 are 11-mer cyclic peptides that inhibit the Ras-Raf protein interaction. The peptides share a cell-penetrating peptide (CPP)-like motif; however, only cyclorasinâ 9A5 can permeabilize cells to exhibit strong cell-based activity. To unveil the structural origin underlying their distinct cellular permeabilization activities, we compared the three-dimensional structures of cyclorasinsâ 9A5 and 9A54 in water and in the less polar solvent dimethyl sulfoxide (DMSO) by solution NMR. We found that cyclorasinâ 9A5 changes its extended conformation in water to a compact amphipathic structure with converged aromatic residues surrounded by Arg residues in DMSO, which might contribute to its cell permeabilization activity. However, cyclorasinâ 9A54 cannot adopt this amphipathic structure, due to the steric hindrance between two neighboring bulky amino-acid sidechains, Tle-2 and dVal-3. We also found that the bulkiness of the sidechains at positions 2 and 3 negatively affects the cell permeabilization activities, indicating that the conformational plasticity that allows the peptides to form the amphipathic structure is important for their cell permeabilization activities.
Asunto(s)
Péptidos Cíclicos/farmacología , Quinasas raf/antagonistas & inhibidores , Proteínas ras/antagonistas & inhibidores , Línea Celular Tumoral , Permeabilidad de la Membrana Celular/efectos de los fármacos , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Péptidos Cíclicos/química , Conformación Proteica , Quinasas raf/química , Quinasas raf/metabolismo , Proteínas ras/química , Proteínas ras/metabolismoRESUMEN
The RAS-regulated RAF-MEK1/2-ERK1/2 pathway promotes cell proliferation and survival and RAS and BRAF proteins are commonly mutated in cancer. This has fuelled the development of small molecule kinase inhibitors including ATP-competitive RAF inhibitors. Type I and type I½ ATP-competitive RAF inhibitors are effective in BRAFV600E/K-mutant cancer cells. However, in RAS-mutant cells these compounds instead promote RAS-dependent dimerisation and paradoxical activation of wild-type RAF proteins. RAF dimerisation is mediated by two key regions within each RAF protein; the RKTR motif of the αC-helix and the NtA-region of the dimer partner. Dimer formation requires the adoption of a closed, active kinase conformation which can be induced by RAS-dependent activation of RAF or by the binding of type I and I½ RAF inhibitors. Binding of type I or I½ RAF inhibitors to one dimer partner reduces the binding affinity of the other, thereby leaving a single dimer partner uninhibited and able to activate MEK. To overcome this paradox two classes of drug are currently under development; type II pan-RAF inhibitors that induce RAF dimer formation but bind both dimer partners thus allowing effective inhibition of both wild-type RAF dimer partners and monomeric active class I mutant RAF, and the recently developed "paradox breakers" which interrupt BRAF dimerisation through disruption of the αC-helix. Here we review the regulation of RAF proteins, including RAF dimers, and the progress towards effective targeting of the wild-type RAF proteins.
Asunto(s)
Inhibidores de Proteínas Quinasas/farmacología , Quinasas raf/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Multimerización de Proteína/fisiología , Estructura Secundaria de Proteína/efectos de los fármacos , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/fisiología , Quinasas raf/química , Quinasas raf/metabolismoRESUMEN
The MAPK/ERK kinase MEK is a shared effector of the frequent cancer drivers KRAS and BRAF that has long been pursued as a drug target in oncology1, and more recently in immunotherapy2,3 and ageing4. However, many MEK inhibitors are limited owing to on-target toxicities5-7 and drug resistance8-10. Accordingly, a molecular understanding of the structure and function of MEK within physiological complexes could provide a template for the design of safer and more effective therapies. Here we report X-ray crystal structures of MEK bound to the scaffold KSR (kinase suppressor of RAS) with various MEK inhibitors, including the clinical drug trametinib. The structures reveal an unexpected mode of binding in which trametinib directly engages KSR at the MEK interface. In the bound complex, KSR remodels the prototypical allosteric pocket of the MEK inhibitor, thereby affecting binding and kinetics, including the drug-residence time. Moreover, trametinib binds KSR-MEK but disrupts the related RAF-MEK complex through a mechanism that exploits evolutionarily conserved interface residues that distinguish these sub-complexes. On the basis of these insights, we created trametiglue, which limits adaptive resistance to MEK inhibition by enhancing interfacial binding. Our results reveal the plasticity of an interface pocket within MEK sub-complexes and have implications for the design of next-generation drugs that target the RAS pathway.
Asunto(s)
Quinasas de Proteína Quinasa Activadas por Mitógenos/química , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Piridonas/química , Piridonas/farmacología , Pirimidinonas/química , Pirimidinonas/farmacología , Secuencia de Aminoácidos , Animales , Sitios de Unión/efectos de los fármacos , Humanos , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Modelos Moleculares , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Especificidad por Sustrato , Quinasas raf/química , Quinasas raf/metabolismoRESUMEN
The rapidly accelerated fibrosarcoma (Raf) kinase is canonically activated by growth factors that regulate multiple cellular processes. In this kinase cascade Raf activation ultimately results in extracellular regulated kinase 1/2 (Erk1/2) activation, which requires Ras binding to the Ras binding domain (RBD) of Raf. We recently reported that all-trans retinoic acid (atRA) rapidly (within minutes) activates Erk1/2 to modulate cell cycle progression in stem cells, which is mediated by cellular retinoic acid binding protein 1 (Crabp1). But how atRA-bound Crabp1 regulated Erk1/2 activity remained unclear. We now report Raf kinase as the direct target of atRA-Crabp1. Molecularly, Crabp1 acts as a novel atRA-inducible scaffold protein for Raf/Mek/Erk in cells without growth factor stimulation. However, Crabp1 can also compete with Ras for direct interaction with the RBD of Raf, thereby negatively modulating growth factor-stimulated Raf activation, which can be enhanced by atRA binding to Crabp1. NMR heteronuclear single quantum coherence (HSQC) analyses reveal the 6-strand ß-sheet face of Crabp1 as its Raf-interaction surface. We identify a new atRA-mimicking and Crabp1-selective compound, C3, that can also elicit such an activity. This study uncovers a new signal crosstalk between endocrine (atRA-Crabp1) and growth factor (Ras-Raf) pathways, providing evidence for atRA-Crabp1 as a novel modulator of cell growth. The study also suggests a new therapeutic strategy by employing Crabp1-selective compounds to dampen growth factor stimulation while circumventing RAR-mediated retinoid toxicity.
Asunto(s)
Receptores de Ácido Retinoico/metabolismo , Transducción de Señal , Quinasas raf/metabolismo , Animales , Sitios de Unión , Células Cultivadas , Ratones , Unión Proteica , Conformación Proteica en Lámina beta , Receptores de Ácido Retinoico/química , Tretinoina/análogos & derivados , Tretinoina/metabolismo , Quinasas raf/químicaRESUMEN
Despite the crucial role of RAF kinases in cell signaling and disease, we still lack a complete understanding of their regulation. Heterodimerization of RAF kinases as well as dephosphorylation of a conserved "S259" inhibitory site are important steps for RAF activation but the precise mechanisms and dynamics remain unclear. A ternary complex comprised of SHOC2, MRAS, and PP1 (SHOC2 complex) functions as a RAF S259 holophosphatase and gain-of-function mutations in SHOC2, MRAS, and PP1 that promote complex formation are found in Noonan syndrome. Here we show that SHOC2 complex-mediated S259 RAF dephosphorylation is critically required for growth factor-induced RAF heterodimerization as well as for MEK dissociation from BRAF. We also uncover SHOC2-independent mechanisms of RAF and ERK pathway activation that rely on N-region phosphorylation of CRAF. In DLD-1 cells stimulated with EGF, SHOC2 function is essential for a rapid transient phase of ERK activation, but is not required for a slow, sustained phase that is instead driven by palmitoylated H/N-RAS proteins and CRAF. Whereas redundant SHOC2-dependent and -independent mechanisms of RAF and ERK activation make SHOC2 dispensable for proliferation in 2D, KRAS mutant cells preferentially rely on SHOC2 for ERK signaling under anchorage-independent conditions. Our study highlights a context-dependent contribution of SHOC2 to ERK pathway dynamics that is preferentially engaged by KRAS oncogenic signaling and provides a biochemical framework for selective ERK pathway inhibition by targeting the SHOC2 holophosphatase.
Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Quinasas raf/química , Quinasas raf/metabolismo , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Línea Celular Tumoral , Edición Génica , Técnicas de Inactivación de Genes , Humanos , Fosforilación , Multimerización de Proteína , Proteínas ras/metabolismoRESUMEN
Frequent oncogenic mutations have been identified in MAPK (mitogen-activated protein kinase) signaling pathway components. As a result, MAPK pathway is associated with human cancer initiation, in particular RAF (rapidly accelerated fibrosarcoma) component. The mutation in RAF component leads to auto-activation of MAPK signaling pathway, stimulating the uncontrolled cell growth and proliferation. In last few years, diverse chemical scaffolds have been identified as RAF inhibitors. Most of these scaffolds show potent anti-cancer activity. The present review highlights the recent investigations of RAF inhibitors during the last five years.
Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Quinasas raf/antagonistas & inhibidores , Animales , Antineoplásicos/uso terapéutico , Descubrimiento de Drogas , Humanos , Modelos Moleculares , Neoplasias/metabolismo , Neoplasias/patología , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinasas raf/química , Quinasas raf/metabolismoRESUMEN
Clinically used RAF inhibitors are ineffective in RAS mutant tumors because they enhance homo- and heterodimerization of RAF kinases, leading to paradoxical activation of ERK signaling. Overcoming enhanced RAF dimerization and the resulting resistance is a challenge for drug design. Combining multiple inhibitors could be more effective, but it is unclear how the best combinations can be chosen. We built a next-generation mechanistic dynamic model to analyze combinations of structurally different RAF inhibitors, which can efficiently suppress MEK/ERK signaling. This rule-based model of the RAS/ERK pathway integrates thermodynamics and kinetics of drug-protein interactions, structural elements, posttranslational modifications, and cell mutational status as model rules to predict RAF inhibitor combinations for inhibiting ERK activity in oncogenic RAS and/or BRAFV600E backgrounds. Predicted synergistic inhibition of ERK signaling was corroborated by experiments in mutant NRAS, HRAS, and BRAFV600E cells, and inhibition of oncogenic RAS signaling was associated with reduced cell proliferation and colony formation.
Asunto(s)
Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Quinasas raf/antagonistas & inhibidores , Proteínas ras/metabolismo , Línea Celular Tumoral , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Simulación del Acoplamiento Molecular , Mutación/efectos de los fármacos , Neoplasias/genética , Neoplasias/metabolismo , Multimerización de Proteína/efectos de los fármacos , Termodinámica , Quinasas raf/química , Quinasas raf/metabolismo , Proteínas ras/genéticaRESUMEN
Protein kinases are evolutionarily crafted into two functional states. In response to stimuli, kinase, which is usually populated in an inactive state, becomes active. Here, we outline a unified scheme to explain how kinases are activated physiologically and pathologically, focusing on RAF allosteric activation. Key concepts include the population shift from the inactive to the active state is relative; the relative populations are altered additively via allosteric events; and the structural features of the active conformation are coupled with the regulatory and catalytic spines to align the catalytic sequence motifs. This structural insight clarifies why the prerequisite of RAF dimerization, how the V600E oncogenic mutation activates RAF, how a RAF inhibitor executes paradoxical activation, and provides pharmaceutical guidelines.
Asunto(s)
Quinasas raf/química , Quinasas raf/metabolismo , Regulación Alostérica , Activación Enzimática , Humanos , Sistema de Señalización de MAP Quinasas , Mutación Puntual , Dominios Proteicos , Inhibidores de Proteínas Quinasas/metabolismo , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Transducción de Señal , Quinasas raf/genéticaRESUMEN
Activation of RAF kinase involves the association of its RAS-binding domain (RBD) and cysteine-rich domain (CRD) with membrane-anchored RAS. However, the overall architecture of the RAS/RBD/CRD ternary complex and the orientations of its constituent domains at the membrane remain unclear. Here, we have combined all-atom and coarse-grained molecular dynamics (MD) simulations with experimental data to construct and validate a model of membrane-anchored CRD, and used this as a basis to explore models of membrane-anchored RAS/RBD/CRD complex. First, simulations of the CRD revealed that it anchors to the membrane via insertion of its two hydrophobic loops, which is consistent with our NMR measurements of CRD bound to nanodiscs. Simulations of the CRD in the context of membrane-anchored RAS/RBD then show how CRD association with either RAS or RBD could play an unexpected role in guiding the membrane orientations of RAS/RBD. This finding has implications for the formation of RAS-RAS dimers, as different membrane orientations of RAS expose distinct putative dimerization interfaces.
Asunto(s)
Membrana Celular/metabolismo , Quinasas raf/metabolismo , Proteínas ras/metabolismo , Sitios de Unión , Cisteína/metabolismo , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Dominios Proteicos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Quinasas raf/química , Quinasas raf/genética , Proteínas ras/química , Proteínas ras/genéticaRESUMEN
Sulfation of carbohydrate residues occurs on a variety of glycans destined for secretion, and this modification is essential for efficient matrix-based signal transduction. Heparan sulfate (HS) glycosaminoglycans control physiological functions ranging from blood coagulation to cell proliferation. HS biosynthesis involves membrane-bound Golgi sulfotransferases, including HS 2-O-sulfotransferase (HS2ST), which transfers sulfate from the cofactor PAPS (3'-phosphoadenosine 5'-phosphosulfate) to the 2-O position of α-l-iduronate in the maturing polysaccharide chain. The current lack of simple non-radioactive enzyme assays that can be used to quantify the levels of carbohydrate sulfation hampers kinetic analysis of this process and the discovery of HS2ST inhibitors. In the present paper, we describe a new procedure for thermal shift analysis of purified HS2ST. Using this approach, we quantify HS2ST-catalysed oligosaccharide sulfation using a novel synthetic fluorescent substrate and screen the Published Kinase Inhibitor Set, to evaluate compounds that inhibit catalysis. We report the susceptibility of HS2ST to a variety of cell-permeable compounds in vitro, including polyanionic polar molecules, the protein kinase inhibitor rottlerin and oxindole-based RAF kinase inhibitors. In a related study, published back-to-back with the present study, we demonstrated that tyrosyl protein sulfotranferases are also inhibited by a variety of protein kinase inhibitors. We propose that appropriately validated small-molecule compounds could become new tools for rapid inhibition of glycan (and protein) sulfation in cells, and that protein kinase inhibitors might be repurposed or redesigned for the specific inhibition of HS2ST.
Asunto(s)
Proteínas Aviares/química , Heparitina Sulfato/química , Oligosacáridos/química , Inhibidores de Proteínas Quinasas/química , Sulfotransferasas/química , Quinasas raf/antagonistas & inhibidores , Animales , Proteínas Aviares/genética , Pollos , Heparitina Sulfato/farmacología , Humanos , Oligosacáridos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Sulfotransferasas/genética , Porcinos , Quinasas raf/químicaRESUMEN
The Raf protein kinases are key intermediates in cellular signal transduction, functioning as direct effectors of the Ras GTPases and as the initiating kinases in the ERK cascade. In human cancer, Raf activity is frequently dysregulated due to mutations in the Raf family member B-Raf or to alterations in upstream Raf regulators, including Ras and receptor tyrosine kinases. First-generation Raf inhibitors, such as vemurafenib and dabrafenib, have yielded dramatic responses in malignant melanomas containing B-Raf mutations; however, their overall usefulness has been limited by both intrinsic and acquired drug resistance. In particular, issues related to the dimerisation of the Raf kinases can impact the efficacy of these compounds and are a primary cause of drug resistance. Here, we will review the importance of Raf dimerisation in cell signalling as well as its effects on Raf inhibitor therapy, and we will present the new strategies that are being pursued to overcome the 'Raf Dimer Dilemma'.
Asunto(s)
Neoplasias/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Quinasas raf/química , Resistencia a Antineoplásicos , Humanos , Imidazoles/farmacología , Imidazoles/uso terapéutico , Modelos Moleculares , Terapia Molecular Dirigida , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Oximas/farmacología , Oximas/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Multimerización de Proteína , Transducción de Señal , Vemurafenib/farmacología , Vemurafenib/uso terapéutico , Quinasas raf/antagonistas & inhibidores , Quinasas raf/genéticaRESUMEN
Altered cell metabolism is a hallmark of cancer, and targeting specific metabolic nodes is considered an attractive strategy for cancer therapy. In this study, we evaluate the effects of metabolic stressors on the deregulated ERK pathway in melanoma cells bearing activating mutations of the NRAS or BRAF oncogenes. We report that metabolic stressors promote the dimerization of KSR proteins with CRAF in NRAS-mutant cells, and with oncogenic BRAF in BRAFV600E-mutant cells, thereby enhancing ERK pathway activation. Despite this similarity, the two genomic subtypes react differently when a higher level of metabolic stress is induced. In NRAS-mutant cells, the ERK pathway is even more stimulated, while it is strongly downregulated in BRAFV600E-mutant cells. We demonstrate that this is caused by the dissociation of mutant BRAF from KSR and is mediated by activated AMPK. Both types of ERK regulation nevertheless lead to cell cycle arrest. Besides studying the effects of the metabolic stressors on ERK pathway activity, we also present data suggesting that for efficient therapies of both genomic melanoma subtypes, specific metabolic targeting is necessary.
Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Quinasas/metabolismo , Multimerización de Proteína , Estrés Fisiológico , Quinasas raf/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Activación Enzimática , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Glucosa/metabolismo , Glucólisis , Humanos , Melanoma/genética , Melanoma/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Consumo de Oxígeno , Proteínas Quinasas/química , Proteínas Quinasas/genética , Proteínas Recombinantes de Fusión , Quinasas raf/química , Quinasas raf/genéticaRESUMEN
How Ras, and in particular its most abundant oncogenic isoform K-Ras4B, is activated and signals in proliferating cells, poses some of the most challenging questions in cancer cell biology. In this paper, we ask how intrinsically disordered regions in K-Ras4B and its effectors help promote proliferative signaling. Conformational disorder allows spanning long distances, supports hinge motions, promotes anchoring in membranes, permits segments to fulfil multiple roles, and broadly is crucial for activation mechanisms and intensified oncogenic signaling. Here, we provide an overview illustrating some of the key mechanisms through which conformational disorder can promote oncogenesis, with K-Ras4B signaling serving as an example. We discuss (1) GTP-bound KRas4B activation through membrane attachment; (2) how farnesylation and palmitoylation can promote isoform functional specificity; (3) calmodulin binding and PI3K activation; (4) how Ras activates its RASSF5 cofactor, thereby stimulating signaling of the Hippo pathway and repressing proliferation; and (5) how intrinsically disordered segments in Raf help its attachment to the membrane and activation. Collectively, we provide the first inclusive review of the roles of intrinsic protein disorder in oncogenic Ras-driven signaling. We believe that a broad picture helps to grasp and formulate key mechanisms in Ras cancer biology and assists in therapeutic intervention.
Asunto(s)
Proteínas Intrínsecamente Desordenadas/metabolismo , Neoplasias/metabolismo , Proteínas ras/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Lipoilación , Simulación de Dinámica Molecular , Neoplasias/patología , Dominios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Transducción de Señal , Quinasas raf/química , Quinasas raf/metabolismo , Proteínas ras/químicaRESUMEN
While selective BRafV600E inhibitors have been proven effective clinically, acquired resistance rapidly develops through reactivation of the mitogen-activated protein kinase (MAPK) pathway. Simultaneous targeting of multiple nodes in the pathway offers the prospect of enhanced efficacy as well as reduced potential for acquired resistance. Replacement pyridine group of Y-1 by a cyclopropyl formamide group afforded I-01 as a novel multitargeted kinase inhibitor template. I-01 displayed enzyme potency against Pan-Raf and receptor tyrosine kinases (RTKs). Based on the binding mode of I-01, analogues I-02-I-18 were designed and synthesized. The most promising compound I-16 potently inhibits all subtypes of Rafs with IC50 values of 3.49 (BRafV600E), 8.86 (ARaf), 5.78 (BRafWT), and 1.65 nM (CRaf), respectively. I-16 not only exhibit comparable antiproliferative activities with positive control compounds against HepG2, SW579, MV4-11, and COLO205 cell lines, but also suppress the proliferation of melanoma SK-MEL-2 harboring overexpressed BRafWT with IC50 values of 0.93 µM. The Western blot results for the ERK inhibition in human melanoma SK-MEL-2 cell lines show that I-16 inhibits the proliferation of SK-MEL-2 cell lines without paradoxical activation of ERK, which support the hypothesis that the inhibition of Pan-Raf and RTKs might be a tractable strategy to overcome the resistance of melanoma induced by the therapy with the current selective BRafV600E inhibitors.