Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.024
Filtrar
1.
J Agric Food Chem ; 72(19): 10794-10804, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38711396

RESUMEN

Chitin-degrading enzymes are critical components in regulating the molting process of the Asian corn borer and serve as potential targets for controlling this destructive pest of maize. Here, we used a scaffold-hopping strategy to design a series of efficient naphthylimide insecticides. Among them, compound 8c exhibited potent inhibition of chitinase from OfChi-h and OfChtI at low nanomolar concentrations (IC50 = 1.51 and 9.21 nM, respectively). Molecular docking simulations suggested that 8c binds to chitinase by mimicking the interaction of chitin oligosaccharide substrates with chitinase. At low ppm concentrations, compound 8c performed comparably to commercial insecticides in controlling the highly destructive plant pest, the Asian corn borer. Tests on a wide range of nontarget organisms indicate that compound 8c has very low toxicity. In addition, the effect of inhibitor treatment on the expression of genes associated with the Asian corn borer chitin-degrading enzymes was further investigated by quantitative real-time polymerase chain reaction. In conclusion, our study highlights the potential of 8c as a novel chitinase-targeting insecticide for effective control of the Asian corn borer, providing a promising solution in the quest for sustainable pest management.


Asunto(s)
Quitina , Quitinasas , Proteínas de Insectos , Insecticidas , Simulación del Acoplamiento Molecular , Mariposas Nocturnas , Zea mays , Animales , Quitinasas/química , Quitinasas/genética , Quitinasas/metabolismo , Mariposas Nocturnas/enzimología , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/genética , Quitina/química , Quitina/metabolismo , Insecticidas/química , Insecticidas/farmacología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/antagonistas & inhibidores , Zea mays/química , Zea mays/parasitología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Diseño de Fármacos , Control de Insectos , Larva/crecimiento & desarrollo , Larva/efectos de los fármacos , Relación Estructura-Actividad
2.
Appl Microbiol Biotechnol ; 108(1): 324, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713211

RESUMEN

Laccase, a copper-containing polyphenol oxidase, is an important green biocatalyst. In this study, Laccase Lcc5 was homologous recombinantly expressed in Coprinopsis cinerea and a novel strategy of silencing chitinase gene expression was used to enhance recombinant Lcc5 extracellular yield. Two critical chitinase genes, ChiEn1 and ChiE2, were selected by analyzing the transcriptome data of C. cinerea FA2222, and their silent expression was performed by RNA interference (RNAi). It was found that silencing either ChiEn1 or ChiE2 reduced sporulation and growth rate, and increased cell wall sensitivity, but had no significant effect on mycelial branching. Among them, the extracellular laccase activity of the ChiE2-silenced engineered strain Cclcc5-antiChiE2-5 and the control Cclcc5-13 reached the highest values (38.2 and 25.5 U/mL, respectively) at 250 and 150 rpm agitation speeds, corresponding to productivity of 0.35 and 0.19 U/mL·h, respectively, in a 3-L fermenter culture. Moreover, since Cclcc5-antiChiE2-5 could withstand greater shear forces, its extracellular laccase activity was 2.6-fold higher than that of Cclcc5-13 when the agitation speed was all at 250 rpm. To our knowledge, this is the first report of enhanced recombinant laccase production in C. cinerea by silencing the chitinase gene. This study will pave the way for laccase industrial production and accelerate the development of a C. cinerea high-expression system. KEY POINTS: • ChiEn1 and ChiE2 are critical chitinase genes in C. cinerea FA2222 genome. • Chitinase gene silencing enhanced the tolerance of C. cinerea to shear forces. • High homologous production of Lcc5 is achieved by fermentation in a 3-L fermenter.


Asunto(s)
Quitinasas , Silenciador del Gen , Lacasa , Quitinasas/genética , Quitinasas/metabolismo , Quitinasas/biosíntesis , Lacasa/genética , Lacasa/metabolismo , Lacasa/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Agaricales/genética , Agaricales/enzimología , Fermentación , Interferencia de ARN , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Micelio/genética , Micelio/crecimiento & desarrollo , Micelio/enzimología , Pared Celular/metabolismo , Pared Celular/genética
3.
Microb Cell Fact ; 23(1): 126, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698402

RESUMEN

BACKGROUND: Hydrocarbon pollution stemming from petrochemical activities is a significant global environmental concern. Bioremediation, employing microbial chitinase-based bioproducts to detoxify or remove contaminants, presents an intriguing solution for addressing hydrocarbon pollution. Chitooligosaccharides, a product of chitin degradation by chitinase enzymes, emerge as key components in this process. Utilizing chitinaceous wastes as a cost-effective substrate, microbial chitinase can be harnessed to produce Chitooligosaccharides. This investigation explores two strategies to enhance chitinase productivity, firstly, statistical optimization by the Plackett Burman design approach to  evaluating the influence of individual physical and chemical parameters on chitinase production, Followed by  response surface methodology (RSM) which delvs  into the interactions among these factors to optimize chitinase production. Second, to further boost chitinase production, we employed heterologous expression of the chitinase-encoding gene in E. coli BL21(DE3) using a suitable vector. Enhancing chitinase activity not only boosts productivity but also augments the production of Chitooligosaccharides, which are found to be used as emulsifiers. RESULTS: In this study, we focused on optimizing the production of chitinase A from S. marcescens using the Plackett Burman design and response surface methods. This approach led to achieving a maximum activity of 78.65 U/mL. Subsequently, we cloned and expressed the gene responsible for chitinase A in E. coli BL21(DE3). The gene sequence, named SmChiA, spans 1692 base pairs, encoding 563 amino acids with a molecular weight of approximately 58 kDa. This sequence has been deposited in the NCBI GenBank under the accession number "OR643436". The purified recombinant chitinase exhibited a remarkable activity of 228.085 U/mL, with optimal conditions at a pH of 5.5 and a temperature of 65 °C. This activity was 2.9 times higher than that of the optimized enzyme. We then employed the recombinant chitinase A to effectively hydrolyze shrimp waste, yielding chitooligosaccharides (COS) at a rate of 33% of the substrate. The structure of the COS was confirmed through NMR and mass spectrometry analyses. Moreover, the COS demonstrated its utility by forming stable emulsions with various hydrocarbons. Its emulsification index remained stable across a wide range of salinity, pH, and temperature conditions. We further observed that the COS facilitated the recovery of motor oil, burned motor oil, and aniline from polluted sand. Gravimetric assessment of residual hydrocarbons showed a correlation with FTIR analyses, indicating the efficacy of COS in remediation efforts. CONCLUSIONS: The recombinant chitinase holds significant promise for the biological conversion of chitinaceous wastes into chitooligosaccharides (COS), which proved its potential in bioremediation efforts targeting hydrocarbon-contaminated sand.


Asunto(s)
Biodegradación Ambiental , Quitinasas , Quitosano , Oligosacáridos , Proteínas Recombinantes , Quitinasas/metabolismo , Quitinasas/genética , Oligosacáridos/metabolismo , Animales , Quitosano/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Quitina/metabolismo , Hidrocarburos/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Crustáceos/metabolismo , Emulsionantes/metabolismo , Emulsionantes/química
4.
Int J Biol Macromol ; 267(Pt 1): 131362, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583843

RESUMEN

Chitin, recovered in huge amounts from coastal waste, may biocatalytically valorized for utilization in food and biotech sectors. Conventional chemical-based conversion makes use of significant volumes of hazardous acid and alkali. Alternatively, enzymes offer better process control and generation of homogeneous products. Process variables were derived to achieve augmented levels of chitinase (3.8809 Ul-1 h-1) productivity from a novel thermophilic fungal strain Thermomyces dupontii, ITCC 9104 following incubation (96 h, 45 °C). An acidic thermostable chitinase TdChiT having molecular mass of 60 kDa has been purified. Optimal TdChiT activity has been demonstrated at 70 °C and pH 5. Notably decreased activity over a broad range of temperature and pH was observed following deglycosylation. Half-life, activation energy, Gibbs free energy, enthalpy and entropy for denaturation of TdChiT at its optimum temperature were 197.40 min, 105.48 kJ mol-1, 100.59 kJ mol-1, 102.64 kJ mol-1 and 5.95 J mol-1 K-1. TdChiT has specificity towards colloidal chitin and (GlcNAc)2-4. Metal ions viz. Mn2+, Ca2+ and Co2+ and nonionic surfactants notably enhanced chitinase activity. Thin layer chromatography analysis has revealed effective hydrolysis of colloidal chitin and (GlcNAc)2-4. TdChiT may potentially be employed for design of better, eco-friendly and less resource-intensive industrial procedures for upcycling of crustacean waste into value-added organonitrogens.


Asunto(s)
Quitina , Quitinasas , Estabilidad de Enzimas , Oligosacáridos , Temperatura , Quitinasas/química , Quitinasas/aislamiento & purificación , Quitinasas/metabolismo , Concentración de Iones de Hidrógeno , Quitina/química , Oligosacáridos/química , Quitosano/química , Especificidad por Sustrato , Cinética
5.
Molecules ; 29(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38611746

RESUMEN

Spodoptera frugiperda, the fall armyworm (FAW), is a highly invasive polyphagous insect pest that is considered a source of severe economic losses to agricultural production. Currently, the majority of chemical insecticides pose tremendous threats to humans and animals besides insect resistance. Thus, there is an urgent need to develop new pest management strategies with more specificity, efficiency, and sustainability. Chitin-degrading enzymes, including chitinases, are promising agents which may contribute to FAW control. Chitinase-producing microorganisms are reported normally in bacteria and fungi. In the present study, Serratia marcescens was successfully isolated and identified from the larvae of Spodoptera frugiperda. The bacterial strain NRC408 displayed the highest chitinase enzyme activity of 250 units per milligram of protein. Subsequently, the chitinase gene was cloned and heterologously expressed in E. coli BL21 (DE3). Recombinant chitinase B was overproduced to 2.5-fold, driven by the T7 expression system. Recombinant chitinase B was evaluated for its efficacy as an insecticidal bioagent against S. frugiperda larvae, which induced significant alteration in subsequent developmental stages and conspicuous malformations. Additionally, our study highlights that in silico analyses of the anticipated protein encoded by the chitinase gene (ChiB) offered improved predictions for enzyme binding and catalytic activity. The effectiveness of (ChiB) against S. frugiperda was evaluated in laboratory and controlled field conditions. The results indicated significant mortality, disturbed development, different induced malformations, and a reduction in larval populations. Thus, the current study consequently recommends chitinase B for the first time to control FAW.


Asunto(s)
Quitinasas , Insecticidas , Animales , Humanos , Quitinasas/genética , Quitinasas/farmacología , Larva , Serratia marcescens/genética , Zea mays , Spodoptera , Escherichia coli , Clonación Molecular , Productos Agrícolas , Insecticidas/farmacología
6.
Breast Cancer Res ; 26(1): 63, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605414

RESUMEN

BACKGROUND: Chitinase-like proteins (CLPs) play a key role in immunosuppression under inflammatory conditions such as cancer. CLPs are enzymatically inactive and become neutralized upon binding of their natural ligand chitin, potentially reducing CLP-driven immunosuppression. We investigated the efficacy of chitin treatment in the context of triple-negative breast cancer (TNBC) using complementary mouse models. We also evaluated the immunomodulatory influence of chitin on immune checkpoint blockade (ICB) and compared its efficacy as general CLP blocker with blockade of a single CLP, i.e. chitinase 3-like 1 (CHI3L1). METHODS: Female BALB/c mice were intraductally injected with luciferase-expressing 4T1 or 66cl4 cells and systemically treated with chitin in combination with or without anti-programmed death (PD)-1 ICB. For single CLP blockade, tumor-bearing mice were treated with anti-CHI3L1 antibodies. Metastatic progression was monitored through bioluminescence imaging. Immune cell changes in primary tumors and lymphoid organs (i.e. axillary lymph nodes and spleen) were investigated through flow cytometry, immunohistochemistry, cytokine profiling and RNA-sequencing. CHI3L1-stimulated RAW264.7 macrophages were subjected to 2D lymphatic endothelial cell adhesion and 3D lymphatic integration in vitro assays for studying macrophage-mediated lymphatic remodeling. RESULTS: Chitin significantly reduced primary tumor progression in the 4T1-based model by decreasing the high production of CLPs that originate from tumor-associated neutrophils (TANs) and Stat3 signaling, prominently affecting the CHI3L1 and CHI3L3 primary tumor levels. It reduced immunosuppressive cell types and increased anti-tumorigenic T-cells in primary tumors as well as axillary lymph nodes. Chitin also significantly reduced CHI3L3 primary tumor levels and immunosuppression in the 66cl4-based model. Compared to anti-CHI3L1, chitin enhanced primary tumor growth reduction and anti-tumorigenicity. Both treatments equally inhibited lymphatic adhesion and integration of macrophages, thereby hampering lymphatic tumor cell spreading. Upon ICB combination therapy, chitin alleviated anti-PD-1 resistance in both TNBC models, providing a significant add-on reduction in primary tumor and lung metastatic growth compared to chitin monotherapy. These add-on effects occurred through additional increase in CD8α+ T-cell infiltration and activation in primary tumor and lymphoid organs. CONCLUSIONS: Chitin, as a general CLP blocker, reduces CLP production, enhances anti-tumor immunity as well as ICB responses, supporting its potential clinical relevance in immunosuppressed TNBC patients.


Asunto(s)
Quitina , Quitinasas , Neoplasias de la Mama Triple Negativas , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Quitina/farmacología , Quitina/uso terapéutico , Quitinasas/uso terapéutico , Terapia de Inmunosupresión , Metástasis Linfática , Proteínas/uso terapéutico , Neoplasias de la Mama Triple Negativas/patología
7.
Nat Commun ; 15(1): 3227, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622119

RESUMEN

Loops are small secondary structural elements that play a crucial role in the emergence of new enzyme functions. However, the evolutionary molecular mechanisms how proteins acquire these loop elements and obtain new function is poorly understood. To address this question, we study glycoside hydrolase family 19 (GH19) chitinase-an essential enzyme family for pathogen degradation in plants. By revealing the evolutionary history and loops appearance of GH19 chitinase, we discover that one loop which is remote from the catalytic site, is necessary to acquire the new antifungal activity. We demonstrate that this remote loop directly accesses the fungal cell wall, and surprisingly, it needs to adopt a defined structure supported by long-range intramolecular interactions to perform its function. Our findings prove that nature applies this strategy at the molecular level to achieve a complex biological function while maintaining the original activity in the catalytic pocket, suggesting an alternative way to design new enzyme function.


Asunto(s)
Quitinasas , Dominio Catalítico , Quitinasas/química , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Plantas/metabolismo , Antifúngicos/química
8.
ACS Synth Biol ; 13(4): 1165-1176, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38587290

RESUMEN

Genetic parts and hosts can be sourced from nature to realize new functions for synthetic biology or to improve performance in a particular application environment. Here, we proceed from the discovery and characterization of new parts to stable expression in new hosts with a particular focus on achieving sustained chitinase activity. Chitinase is a key enzyme for various industrial applications that require the breakdown of chitin, the second most abundant biopolymer on the earth. Diverse microbes exhibit chitinase activity, but for applications, the environmental conditions for optimal enzyme activity and microbe fitness must align with the application context. Achieving sustained chitinase activity under broad conditions in heterologous hosts has also proven difficult due to toxic side effects. Toward addressing these challenges, we first screen ocean water samples to identify microbes with chitinase activity. Next, we perform whole genome sequencing and analysis and select a chitinase gene for heterologous expression. Then, we optimize transformation methods for target hosts and introduce chitinase. Finally, to achieve robust function, we optimize ribosome binding sites and discover a beneficial promoter that upregulates chitinase expression in the presence of colloidal chitin in a sense-and-respond fashion. We demonstrate chitinase activity for >21 days in standard (Escherichia coli) and nonstandard (Roseobacter denitrificans) hosts. Besides enhancing chitinase applications, our pipeline is extendable to other functions, identifies natural microbes that can be used directly in non-GMO contexts, generates new parts for synthetic biology, and achieves weeks of stable activity in heterologous hosts.


Asunto(s)
Quitina , Quitinasas , Biopolímeros , Escherichia coli/genética , Escherichia coli/metabolismo , Quitinasas/genética , Quitinasas/química , Quitinasas/metabolismo
9.
Arch Microbiol ; 206(5): 220, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630188

RESUMEN

Extracellular proteases, such as chitinases secreted by Arthrobotrys oligospora (A. oligospora), play a crucial role in the process of nematode infection. However, post-transcriptional regulation of gene expression involving microRNAs (miRNAs) in A. oligospora remains scarcely described. Hereto, transcriptome sequencing was carried out to analyze the expression profiles of chitin-responsive miRNAs in A. oligospora. Based on the RNA-seq data, the differential expression of miRNAs (DEmiRNAs) in response to chitin was screened, identified and characterized in A. oligospora. Meanwhile, the potential target genes were predicted by the online tools miRanda and Targetscan, respectively. Furthermore, the interaction of DEmiRNA with it's target gene was validated by a dual-luciferase reporter assay system. Among 85 novel miRNAs identified, 25 miRNAs displayed significant differences in expression in A. oligospora in response to chitin. Gene Ontology (GO) analysis showed that the potential genes targeted by DEmiRNAs were enriched in the biological processes such as bio-degradation, extracellular components and cell cycle. KEGG analysis revealed that the target genes were mainly involved in Hippo, carbon and riboflavin metabolic pathway. Outstandingly, chitinase AOL_s00004g379, which is involved in the hydrolysis metabolic pathway of chitin, was confirmed to be a target gene of differential miR_70. These findings suggest that chitin-responsive miRNAs are involved in the regulation of cell proliferation, predator hyphae growth and chitinase expression through the mechanisms of post-transcriptional regulation, which provides a new perspective to the molecular mechanisms underlying miRNAs-mediated control of gene expression in A. oligospora.


Asunto(s)
Ascomicetos , Quitinasas , MicroARNs , Quitina , Quitinasas/genética , MicroARNs/genética
10.
Plant Mol Biol ; 114(3): 41, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625509

RESUMEN

Sheath blight disease of rice caused by Rhizoctonia solani AG1-IA, is a major fungal disease responsible for huge loss to grain yield and quality. The major limitation of achieving persistent and reliable resistance against R. solani is the governance of disease resistance trait by many genes. Therefore, functional characterization of new genes involved in sheath blight resistance is necessary to understand the mechanism of resistance as well as evolving effective strategies to manage the disease through host-plant resistance. In this study, we performed RNA sequencing of six diverse rice genotypes (TN1, BPT5204, Vandana, N22, Tetep, and Pankaj) from sheath and leaf tissue of control and fungal infected samples. The approach for identification of candidate resistant genes led to identification of 352 differentially expressed genes commonly present in all the six genotypes. 23 genes were analyzed for RT-qPCR expression which helped identification of Oschib1 showing differences in expression level in a time-course manner between susceptible and resistant genotypes. The Oschib1 encoding classIII chitinase was cloned from resistant variety Tetep and over-expressed in susceptible variety Taipei 309. The over-expression lines showed resistance against R. solani, as analyzed by detached leaf and whole plant assays. Interestingly, the resistance response was correlated with the level of transgene expression suggesting that the enzyme functions in a dose dependent manner. We report here the classIIIb chitinase from chromosome10 of rice showing anti-R. solani activity to combat the dreaded sheath blight disease.


Asunto(s)
Quitinasas , Oryza , Oryza/genética , Genotipo , Rhizoctonia , Quitinasas/genética
11.
World J Microbiol Biotechnol ; 40(6): 181, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668833

RESUMEN

In view of the extensive potential applications of chitinase (ChiA) in various fields such as agriculture, environmental protection, medicine, and biotechnology, the development of a high-yielding strain capable of producing chitinase with enhanced activity holds significant importance. The objective of this study was to utilize the extracellular chitinase from Bacillus thuringiensis as the target, and Bacillus licheniformis as the expression host to achieve heterologous expression of ChiA with enhanced activity. Initially, through structural analysis and molecular dynamics simulation, we identified key amino acids to improve the enzymatic performance of chitinase, and the specific activity of chitinase mutant D116N/E118N was 48% higher than that of the natural enzyme, with concomitant enhancements in thermostability and pH stability. Subsequently, the expression elements of ChiA(D116N/E118N) were screened and modified in Bacillus licheniformis, resulting in extracellular ChiA activity reached 89.31 U/mL. Further efforts involved the successful knockout of extracellular protease genes aprE, bprA and epr, along with the gene clusters involved in the synthesis of by-products such as bacitracin and lichenin from Bacillus licheniformis. This led to the development of a recombinant strain, DW2△abelA, which exhibited a remarkable improvement in chitinase activity, reaching 145.56 U/mL. To further improve chitinase activity, a chitinase expression frame was integrated into the genome of DW2△abelA, resulting in a significant increas to 180.26 U/mL. Optimization of fermentation conditions and medium components further boosted shake flask enzyme activity shake flask enzyme activity, achieving 200.28 U/mL, while scale-up fermentation experiments yielded an impressive enzyme activity of 338.79 U/mL. Through host genetic modification, expression optimization and fermentation optimization, a high-yielding ChiA strain was successfully constructed, which will provide a solid foundation for the extracellular production of ChiA.


Asunto(s)
Bacillus licheniformis , Proteínas Bacterianas , Quitinasas , Bacillus licheniformis/genética , Bacillus licheniformis/enzimología , Bacillus thuringiensis/genética , Bacillus thuringiensis/enzimología , Bacitracina , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Quitinasas/biosíntesis , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Familia de Multigenes , Proteínas Recombinantes/biosíntesis , Temperatura
12.
Plant Physiol Biochem ; 210: 108660, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38678945

RESUMEN

The combined stress studies provide fundamental knowledge that could assist in producing multiple stress resilient crops. The fungal phytopathogen, Macrophomina phaseolina is a major limiting factor in the productivity of the crop, Vigna radiata (mungbean). This fungal species tends to flourish under hot and dry conditions. Therefore, in this study the salicylic acid (SA) mediated stress responses in contrasting mungbean cultivars (Shikha and RMG-975) exposed to combined M. phaseolina infection (F) and drought stress (D) have been elucidated. The combined stress was applied to ten days seedlings in three orders i.e. drought followed by fungal infection (DF), drought followed by fungal infection with extended water deficit (DFD) and fungal infection followed by drought stress (FD). The severity of infection was analyzed using ImageJ analysis. Besides, the concentration of SA has been correlated with the phenylpropanoid pathway products, expression of pathogenesis-related proteins (ß-1,3-glucanase and chitinase) and the specific activity of certain related enzymes (phenylalanine ammonia lyase, lipoxygenase and glutathione-S-transferase). The data revealed that the cultivar RMG-975 was relatively more tolerant than Shikha under individual stresses. However, the former became more susceptible to the infection under DFD treatment while the latter showed tolerance. Otherwise, the crown rot severity was reduced in both the cultivars under other combined treatments. The stress response analysis suggested that enhanced chitinase expression is vital for tolerance against both, the pathogen and drought stress. Also, it was noted that plants treat each stress combination differently and the role of SA was more prominently visible under individual stress conditions.


Asunto(s)
Ascomicetos , Sequías , Enfermedades de las Plantas , Ácido Salicílico , Estrés Fisiológico , Vigna , Ácido Salicílico/metabolismo , Ascomicetos/fisiología , Ascomicetos/patogenicidad , Enfermedades de las Plantas/microbiología , Vigna/microbiología , Vigna/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Quitinasas/metabolismo , Lipooxigenasa/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Glutatión Transferasa/metabolismo , Regulación de la Expresión Génica de las Plantas
13.
J Agric Food Chem ; 72(18): 10271-10281, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38655868

RESUMEN

Insect growth regulators (IGRs) are important green insecticides that disrupt normal growth and development in insects to reduce the harm caused by pests to crops. The ecdysone receptor (EcR) and three chitinases OfChtI, OfChtII, and OfChi-h are closely associated with the molting stage of insects. Thus, they are considered promising targets for the development of novel insecticides such as IGRs. Our previous work identified a dual-target compound 6j, which could act simultaneously on both EcR and OfChtI. In the present study, 6j was first found to have inhibitory activities against OfChtII and OfChi-h, too. Subsequently, taking 6j as a lead compound, 19 novel acetamido derivatives were rationally designed and synthesized by introducing an acetamido moiety into the amide bridge based on the flexibility of the binding cavities of 6j with EcR and three chitinases. Then, their insecticidal activities against Plutella xylostella (P. xylostella), Ostrinia furnacalis (O. furnacalis), and Spodoptera frugiperda (S. frugiperda) were carried out. The bioassay results revealed that most of these acetamido derivatives possessed moderate to good larvicidal activities against three lepidopteran pests. Especially, compound I-17 displayed excellent insecticidal activities against P. xylostella (LC50, 93.32 mg/L), O. furnacalis (LC50, 114.79 mg/L), and S. frugiperda (86.1% mortality at 500 mg/L), significantly better than that of 6j. In addition, further protein validation and molecular docking demonstrated that I-17 could act simultaneously on EcR (17.7% binding activity at 8 mg/L), OfChtI (69.2% inhibitory rate at 50 µM), OfChtII (71.5% inhibitory rate at 50 µM), and OfChi-h (73.9% inhibitory rate at 50 µM), indicating that I-17 is a potential lead candidate for novel multitarget IGRs. This work provides a promising starting point for the development of novel types of IGRs as pest management agents.


Asunto(s)
Quitinasas , Diseño de Fármacos , Proteínas de Insectos , Insecticidas , Hormonas Juveniles , Mariposas Nocturnas , Pirazoles , Spodoptera , Animales , Insecticidas/química , Insecticidas/farmacología , Insecticidas/síntesis química , Spodoptera/efectos de los fármacos , Spodoptera/crecimiento & desarrollo , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/genética , Relación Estructura-Actividad , Hormonas Juveniles/farmacología , Hormonas Juveniles/química , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Quitinasas/metabolismo , Quitinasas/química , Quitinasas/antagonistas & inhibidores , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/química , Simulación del Acoplamiento Molecular , Larva/crecimiento & desarrollo , Larva/efectos de los fármacos , Acetamidas/farmacología , Acetamidas/química , Estructura Molecular
14.
Microb Pathog ; 190: 106616, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492826

RESUMEN

Root rot is a common disease, that severely affects the yield and quality of alfalfa. Biocontrol is widely used to control plant diseases caused by pathogenic fungi, however, biocontrol strains for alfalfa root rot are very limited. In this study, a Bacillus subtilis CG-6 strain with a significant biocontrol effect on alfalfa root rot was isolated. CG-6 secretes antibacterial enzymes and siderophore, phosphate solubilization and indoleacetic acid (IAA). The inhibition rate of strain CG-6 against Fusarium oxysporum was 87.33%, and it showed broad-spectrum antifungal activity. Inoculation with CG-6 significantly reduced the incidence of alfalfa root rot, the control effect of greenhouse cultivation reached 58.12%, and CG-6 treatment significantly increased alfalfa plant height, root length, fresh weight, and dry weight. The treatment with CG-6 significantly increased the levels of antioxidant enzymes (catalase, peroxidase, superoxide dismutase, and lipoxygenase) in alfalfa leaves by 15.52%-34.03%. Defensive enzymes (chitinase and ß-1,3-glucanase) increased by 24.37% and 28.08%, respectively. The expression levels of regulatory enzyme genes (MsCAT, MsPOD, MsCu, Zn-SOD1, MsCu, Zn-SOD2, MsCu, Zn-SOD3, and MsLOX2) and systemic resistance genes (MsPR1, MsPDF1.2, and MsVSP2) increased by 0.50-2.85 fold, which were higher than those in the pathogen treatment group. Therefore, CG-6 could be used as a potential strain to develop biopesticides against alfalfa root rot.


Asunto(s)
Bacillus subtilis , Fusarium , Medicago sativa , Enfermedades de las Plantas , Raíces de Plantas , Medicago sativa/microbiología , Bacillus subtilis/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Raíces de Plantas/microbiología , Fusarium/crecimiento & desarrollo , Antibiosis , Ácidos Indolacéticos/metabolismo , Antioxidantes/metabolismo , Hojas de la Planta/microbiología , Quitinasas/metabolismo , Agentes de Control Biológico , Superóxido Dismutasa/metabolismo , Antifúngicos/farmacología
15.
Int J Biol Macromol ; 265(Pt 1): 130846, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492689

RESUMEN

The dwindling supply of the petroleum product and its carbon footprint has initiated search for a sustainable fuel and alternate feed-stocks. One such underexplored feedstock is chitin, a waste derived from sea food processing. The limitation of insolubility and crystallinity inherent in chitin is addressed with the chitin hydrolysates. In the present study, a chitinases producing marine isolate was isolated from the sediments of Arabian Sea from a depth of 20 m. In order to increase the expression of the chitinases, sequential optimisation using one factor at a time and Taguchi experimental designs were employed which resulted in a yield of 13.46 U/mL which was 2.62 fold higher than the initial bioprocess condition values. In a two-step refinery protocol, Candida albicans was evolved towards chitooligosaccharides using chemically synthesized hydrolysates. In a fed -batch fermentation design the Candida yielded a 12.8 % conversion of these commercial chitin oligosaccharides into bioethanol in a run time of 48 h. This is the first report demonstrating the potential of Candida to utilise chitin oligosaccharides for the production of bioethanol.


Asunto(s)
Quitinasas , Quitosano , Quitinasas/química , Quitina/química , Oligosacáridos
16.
J Agric Food Chem ; 72(13): 7256-7265, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38438973

RESUMEN

The whole enzymatic conversion of chitin is a green and promising alternative to current strategies, which are based on lytic polysaccharide monooxygenases (LPMOs) and chitinases. However, the lack of LPMOs with high activity toward α-chitin limits the efficient bioconversion of α-chitin. Herein, we characterized a high chitin-active LPMO from Oceanobacillus sp. J11TS1 (OsLPMO10A), which could promote the decrystallization of the α-chitin surface. Furthermore, when coupled with OsLPMO10A, the conversion rate of α-chitin to N-acetyl chitobiose [(GlcNAc)2] by three chitinases (Serratia marcescens, ChiA, -B, and -C) reached 30.86%, which was 2.03-folds that without the addition of OsLPMO10A. Moreover, the results of synergistic reactions indicated that OsLPMO10A and chitinases promoted the degradation of α-chitin each other mainly on the surface. To the best of our knowledge, this study achieved the highest yield of N-acetyl chitooligosaccharides (N-acetyl COSs) among reported LPMOs-driven bioconversion systems, which could be regarded as a promising candidate for α-chitin bioconversion.


Asunto(s)
Quitina , Quitinasas , Quitina/química , Oxigenasas de Función Mixta/metabolismo , Quitinasas/química , Polisacáridos/metabolismo , Serratia marcescens
17.
J Med Chem ; 67(5): 3959-3985, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38427954

RESUMEN

Chitinase-3-like-1 (CHI3L1), also known as YKL-40, is a glycoprotein linked to inflammation, fibrosis, and cancer. This study explored CHI3L1's interactions with various oligosaccharides using microscale thermophoresis (MST) and AlphaScreen (AS). These investigations guided the development of high-throughput screening assays to assess interference of small molecules in binding between CHI3L1 and biotinylated small molecules or heparan sulfate-based probes. Small molecule binders of YKL-40 were identified in our chitotriosidase inhibitors library with MST and confirmed through X-ray crystallography. Based on cocrystal structures of potent hit compounds with CHI3L1, small molecule probes 19 and 20 were designed for an AS assay. Structure-based optimization led to compounds 30 and 31 with nanomolar activities and drug-like properties. Additionally, an orthogonal AS assay using biotinylated heparan sulfate as a probe was developed. The compounds' affinity showed a significant correlation in both assays. These screening tools and compounds offer novel avenues for investigating the role of CHI3L1.


Asunto(s)
Quitinasas , Proteína 1 Similar a Quitinasa-3 , Glicoproteínas , Ensayos Analíticos de Alto Rendimiento , Heparitina Sulfato
18.
Int J Biol Macromol ; 264(Pt 2): 130499, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462115

RESUMEN

Chitin, an abundant polysaccharide in India, is primary by-product of the seafood industry. Efficiently converting chitin into valuable products is crucial. Chitinase, transforms chitin into chitin oligomers, holds significant industrial potential. However, the crystalline and insoluble nature of chitin makes the conversion process challenging. In this study, a recombinant chitinase from marine bacteria Bacillus aryabhattai was developed. This enzyme exhibits activity against insoluble chitin substrates, chitin powder and flakes. The chitinase gene was cloned into the pET 23a plasmid and transformed into E. coli Rosetta pLysS. IPTG induction was employed to express chitinase, and purification using Ni-NTA affinity chromatography. Optimal chitinase activity against colloidal chitin was observed in Tris buffer at pH 8, temperature 55°C, with the presence of 400 mM sodium chloride. Enzyme kinetics studies revealed a Vmax of 2000 µmole min-1 and a Km of 4.6 mg mL-1. The highest chitinase activity against insoluble chitin powder and flakes reached 875 U mg-1 and 625 U mg-1, respectively. The chitinase demonstrated inhibition of Candida albicans, Fusarium solani, and Penicillium chrysogenum growth. Thin Layer Chromatography (TLC) and LC-MS analysis confirmed the production of chitin oligomers, chitin trimer, tetramer, pentamer, and hexamer, from chitin powder and flakes using recombinant chitinase.


Asunto(s)
Bacillus , Quitina , Quitinasas , Quitina/química , Quitinasas/genética , Quitinasas/farmacología , Quitinasas/química , Escherichia coli/genética , Polvos , Concentración de Iones de Hidrógeno
19.
Lett Appl Microbiol ; 77(4)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38490739

RESUMEN

Fish are the most edible protein source worldwide and generate several remnants such as scales, viscera, head, bone, and skin. Fish wastes are not disposed of properly, which adversely affects the environment, especially the water bodies where fish processing industries dispose of their waste. Fish waste mainly contains nitrogen, oil, fat, salts, heavy metals, and organic compounds, which increase the biological oxygen demand and chemical oxygen demand. Fish waste can degrade in various ways, such as physicochemical or by enzymatic action, but using microbes is an environmentally friendly approach that can provide valuable compounds such as products such as collagen, chitin, minerals, and fish protein concentrates. This review is designed to focus on the suitability of microbes as tools for fish waste degradation and the production of certain associated. This study also provides insight into the production of other compounds such as protease, chitinase, and chitin applicability of these products. After processing, fish waste as a microbial growth media for enzyme production since microorganisms synthesize enzymes such as proteases, protein hydrolysates, lipids, and chitinase, which have broader applications in the pharmaceutical, cosmetic, biomedical material, and food processing industries.


Asunto(s)
Quitinasas , Peces , Animales , Biodegradación Ambiental , Industria de Procesamiento de Alimentos , Quitina/química , Quitina/metabolismo , Péptido Hidrolasas
20.
Skin Res Technol ; 30(2): e13574, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38303405

RESUMEN

BACKGROUND: Mounting evidence suggest that there are an association between psoriasis and ulcerative colitis (UC), although the common pathogeneses are not fully understood. Our study aimed to find potential crucial genes in psoriasis and UC through machine learning and integrated bioinformatics. METHODS: The overlapping differentially expressed genes (DEGs) of the datasets GSE13355 and GSE87466 were identified. Then the functional enrichment analysis was performed. The overlapping genes in LASSO, SVM-RFE and key module in WGCNA were considered as potential crucial genes. The receiver operator characteristic (ROC) curve was used to estimate their diagnostic confidence. The CIBERSORT was conducted to evaluate immune cell infiltration. Finally, the datasets GSE30999 and GSE107499 were retrieved to validate. RESULTS: 112 overlapping DEGs were identified in psoriasis and UC and the functional enrichment analysis revealed they were closely related to the inflammatory and immune response. Eight genes, including S100A9, PI3, KYNU, WNT5A, SERPINB3, CHI3L2, ARNTL2, and SLAMF7, were ultimately identified as potential crucial genes. ROC curves showed they all had high confidence in the test and validation datasets. CIBERSORT analysis indicated there was a correlation between infiltrating immune cells and potential crucial genes. CONCLUSION: In our study, we focused on the comprehensive understanding of pathogeneses in psoriasis and UC. The identification of eight potential crucial genes may contribute to not only understanding the common mechanism, but also identifying occult UC in psoriasis patients, even serving as therapeutic targets in the future.


Asunto(s)
Quitinasas , Colitis Ulcerosa , Humanos , Colitis Ulcerosa/genética , Aprendizaje Automático , Biología Computacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA