Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 396
Filtrar
1.
Eur J Cell Biol ; 102(2): 151317, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37099936

RESUMEN

Avulsion injury results in motoneuron death due to the increased excitotoxicity developing in the affected spinal segments. This study focused on possible short and long term molecular and receptor expression alterations which are thought to be linked to the excitotoxic events in the ventral horn with or without the anti-excitotoxic riluzole treatment. In our experimental model the left lumbar 4 and 5 (L4, 5) ventral roots of the spinal cord were avulsed. Treated animals received riluzole for 2 weeks. Riluzole is a compound that acts to block voltage-activated Na+ and Ca2+ channels. In control animals the L4, 5 ventral roots were avulsed without riluzole treatment. Expression of astrocytic EAAT-2 and that of KCC2 in motoneurons on the affected side of the L4 spinal segment were detected after the injury by confocal and dSTORM imaging, intracellular Ca2+ levels in motoneurons were quantified by electron microscopy. The KCC2 labeling in the lateral and ventrolateral parts of the L4 ventral horn was weaker compared with the medial part of L4 ventral horn in both groups. Riluzole treatment dramatically enhanced motoneuron survival but was not able to prevent the down-regulation of KCC2 expression in injured motoneurons. In contrast, riluzole successfully obviated the increase of intracellular calcium level and the decrease of EAAT-2 expression in astrocytes compared with untreated injured animals. We conclude that KCC2 may not be an essential component for survival of injured motoneurons and riluzole is able to modulate the intracellular level of calcium and expression of EAAT-2.


Asunto(s)
Riluzol , Simportadores , Animales , Riluzol/farmacología , Riluzol/metabolismo , Calcio/metabolismo , Raíces Nerviosas Espinales/lesiones , Raíces Nerviosas Espinales/metabolismo , Médula Espinal/metabolismo , Simportadores/genética , Simportadores/metabolismo
2.
Neuroscience ; 515: 96-107, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36764601

RESUMEN

Mitogen activated protein kinase interacting kinases (MNK) 1 and 2 are serine/threonine protein kinases that play an important role in translation of mRNAs through their phosphorylation of the RNA 5'-cap binding protein, eukaryotic translation initiation factor (eIF) 4E. These kinases are downstream targets for mitogen activated protein kinases (MAPKs), extracellular activity regulated protein kinase (ERK) and p38. MNKs have been implicated in the sensitization of peripheral nociceptors of the dorsal root and trigeminal ganglion (DRG and TG) using transgenic mouse lines and through the use of specific inhibitors of MNK1 and MNK2. While specific knockout of the Mknk1 gene suggests that it is the key isoform for regulation of nociceptor excitability and nociceptive behaviors in mice, both MKNK1 and MKNK2 genes are expressed in the DRG and TG of mice and humans based on RNA sequencing experiments. Single cell sequencing in mice suggests that Mknk1 and Mknk2 may be expressed in different populations of nociceptors. We sought to characterize mRNA expression in human DRG and TG (N = 3 ganglia for both DRG and TG) for both MNK1 and MNK2. Our results show that both genes are expressed by nearly all neurons in both human ganglia with expression in other cell types as well. Our findings provide evidence that MNK1 and MNK2 are expressed by human nociceptors of males and females and suggest that efforts to pharmacologically target MNKs for pain would likely be translatable due its conserved expression in both species.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , Ganglio del Trigémino , Animales , Femenino , Humanos , Masculino , Ratones , Factor 4E Eucariótico de Iniciación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Raíces Nerviosas Espinales/metabolismo , Ganglio del Trigémino/metabolismo
3.
Acta Histochem ; 123(8): 151812, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34775224

RESUMEN

Manserin, a neuropeptide discovered in the rat brain, is distributed in the spiral ganglion of the inner ear and carotid body, suggesting it is also localized in another neuron cluster. In this study, we examined manserin's localization in the dorsal root ganglion (DRG) and spinal cord of adult Wistar rats using immunohistochemical analyses. The DRG consists of neurofilament (NF) 200-positive large cells and two types of small cells (calcitonin gene-related peptide (CGRP)-positive peptidergic neurons and isolectin B4 (IB4)-positive non-peptidergic neurons). Manserin was localized in some of the small cells. Fluorescence double immunostaining showed that manserin-positive cells corresponded to some of the CGRP-positive cells. The DRG comprises pseudo-unipolar cells that receive sensory information from the skin and viscera and project to each layer of the dorsal horn of the spinal cord. Manserin was localized in the CGRP-positive layer I and II outer, but not in the IB4-positive layer II inner. These results suggest manserin is localized in CGRP-positive cells in the DRG, projects to the dorsal horn of the spinal cord, and is secreted with other neuropeptides, such as CGRP, to participate in nociceptive function.


Asunto(s)
Neuronas/metabolismo , Neuropéptidos/metabolismo , Nocicepción , Fragmentos de Péptidos/metabolismo , Raíces Nerviosas Espinales/metabolismo , Animales , Masculino , Neuronas/citología , Ratas , Ratas Wistar , Raíces Nerviosas Espinales/citología
4.
Neuropharmacology ; 196: 108701, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34256047

RESUMEN

There is a need to develop a novel analgesic for pain associated with interstitial cystitis/painful bladder syndrome (IC/PBS). The use of the conventional µ-opioid receptor agonists to manage IC/PBS pain is controversial due to adverse CNS effects. These effects are attenuated in benzylideneoxymorphone (BOM), a low-efficacy µ-opioid receptor agonist/δ-opioid receptor antagonist that attenuates thermal pain and is devoid of reinforcing effects. We hypothesize that BOM will inhibit bladder pain by attenuating responses of urinary bladder distension (UBD)-sensitive afferent fibers. Therefore, the effect of BOM was tested on responses of UBD-sensitive afferent fibers in L6 dorsal root from inflamed and non-inflamed bladder of rats. Immunohistochemical (IHC) examination reveals that following the induction of inflammation there were significant high expressions of µ, δ, and µ-δ heteromer receptors in DRG. BOM dose-dependently (1-10 mg/kg, i.v) attenuated mechanotransduction properties of these afferent fibers from inflamed but not from non-inflamed rats. In behavioral model of bladder pain, BOM significantly attenuated visceromotor responses (VMRs) to UBD only in inflamed group of rats when injected either systemically (10 mg/kg, i.v.) or locally into the bladder (0.1 ml of 10 mg/ml). Furthermore, oxymorphone (OXM), a high-efficacy µ-opioid receptor agonist, attenuated responses of mechanosensitive bladder afferent fibers and VMRs to UBD. Naloxone (10 mg/kg, i.v.) significantly reversed the inhibitory effects of BOM and OXM on responses of bladder afferent fibers and VMRs suggesting µ-opioid receptor-related analgesic effects of these compounds. The results reveal that a low-efficacy, bifunctional opioid-based compound can produce analgesia by attenuating mechanotransduction functions of afferent fibers innervating the urinary bladder.


Asunto(s)
Analgésicos/farmacología , Compuestos de Bencilideno/farmacología , Cistitis Intersticial/fisiopatología , Mecanotransducción Celular/efectos de los fármacos , Oximorfona/farmacología , Receptores Opioides delta/antagonistas & inhibidores , Receptores Opioides mu/agonistas , Raíces Nerviosas Espinales/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Vías Aferentes , Animales , Cistitis Intersticial/metabolismo , Modelos Animales de Enfermedad , Vértebras Lumbares , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Oximorfona/análogos & derivados , Ratas , Raíces Nerviosas Espinales/metabolismo
5.
Sci Rep ; 11(1): 374, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431991

RESUMEN

Regeneration failure after spinal cord injury (SCI) results in part from the lack of a pro-regenerative response in injured neurons, but the response to SCI has not been examined specifically in injured sensory neurons. Using RNA sequencing of dorsal root ganglion, we determined that thoracic SCI elicits a transcriptional response distinct from sciatic nerve injury (SNI). Both SNI and SCI induced upregulation of ATF3 and Jun, yet this response failed to promote growth in sensory neurons after SCI. RNA sequencing of purified sensory neurons one and three days after injury revealed that unlike SNI, the SCI response is not sustained. Both SCI and SNI elicited the expression of ATF3 target genes, with very little overlap between conditions. Pathway analysis of differentially expressed ATF3 target genes revealed that fatty acid biosynthesis and terpenoid backbone synthesis were downregulated after SCI but not SNI. Pharmacologic inhibition of fatty acid synthase, the enzyme generating palmitic acid, decreased axon growth and regeneration in vitro. These results support the notion that decreased expression of lipid metabolism-related genes after SCI, including fatty acid synthase, may restrict axon regenerative capacity after SCI.


Asunto(s)
Metabolismo de los Lípidos/genética , Células Receptoras Sensoriales/fisiología , Traumatismos de la Médula Espinal , Animales , Células Cultivadas , Regulación hacia Abajo/genética , Embrión de Mamíferos , Femenino , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Ratones , Ratones Endogámicos C57BL , Regeneración Nerviosa/genética , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/patología , Médula Espinal/metabolismo , Médula Espinal/patología , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Raíces Nerviosas Espinales/metabolismo , Raíces Nerviosas Espinales/patología
6.
Brain Res Bull ; 164: 184-197, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32866558

RESUMEN

CNS lesions usually result in permanent loss of function and are an important problem in the medical field. In order to investigate neuroprotection/degeneration mechanisms and the synaptic plasticity of motoneurons, in addition to the potential for a variety of treatments, different experimental models of axonal injury have been proposed. Recent studies have tested the immunomodulatory drug dimethyl fumarate (DMF) for the treatment of neurodegenerative diseases and have shown promising outcomes. Therefore, in this work, we investigated the effects of DMF with regard to neuroprotection and its influence on the glial response in C57BL/6J animals subjected to crushing of the motor roots in the lumbar intumescence of the spinal cord. The animals were divided into a vehicle-treated injury group (0.08 % methylcellulose solution control group, n = 7) and injured groups treated with DMF at different doses (15, 30, 45, 90 and 180 mg/kg; n = 6-7 per dose). The 90 mg/kg dose showed the best neuroprotective results, so it was used for treatment over a period of eight weeks. Neuronal survival was assessed through Nissl staining, and functional recovery was evaluated with the CatWalk system (walking track test) and the von Frey test (mechanoreception). Immunohistochemistry was used to assess synaptic coverage and astroglial and microglial reactivity using the primary antibodies anti-synaptophysin (pre-synaptic terminal pan marker), GAD65 (GABAergic pre-synaptic terminations - inhibitory), and VGLUT1 (glutamatergic pre-synaptic terminations - excitatory). Glial reactions were evaluated with anti-IBA1 (microglia) and GFAP (astrocytes). Gene transcript levels of IL-3, IL-4, TNF-α, IL-6, TGF-ß, iNOS-M1, and arginase-M2 were quantified by RT-qPCR. The results indicated that treatment with DMF, at a dose of 90 mg/kg, promoted neuroprotection and immunomodulation towards an anti-inflammatory response. It also resulted in greater preservation of inhibitory synapses and reduced astroglial reactivity, providing a more favorable environment for sensorimotor recovery.


Asunto(s)
Dimetilfumarato/farmacología , Neuronas Motoras/efectos de los fármacos , Compresión Nerviosa , Fármacos Neuroprotectores/farmacología , Raíces Nerviosas Espinales/lesiones , Animales , Citocinas/metabolismo , Femenino , Ratones , Neuronas Motoras/metabolismo , Nocicepción/efectos de los fármacos , Raíces Nerviosas Espinales/efectos de los fármacos , Raíces Nerviosas Espinales/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
7.
J Exp Med ; 217(9)2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32573694

RESUMEN

Chronic pain is a major comorbidity of chronic inflammatory diseases. Here, we report that the cytokine IL-1ß, which is abundantly produced during multiple sclerosis (MS), arthritis (RA), and osteoarthritis (OA) both in humans and in animal models, drives pain associated with these diseases. We found that the type 1 IL-1 receptor (IL-1R1) is highly expressed in the mouse and human by a subpopulation of TRPV1+ dorsal root ganglion neurons specialized in detecting painful stimuli, termed nociceptors. Strikingly, deletion of the Il1r1 gene specifically in TRPV1+ nociceptors prevented the development of mechanical allodynia without affecting clinical signs and disease progression in mice with experimental autoimmune encephalomyelitis and K/BxN serum transfer-induced RA. Conditional restoration of IL-1R1 expression in nociceptors of IL-1R1-knockout mice induced pain behavior but did not affect joint damage in monosodium iodoacetate-induced OA. Collectively, these data reveal that neuronal IL-1R1 signaling mediates pain, uncovering the potential benefit of anti-IL-1 therapies for pain management in patients with chronic inflammatory diseases.


Asunto(s)
Inflamación/metabolismo , Inflamación/patología , Neuronas/metabolismo , Dolor/metabolismo , Dolor/patología , Receptores de Interleucina-1/metabolismo , Adulto , Anciano , Animales , Artritis Reumatoide/patología , Conducta Animal , Enfermedad Crónica , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/patología , Femenino , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Miembro Posterior/patología , Humanos , Hiperalgesia/complicaciones , Hiperalgesia/patología , Inflamación/complicaciones , Interleucina-1beta/metabolismo , Articulación de la Rodilla/patología , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Células Mieloides/metabolismo , Neuronas/patología , Nociceptores/metabolismo , Osteoartritis , Dolor/complicaciones , Receptores de Interleucina-1/deficiencia , Receptores de Interleucina-1/genética , Células Receptoras Sensoriales/metabolismo , Raíces Nerviosas Espinales/metabolismo , Raíces Nerviosas Espinales/patología , Canales Catiónicos TRPV/metabolismo
8.
J Neurophysiol ; 123(5): 1657-1670, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32208883

RESUMEN

The loss of descending serotonin (5-HT) to the spinal cord contributes to muscle spasms in chronic spinal cord injury (SCI). Hyperexcitable motoneurons receive long-lasting excitatory postsynaptic potentials (EPSPs), which activate their persistent inward currents to drive muscle spasms. Deep dorsal horn (DDH) neurons with bursting behavior could be involved in triggering the EPSPs due to loss of inhibition in the chronically 5-HT-deprived spinal cord. Previously, in an acutely transected preparation, we found that bursting DDH neurons were affected by administration of the 5-HT1B/1D receptor agonist zolmitriptan, which suppressed their bursts, and by N-methyl-d-aspartate (NMDA), which enhanced their bursting behavior. Nonbursting DDH neurons were not influenced by these agents. In the present study, we investigate the firing characteristics of bursting DDH neurons following chronic spinal transection at T10 level in adult mice and examine the effects of replacing lost endogenous 5-HT with zolmitriptan. Terminal experiments using our in vitro preparation of the sacral cord were carried out ~10 wk postransection. Compared with the acute spinal stage of our previous study, DDH neurons in the chronic stage became more responsive to dorsal root stimulation, with burst duration doubling with chronic injury. The suppressive effects of zolmitriptan were stronger overall, but the facilitative effects of NMDA were weaker. In addition, the onset of DDH neuron activity preceded ventral root output and the firing rates of DDH interneurons correlated with the integrated long-lasting ventral root output. These results support a contribution of the bursting DDH neurons to muscle spasms following SCI and inhibition by 5-HT.NEW & NOTEWORTHY We investigate the firing characteristics of bursting deep dorsal horn (DDH) neurons following chronic spinal transection. DDH neurons in the chronic stage are different from those in the acute stage as noted by their increase in excitability overall and their differing responses serotonin (5-HT) and N-methyl-d-aspartate (NMDA) receptor agonists. Also, there is a strong relationship between DDH neuron activity and ventral root output. These results support a contribution of the bursting DDH neurons to muscle spasms following chronic spinal cord injury (SCI).


Asunto(s)
Potenciales de Acción/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Interneuronas/fisiología , Neuronas Motoras/fisiología , Células del Asta Posterior/fisiología , Agonistas del Receptor de Serotonina 5-HT1/farmacología , Serotonina/metabolismo , Espasmo , Traumatismos de la Médula Espinal , Raíces Nerviosas Espinales , Potenciales de Acción/efectos de los fármacos , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , N-Metilaspartato/farmacología , Oxazolidinonas/farmacología , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/metabolismo , Espasmo/metabolismo , Espasmo/fisiopatología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Raíces Nerviosas Espinales/efectos de los fármacos , Raíces Nerviosas Espinales/metabolismo , Raíces Nerviosas Espinales/fisiopatología , Triptaminas/farmacología
9.
Proc Natl Acad Sci U S A ; 117(8): 4199-4210, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32029586

RESUMEN

The transcription factor Sox10 is a key regulator in the fate determination of a subpopulation of multipotent trunk neural crest (NC) progenitors toward glial cells instead of sensory neurons in the dorsal root ganglia (DRG). However, the mechanism by which Sox10 regulates glial cell fate commitment during lineage segregation remains poorly understood. In our study, we showed that the neurogenic determinant Neurogenin 2 (Neurog2) exhibited transient overlapping expression with Sox10 in avian trunk NC progenitors, which progressively underwent lineage segregation during migration toward the forming DRG. Gain- and loss-of-function studies revealed that the temporary expression of Neurog2 was due to Sox10 regulation of its protein stability. Transcriptional profiling identified Sox10-regulated F-box only protein (Fbxo9), which is an SCF (Skp1-Cul-F-box)-type ubiquitin ligase for Neurog2. Consistently, overexpression of Fbxo9 in NC progenitors down-regulated Neurog2 protein expression through ubiquitination and promoted the glial lineage at the expense of neuronal differentiation, whereas Fbxo9 knockdown resulted in the opposite phenomenon. Mechanistically, we found that Fbxo9 interacted with Neurog2 to promote its destabilization through the F-box motif. Finally, epistasis analysis further demonstrated that Fbxo9 and probably other F-box members mediated the role of Sox10 in destabilizing Neurog2 protein and directing the lineage of NC progenitors toward glial cells rather than sensory neurons. Altogether, these findings unravel a Sox10-Fbxo9 regulatory axis in promoting the glial fate of NC progenitors through Neurog2 destabilization.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas F-Box/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Factores de Transcripción SOXE/metabolismo , Raíces Nerviosas Espinales/metabolismo , Secuencias de Aminoácidos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Embrión de Pollo , Proteínas F-Box/química , Proteínas F-Box/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Cresta Neural/citología , Cresta Neural/metabolismo , Neurogénesis , Unión Proteica , Estabilidad Proteica , Raíces Nerviosas Espinales/citología
10.
Restor Neurol Neurosci ; 38(1): 23-40, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31683492

RESUMEN

BACKGROUND: In a model of injured spinal motor neurons where the avulsed spinal nerve is surgically reimplanted, useful regrowth of the injured nerve follows, both in animal experiments and clinical cases. This has led to surgical reimplantation strategies with subsequent partial functional motoric recovery. Still, the ideal time point for successful regeneration after reimplantation and the specific genetic profile of this time point is not known. OBJECTIVE: To explore the temporal gene expression of the whole genome in the ventral spinal cord after reimplantation at different time points after avulsion. METHODS: Totally 18 adult rats were subjected to avulsion of the left L5 root only (N = 3), avulsion followed by acute spinal reimplantation (N = 3), avulsion followed by 24 h (N = 3) or 48 h (N = 3) delayed reimplantation. Animals were allowed to survive 24 h after their respective surgery whereafter the ventral quadrant of the spinal cord at the operated side was harvested, processed for and analysed with Affymetrix Rat Gene ST 1.0 array followed by statistical analysis of gene expression patternsResults:Specific gene expression patterns were found at different time points after avulsion and reimplantation. Over all, early reimplantation seemed to diminish inflammatory response and support gene regulation related to neuronal activity compared to avulsion only or delayed reimplantation. In addition did gene activity after avulsion-reimplantation correspond to regeneration-associated genes typical for regeneration in the peripheral nervous system. CONCLUSIONS: Our study reveal that genetic profiling after this kind of injury is possible, that specific and distinct expression patterns can be found with early reimplantation being favourable over late and that regenerative activity in this kind of injury bears hallmark typical for peripheral nerve regeneration. These findings can be useful in elucidating specific genetic expression typical for successful nerve regeneration, hopefully not only in this specific model but in the nervous system in general.


Asunto(s)
Expresión Génica/fisiología , Neuronas Motoras/fisiología , Médula Espinal/metabolismo , Raíces Nerviosas Espinales/metabolismo , Factores de Tiempo , Animales , Modelos Animales de Enfermedad , Regeneración Nerviosa/genética , Regeneración Nerviosa/fisiología , Fármacos Neuroprotectores/farmacología , Ratas Sprague-Dawley , Recuperación de la Función/fisiología , Reimplantación/métodos , Médula Espinal/fisiopatología , Raíces Nerviosas Espinales/efectos de los fármacos , Nervios Espinales/metabolismo , Nervios Espinales/fisiopatología
11.
Hum Mol Genet ; 28(21): 3528-3542, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31411673

RESUMEN

X-linked Charcot-Marie-Tooth disease (CMT1X), one of the commonest forms of inherited demyelinating neuropathy, results from GJB1 gene mutations causing loss of function of the gap junction protein connexin32 (Cx32). The aim of this study was to examine whether delayed gene replacement therapy after the onset of peripheral neuropathy can provide a therapeutic benefit in the Gjb1-null/Cx32 knockout model of CMT1X. After delivery of the LV-Mpz.GJB1 lentiviral vector by a single lumbar intrathecal injection into 6-month-old Gjb1-null mice, we confirmed expression of Cx32 in lumbar roots and sciatic nerves correctly localized at the paranodal myelin areas. Gjb1-null mice treated with LV-Mpz.GJB1 compared with LV-Mpz.Egfp (mock) vector at the age of 6 months showed improved motor performance at 8 and 10 months. Furthermore, treated mice showed increased sciatic nerve conduction velocities, improvement of myelination and reduced inflammation in lumbar roots and peripheral nerves at 10 months of age, along with enhanced quadriceps muscle innervation. Plasma neurofilament light (NEFL) levels, a clinically relevant biomarker, were also ameliorated in fully treated mice. Intrathecal gene delivery after the onset of peripheral neuropathy offers a significant therapeutic benefit in this disease model, providing a proof of principle for treating patients with CMT1X at different ages.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/terapia , Conexinas/genética , Terapia Genética , Animales , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Conexinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vaina de Mielina/metabolismo , Raíces Nerviosas Espinales/metabolismo , Raíces Nerviosas Espinales/patología , Proteína beta1 de Unión Comunicante
12.
Neuropharmacology ; 158: 107732, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31377198

RESUMEN

Neuropeptide Y (NPY) modulates nociception in the spinal cord, but little is known about its mechanisms of release. We measured NPY release in situ using the internalization of its Y1 receptor in dorsal horn neurons. Y1 receptor immunoreactivity was normally localized to the cell surface, but addition of NPY to spinal cord slices increased the number of neurons with Y1 internalization in a biphasic fashion (EC50s of 1 nM and 1 µM). Depolarization with KCl, capsaicin, or the protein kinase A activator 6-benzoyl-cAMP also induced Y1 receptor internalization, presumably by releasing NPY. NMDA receptor activation in the presence of BVT948, an inhibitor of protein tyrosine phosphatases, also released NPY. Electrical stimulation of the dorsal horn frequency-dependently induced NPY release; and this was decreased by the Y1 antagonist BIBO3304, the Nav channel blocker lidocaine, or the Cav2 channel blocker ω-conotoxin MVIIC. Dorsal root immersion in capsaicin, but not its electrical stimulation, also induced NPY release. This was blocked by CNQX, suggesting that part of the NPY released by capsaicin was from dorsal horn neurons receiving synapses from primary afferents and not from the afferent themselves. Mechanical stimulation in vivo, with rub or clamp of the hindpaw, elicited robust Y1 receptor internalization in rats with spared nerve injury but not sham surgery. In summary, NPY is released from dorsal horn interneurons or primary afferent terminals by electrical stimulation and by activation of TRPV1, PKA or NMDA receptors in. Furthermore, NPY release evoked by noxious and tactile stimuli increases after peripheral nerve injury.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Neuropéptido Y/metabolismo , Nocicepción/fisiología , Traumatismos de los Nervios Periféricos/metabolismo , Células del Asta Posterior/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Neuropéptido Y/metabolismo , Canales Catiónicos TRPV/metabolismo , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Arginina/análogos & derivados , Arginina/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Capsaicina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Hiperalgesia/metabolismo , Indoles/farmacología , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Lidocaína/farmacología , Masculino , Microscopía Confocal , Neuropéptido Y/efectos de los fármacos , Nocicepción/efectos de los fármacos , Células del Asta Posterior/efectos de los fármacos , Cloruro de Potasio/farmacología , Transporte de Proteínas/efectos de los fármacos , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Ratas , Receptores de Neuropéptido Y/efectos de los fármacos , Fármacos del Sistema Sensorial/farmacología , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Raíces Nerviosas Espinales/efectos de los fármacos , Raíces Nerviosas Espinales/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , omega-Conotoxinas/farmacología
13.
Cell Transplant ; 28(9-10): 1212-1219, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31271055

RESUMEN

The dorsal root entry zone is often used in research to examine the disconnection between the central and peripheral parts of the nervous system which occurs following injury. Our laboratory and others have used transplantation of olfactory ensheathing cells (OECs) to repair experimental spinal cord injuries. We have previously used a four dorsal root (C6-T1) transection model to show that transplantation of OECs can reinstate rat forelimb proprioception in a climbing task. Until now, however, we have not looked in detail at the anatomical interaction between OECs and the peripheral/central nervous system regions which form the transitional zone. In this study, we compared short- and long-term OEC survival and their interaction with the surrounding dorsal root tissue. We reveal how transplanted OECs orient toward the spinal cord and allow newly formed axons to travel across into the dorsal horn of the spinal cord. Reconstruction of the dorsal root entry zone was supported by OEC ensheathment of axons at the injured site and also at around 3 mm further away at the dorsal root ganglion. Quantitative analysis revealed no observable difference in dorsal column axonal loss between transplanted and control groups of rats.


Asunto(s)
Trasplante de Células , Regeneración Nerviosa , Bulbo Olfatorio , Traumatismos de la Médula Espinal , Raíces Nerviosas Espinales , Animales , Femenino , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/patología , Ratas , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/terapia , Raíces Nerviosas Espinales/metabolismo , Raíces Nerviosas Espinales/patología
14.
Sci Rep ; 9(1): 3201, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30824771

RESUMEN

We investigated dye-coupling between motoneurons in the L6 segment of the neonatal mouse spinal cord that contains limb-innervating motoneurons and sexually dimorphic motor nuclei. Using an isolated spinal cord preparation, we back-filled the cut, L6 ventral root with the small molecule Neurobiotin, or the much larger dextran-conjugated fluorophores for 16-24 hours. Motoneurons and parasympathetic preganglionic neurons were filled with both markers, but dye-coupling was only seen with Neurobiotin fills. Following a neurobiotin fill, fluorescence was observed in contralateral motoneurons, in motoneurons innervating adjacent ventral roots, and in ChAT-negative, putative interneurons outside of the motoneuron pools in addition to the directly back-labeled L6 motoneurons. It is known that the gap junction protein connexin-36 is widely expressed in the sexually dimorphic motoneurons of the L6 segment, suggesting that the dye-coupling is mediated by gap junctions. The technique has revealed previously unknown connections of motoneurons in the neonatal mouse cord that are likely to play important roles in the development and function of spinal circuits.


Asunto(s)
Colorantes/metabolismo , Interneuronas/metabolismo , Neuronas Motoras/metabolismo , Médula Espinal/metabolismo , Raíces Nerviosas Espinales/metabolismo , Animales , Animales Recién Nacidos , Femenino , Vértebras Lumbares/metabolismo , Masculino , Ratones Transgénicos , Peso Molecular
15.
Spine (Phila Pa 1976) ; 44(15): E865-E872, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30817738

RESUMEN

STUDY DESIGN: Animal experiment: a rat model of lumbar disc herniation (LDH) induced painful radiculopathies. OBJECTIVE: To investigate the role and mechanism of AMP-activated protein kinase (AMPK) in dorsal root ganglia (DRG) neurons in LDH-induced painful radiculopathies. SUMMARY OF BACKGROUND DATA: Overactivation of multiple pain signals in DRG neurons triggered by LDH is crucial to the development of radicular pain. AMPK is recognized as a cellular energy sensor, as well as a pain sensation modulator, but its function in LDH-induced pain hypersensitivity remains largely unknown. METHODS: The LDH rat model was established by autologous nucleus pulposus transplantation into the right lumbar 5 (L5) nerve root. At different time points after AMPK agonist metformin (250 mg/kg/d) or mammalian target of rapamycin (mTOR) inhibitor rapamycin (5 mg/kg) intraperitoneal administration, thermal and mechanical sensitivity were evaluated by measuring paw withdrawal latency (PWL) and 50% paw withdrawal thresholds (PWT). The levels of AMPK, mTOR, and p70S6K phosphorylation were determined by Western blot. We also investigated the proportion of p-AMPK positive neurons in the right L5 DRG neurons using immunofluorescence. RESULTS: LDH evoked persistent thermal hyperalgesia and mechanical allodynia on the ipsilateral paw, as indicated by the decreased PWL and 50% PWT. These pain hypersensitive behaviors were accompanied with significant inhibition of AMPK and activation of mTOR in the associated DRG neurons. Pharmacological activation of AMPK in the DRG neurons not only suppressed mTOR/p70S6K signaling, but also alleviated LDH-induced pain hypersensitive behaviors. CONCLUSION: We provide a molecular mechanism for the activation of pain signals based on AMPK-mTOR axis, as well as an intervention strategy by targeting AMPK-mTOR axis in LDH-induced painful radiculopathies. LEVEL OF EVIDENCE: N/A.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Ganglios Espinales/metabolismo , Hiperalgesia/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Desplazamiento del Disco Intervertebral/metabolismo , Radiculopatía/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Ganglios Espinales/enzimología , Hiperalgesia/enzimología , Degeneración del Disco Intervertebral/enzimología , Desplazamiento del Disco Intervertebral/enzimología , Masculino , Metformina/farmacología , Neuronas/enzimología , Neuronas/metabolismo , Núcleo Pulposo/enzimología , Núcleo Pulposo/metabolismo , Dolor/enzimología , Dolor/metabolismo , Fosforilación , Radiculopatía/enzimología , Ratas , Ratas Wistar , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal , Sirolimus/farmacología , Raíces Nerviosas Espinales/enzimología , Raíces Nerviosas Espinales/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
16.
PLoS Biol ; 17(2): e3000159, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30794533

RESUMEN

Microglia are central nervous system (CNS)-resident cells. Their ability to migrate outside of the CNS, however, is not understood. Using time-lapse imaging in an obstetrical brachial plexus injury (OBPI) model, we show that microglia squeeze through the spinal boundary and emigrate to peripheral spinal roots. Although both macrophages and microglia respond, microglia are the debris-clearing cell. Once outside the CNS, microglia re-enter the spinal cord in an altered state. These peripheral nervous system (PNS)-experienced microglia can travel to distal CNS areas from the injury site, including the brain, with debris. This emigration is balanced by two mechanisms-induced emigration via N-methyl-D-aspartate receptor (NMDA) dependence and restriction via contact-dependent cellular repulsion with macrophages. These discoveries open the possibility that microglia can migrate outside of their textbook-defined regions in disease states.


Asunto(s)
Macrófagos/metabolismo , Microglía/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Raíces Nerviosas Espinales/metabolismo , Animales , Animales Modificados Genéticamente , Plexo Braquial/lesiones , Plexo Braquial/metabolismo , Comunicación Celular , Movimiento Celular , Embrión no Mamífero , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Macrófagos/patología , Microglía/patología , Modelos Biológicos , Receptores de N-Metil-D-Aspartato/genética , Médula Espinal/metabolismo , Médula Espinal/patología , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/patología , Raíces Nerviosas Espinales/lesiones , Imagen de Lapso de Tiempo , Pez Cebra
17.
Mol Pharmacol ; 95(4): 433-441, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30679204

RESUMEN

Transient receptor potential (TRP) cation channels are molecular targets of various natural products. TRPA1, a member of TRP channel family, is specifically activated by natural products such as allyl isothiocyanate (mustard oil), cinnamaldehyde (cinnamon), and allicin (garlic). In this study, we demonstrated that TRPA1 is also a target of trans-anethole in fennel oil (FO) and fennel seed extract. Similar to FO, trans-anethole selectively elicited calcium influx in TRPA1-expressing mouse sensory neurons of the dorsal root and trigeminal ganglia. These FO- and anethole-induced calcium responses were blocked by a selective TRPA1 channel antagonist, HC-030031. Moreover, both FO and trans-anethole induced calcium influx and transmembrane currents in HEK293 cells stably overexpressing human TRPA1 channels, but not in regular HEK293 cells. Mutation of the amino acids S873 and T874 binding site of human TRPA1 significantly attenuated channel activation by trans-anethole, whereas pretreating with glutathione, a nucleophile, did not. Conversely, activation of TRPA1 by the electrophile allyl isothiocyanate was abolished by glutathione, but was ostensibly unaffected by mutation of the ST binding site. Finally, it was found that trans-anethole was capable of desensitizing TRPA1, and unlike allyl isothiocyanate, it failed to induce nocifensive behaviors in mice. We conclude that trans-anethole is a selective, nonelectrophilic, and seemingly less-irritating agonist of TRPA1.


Asunto(s)
Anisoles/farmacología , Aceites Volátiles/farmacología , Canal Catiónico TRPA1/agonistas , Derivados de Alilbenceno , Animales , Canales de Calcio/metabolismo , Foeniculum/química , Células HEK293 , Humanos , Isotiocianatos/farmacología , Ratones , Ratones Endogámicos C57BL , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Raíces Nerviosas Espinales/efectos de los fármacos , Raíces Nerviosas Espinales/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Ganglio del Trigémino/efectos de los fármacos , Ganglio del Trigémino/metabolismo
18.
BMC Neurosci ; 20(1): 1, 2019 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-30602386

RESUMEN

BACKGROUND: Peripheral diabetic neuropathy can be painful and its symptoms include hyperalgesia, allodynia and spontaneous pain. Hydrogen sulfide (H2S) is involved in diabetes-induced hyperalgesia and allodynia. However, the molecular target through which H2S induces hyperalgesia in diabetic animals is unclear. The aim of this study was to determine the possible involvement of transient receptor potential (TRP) channels in H2S-induced hyperalgesia in diabetic rats. RESULTS: Streptozotocin (STZ) injection produced hyperglycemia in rats. Intraplantar injection of NaHS (an exogenous donor of H2S, 3-100 µg/paw) induced hyperalgesia, in a time-dependent manner, in formalin-treated diabetic rats. NaHS-induced hyperalgesia was partially prevented by local intraplantar injection of capsazepine (0.3-3 µg/paw), HC-030031 (100-316 µg/paw) and SKF-96365 (10-30 µg/paw) blockers, at 21 days post-STZ injection. At the doses used, these blockers did not modify formalin-induced nociception. Moreover, capsazepine (0.3-30 µg/paw), HC-030031 (100-1000 µg/paw) and SKF-96365 (10-100 µg/paw) reduced formalin-induced nociception in diabetic rats. Contralateral injection of the highest doses used did not modify formalin-induced flinching behavior. Hyperglycemia, at 21 days, also increased protein expression of cystathionine-ß-synthase enzyme (CBS) and TRPC6, but not TRPA1 nor TRPV1, channels in dorsal root ganglia (DRG). Repeated injection of NaHS enhanced CBS and TRPC6 expression, but hydroxylamine (HA) prevented the STZ-induced increase of CBS protein. In addition, daily administration of SKF-96365 diminished TRPC6 protein expression, whereas NaHS partially prevented the decrease of SKF-96365-induced TRPC6 expression. Concordantly, daily intraplantar injection of NaHS enhanced, and HA prevented STZ-induced intraepidermal fiber loss, respectively. CBS was expressed in small- and medium-sized cells of DRG and co-localized with TRPV1, TRPA1 and TRPC6 in IB4-positive neurons. CONCLUSIONS: Our data suggest that H2S leads to hyperalgesia in diabetic rats through activation of TRPV1, TRPA1 and TRPC channels and, subsequent intraepidermal fibers loss. CBS enzyme inhibitors or TRP-channel blockers could be useful for treatment of painful diabetic neuropathy.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Sulfuro de Hidrógeno/metabolismo , Hiperalgesia/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Acetanilidas/farmacología , Analgésicos/farmacología , Animales , Capsaicina/análogos & derivados , Capsaicina/farmacología , Cistationina betasintasa/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Femenino , Formaldehído , Hidroxilamina/farmacología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/patología , Imidazoles/farmacología , Nocicepción/efectos de los fármacos , Nocicepción/fisiología , Purinas/farmacología , Ratas Wistar , Piel/inervación , Piel/metabolismo , Raíces Nerviosas Espinales/efectos de los fármacos , Raíces Nerviosas Espinales/metabolismo , Raíces Nerviosas Espinales/patología , Sulfitos
19.
Neuropharmacology ; 144: 208-218, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30393073

RESUMEN

Dorsal root injury commonly results in irreversible loss of sensory functions because of the limited intrinsic regenerative capacity of adult sensory axons and the growth-inhibitory environment at the dorsal root entry zone (DREZ) between the dorsal root and the spinal cord. Chondroitin sulfate proteoglycans (CSPGs) are the dominant suppressors of axonal regeneration, acting via neuronal receptors including protein tyrosine phosphatase-σ (PTPσ). ISP (Intracellular Sigma Peptide) is a small peptide mimetic of the PTPσ wedge region that has been developed to target PTPσ and relieve CSPG inhibition. Extracellular regulated kinases (Erks) and cAMP response element binding protein (CREB) are signaling molecules downstream of CSPGs and PTPσ; they are expressed in neurons and essential for axon growth. In this study, we observed that ISP administration could promote sensory function restoration in adult rats after dorsal spinal root crush injury. Our results show that systemic ISP administration would not only significantly increase sensory axon regeneration and functional recovery, but also activate Erk and CREB signaling pathway. Furthermore, ISP has also been verified to increase dorsal root ganglion axonal remyelination in vitro. These results suggest that modulation of PTPσ by ISP represents a promising therapeutic strategy for sensory neuronal injuries.


Asunto(s)
Fármacos Neuroprotectores/farmacología , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Fármacos del Sistema Sensorial/farmacología , Raíces Nerviosas Espinales/efectos de los fármacos , Raíces Nerviosas Espinales/lesiones , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Regeneración Nerviosa/efectos de los fármacos , Regeneración Nerviosa/fisiología , Oligodendroglía/citología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Ratas Sprague-Dawley , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/patología , Transducción de Señal/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/patología , Raíces Nerviosas Espinales/metabolismo , Raíces Nerviosas Espinales/patología
20.
J Physiol Pharmacol ; 70(5)2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31889042

RESUMEN

The endocannabinoid (eCB) system plays a role in the pathophysiology of depression. The aim of this study was to investigate the expression of the eCB synthesizing enzymes (N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) and diacylglycerol lipase α (DAGLα)) and eCB degrading enzymes (fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL)) after acute or chronic administration of antidepressant drugs (imipramine (IMI, 15 mg/kg), escitalopram (ESC, 10 mg/kg) and tianeptine (TIA, 10 mg/kg)). eCB metabolizing enzymes were altered in drug-dependent and brain region-specific fashion. After IMI treatment a reduction was noted in the expression of FAAH protein in the dorsal striatum, MAGL in the frontal cortex and DAGLα in the cerebellum. On the other hand, ESC treatment provoked an increase in the MAGL expression in the prefrontal cortex or NAPE-PLD and in DAGLα in the hippocampus and dorsal striatum, while reducing the FAAH expression in the dorsal striatum. TIA administration increased the levels of all enzymes in the prefrontal cortex as well as elevated DAGLα expression in the frontal cortex and dorsal striatum. In conclusion, our results indicate that changes in the eCBs levels after antidepressant drug treatment were related to the expression of their metabolizing enzymes.


Asunto(s)
Antidepresivos/farmacología , Endocannabinoides/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Raíces Nerviosas Espinales/efectos de los fármacos , Raíces Nerviosas Espinales/metabolismo , Animales , Citalopram/farmacología , Depresión/tratamiento farmacológico , Depresión/metabolismo , Lipoproteína Lipasa/metabolismo , Masculino , Ratas , Ratas Wistar , Tiazepinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...