Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59.949
Filtrar
1.
Front Immunol ; 15: 1388962, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720895

RESUMEN

Introduction: Chronic inflammation is a hallmark of chronic wounds and inflammatory skin diseases. Due to a hyperactive and prolonged inflammation triggered by proinflammatory immune cells, transitioning to the repair and healing phase is halted. T cells may exacerbate the proinflammatory milieu by secreting proinflammatory cytokines. Chamomilla recutita L. (chamomile) has been suggested for use in several inflammatory diseases, implying a capability to modulate T cells. Here, we have characterized and compared the effects of differently prepared chamomile extracts and characteristic pure compounds on the T cell redox milieu as well as on the migration, activation, proliferation, and cytokine production of primary human T cells. Methods: Phytochemical analysis of the extracts was carried out by LC-MS/MS. Primary human T cells from peripheral blood (PBTs) were pretreated with aqueous or hydroethanolic chamomile extracts or pure compounds. Subsequently, the effects on intracellular ROS levels, SDF-1α induced T cell migration, T cell activation, proliferation, and cytokine production after TCR/CD3 and CD28 costimulation were determined. Gene expression profiling was performed using nCounter analysis, followed by ingenuity pathway analysis, and validation at protein levels. Results: The tested chamomile extracts and pure compounds differentially affected intracellular ROS levels, migration, and activation of T cells. Three out of five differently prepared extracts and two out of three pure compounds diminished T cell proliferation. In line with these findings, LC-MS/MS analysis revealed high heterogeneity of phytochemicals among the different extracts. nCounter based gene expression profiling identified several genes related to T cell functions associated with activation and differentiation to be downregulated. Most prominently, apigenin significantly reduced granzyme B induction and cytotoxic T cell activity. Conclusion: Our results demonstrate an anti-inflammatory effect of chamomile- derived products on primary human T cells. These findings provide molecular explanations for the observed anti-inflammatory action of chamomile and imply a broader use of chamomile extracts in T cell driven chronic inflammatory diseases such as chronic wounds and inflammatory skin diseases. Importantly, the mode of extract preparation needs to be considered as the resulting different phytochemicals can result in differential effects on T cells.


Asunto(s)
Antiinflamatorios , Citocinas , Flores , Activación de Linfocitos , Matricaria , Extractos Vegetales , Linfocitos T , Humanos , Extractos Vegetales/farmacología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Matricaria/química , Antiinflamatorios/farmacología , Citocinas/metabolismo , Flores/química , Activación de Linfocitos/efectos de los fármacos , Raíces de Plantas/química , Células Cultivadas , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos
2.
Plant Mol Biol ; 114(3): 57, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743266

RESUMEN

A high concentration of sodium (Na+) is the primary stressor for plants in high salinity environments. The Salt Overly Sensitive (SOS) pathway is one of the best-studied signal transduction pathways, which confers plants the ability to export too much Na+ out of the cells or translocate the cytoplasmic Na+ into the vacuole. In this study, the Salt Overly Sensitive3 (MpSOS3) gene from Pongamia (Millettia pinnata Syn. Pongamia pinnata), a semi-mangrove, was isolated and characterized. The MpSOS3 protein has canonical EF-hand motifs conserved in other calcium-binding proteins and an N-myristoylation signature sequence. The MpSOS3 gene was significantly induced by salt stress, especially in Pongamia roots. Expression of the wild-type MpSOS3 but not the mutated nonmyristoylated MpSOS3-G2A could rescue the salt-hypersensitive phenotype of the Arabidopsis sos3-1 mutant, which suggested the N-myristoylation signature sequence of MpSOS3 was required for MpSOS3 function in plant salt tolerance. Heterologous expression of MpSOS3 in Arabidopsis accumulated less H2O2, superoxide anion radical (O2-), and malondialdehyde (MDA) than wild-type plants, which enhanced the salt tolerance of transgenic Arabidopsis plants. Under salt stress, MpSOS3 transgenic plants accumulated a lower content of Na+ and a higher content of K+ than wild-type plants, which maintained a better K+/Na+ ratio in transgenic plants. Moreover, no development and growth discrepancies were observed in the MpSOS3 heterologous overexpression plants compared to wild-type plants. Our results demonstrated that the MpSOS3 pathway confers a conservative salt-tolerant role and provided a foundation for further study of the SOS pathway in Pongamia.


Asunto(s)
Arabidopsis , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Tolerancia a la Sal , Plantas Tolerantes a la Sal , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Tolerancia a la Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloruro de Sodio/farmacología , Secuencia de Aminoácidos , Filogenia , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Estrés Salino/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo
3.
Glob Chang Biol ; 30(5): e17310, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747174

RESUMEN

Enhanced rock weathering (ERW) has been proposed as a measure to enhance the carbon (C)-sequestration potential and fertility of soils. The effects of this practice on the soil phosphorus (P) pools and the general mechanisms affecting microbial P cycling, as well as plant P uptake are not well understood. Here, the impact of ERW on soil P availability and microbial P cycling functional groups and root P-acquisition traits were explored through a 2-year wollastonite field addition experiment in a tropical rubber plantation. The results show that ERW significantly increased soil microbial carbon-use efficiency and total P concentrations and indirectly increased soil P availability by enhancing organic P mobilization and mineralization of rhizosheath carboxylates and phosphatase, respectively. Also, ERW stimulated the activities of P-solubilizing (gcd, ppa and ppx) and mineralizing enzymes (phoADN and phnAPHLFXIM), thus contributing to the inorganic P solubilization and organic P mineralization. Accompanying the increase in soil P availability, the P-acquisition strategy of the rubber fine roots changed from do-it-yourself acquisition by roots to dependence on mycorrhizal collaboration and the release of root exudates. In addition, the direct effects of ERW on root P-acquisition traits (such as root diameter, specific root length, and mycorrhizal colonization rate) may also be related to changes in the pattern of belowground carbon investments in plants. Our study provides a new insight that ERW increases carbon-sequestration potential and P availability in tropical forests and profoundly affects belowground plant resource-use strategies.


Asunto(s)
Fósforo , Raíces de Plantas , Silicatos , Microbiología del Suelo , Suelo , Fósforo/metabolismo , Suelo/química , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Silicatos/metabolismo , Micorrizas/fisiología , Compuestos de Calcio , Carbono/metabolismo
4.
An Acad Bras Cienc ; 96(2): e20231075, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747797

RESUMEN

Mangroves buffer metals transfer to coastal areas though strong accumulation in sediments making necessary to investigate metals' bioavailability to plants at the rhizosphere. This work evaluates the effect of mangrove root activity, through iron plaque formation, on the mobility of iron and copper its influence on metals' uptake, and translocation through simultaneous histochemical analysis. The Fe2+ and Fe3+ contents in porewaters ranged from 0.02 to 0.11 µM and 1.0 to 18.3 µg.l-1, respectively, whereas Cu concentrations were below the method's detection limit (<0.1 µM). In sediments, metal concentrations ranged from 12,800 to 39,500 µg.g-1 for total Fe and from 10 to 24 µg.g-1 for Cu. In iron plaques, Cu concentrations ranged from 1.0 to 160 µg.g-1, and from 19.4 to 316 µg.g-1 in roots. Fe concentrations were between 605 to 36,000 µg.g-1 in the iron plaques and from 2,100 to 62,400 µg.g-1 in roots. Histochemical characterization showed Fe3+ predominance at the tip of roots and Fe2+ in more internal tissues. A. schaueriana showed significant amounts of Fe in pneumatophores and evident translocation of this metal to leaves and excretion through salt glands. Iron plaques formation was essential to the Fe and Cu regulation and translocation in tissues of mangrove plants.


Asunto(s)
Avicennia , Cobre , Hierro , Raíces de Plantas , Rhizophoraceae , Rhizophoraceae/química , Hierro/análisis , Hierro/metabolismo , Brasil , Cobre/análisis , Avicennia/química , Raíces de Plantas/química , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , Disponibilidad Biológica , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos
5.
Water Sci Technol ; 89(9): 2523-2537, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747965

RESUMEN

Miscanthus sacchariflorus is previously demonstrated to be a potential candidate for remediation of cadmium (Cd) pollution. To explore its resistance strategy to Cd, a hydroponic experiment was conducted to determine the variations of photosynthetic activity in leaves and physiological response in roots of this plant. Results showed that the root of M. sacchariflorus was the primary location for Cd accumulation. The bioconcentration factor in the roots and rhizomes was >1, and the translocation factor from underground to aboveground was <1. Throughout the experimental period, treatment with 0.06 mM Cd2+ did not significantly alter the contents of chlorophyll a, chlorophyll b, or carotenoid. By contrast, treatment with 0.15 and 0.30 mM Cd2+ decreased the contents of chlorophyll a, chlorophyll b, and carotenoid; caused the deformation of the chlorophyll fluorescence transient curve; reduced the photochemical efficiency of photosystem II; and increased the contents of non-protein thiols, total flavone, and total phenol. These results indicate that M. sacchariflorus has good adaptability to 0.06 mM Cd2+. Moreover, the accumulation of the non-protein thiols, total flavone, and total phenol in roots may promote the chelation of Cd2+, thus alleviating Cd toxicity. This study provides theoretical support for using M. sacchariflorus to remediate Cd-polluted wetlands.


Asunto(s)
Cadmio , Fotosíntesis , Poaceae , Compuestos de Sulfhidrilo , Cadmio/toxicidad , Cadmio/metabolismo , Fotosíntesis/efectos de los fármacos , Poaceae/metabolismo , Poaceae/efectos de los fármacos , Compuestos de Sulfhidrilo/metabolismo , Clorofila/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Biodegradación Ambiental
6.
Molecules ; 29(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731430

RESUMEN

The root of Carlina acaulis L. has been widely used in traditional medicine for its antimicrobial properties. In this study, the fractionation of methanol extract from the root was conducted. Four fractions (A, B, C, and D) were obtained and tested against a range of bacteria and fungi. The results showed promising antibacterial activity, especially against Bacillus cereus, where the minimal inhibitory concentration (MIC) was determined to be equal to 0.08 mg/mL and 0.16 mg/mL for heptane (fraction B) and ethyl acetate (fraction C), respectively. In the case of the methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300 strain, the same fractions yielded higher MIC values (2.5 and 5.0 mg/mL, respectively). This was accompanied by a lack of apparent cytotoxicity to normal human BJ foreskin fibroblasts, enterocytes derived from CaCo2 cells, and zebrafish embryos. Further analyses revealed the presence of bioactive chlorogenic acids in the fractionated extract, especially in the ethyl acetate fraction (C). These findings support the traditional use of the root from C. acaulis and pave the way for the development of new formulations for treating bacterial infections. This was further evaluated in a proof-of-concept experiment where fraction C was used in the ointment formulation, which maintained high antimicrobial activity against MRSA and displayed low toxicity towards cultured fibroblasts.


Asunto(s)
Antibacterianos , Bacillus cereus , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Raíces de Plantas , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Bacillus cereus/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Raíces de Plantas/química , Animales , Células CACO-2 , Metanol/química , Fraccionamiento Químico , Pez Cebra
7.
Molecules ; 29(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38731598

RESUMEN

Obtaining high-added value compounds from agricultural waste receives increasing attention, as it can both improve resource utilization efficiency and reduce waste generation. In this study, polysaccharides are extracted from the discarded roots of Abelmoschus manihot (L.) by the high-efficiency ultrasound-assisted extraction (UAE). The optimized condition was determined as solid-liquid ratio SL ratio = 1:20, temperature T = 30 °C and time T = 40 min, achieving an extraction yield of 13.41%. Composition analysis revealed that glucose (Glc, 44.65%), rhamnose (Rha, 26.30%), galacturonic acid (GalA, 12.50%) and galactose (Gal, 9.86%) are the major monosaccharides of the extract. The extract showed a low degree of esterification (DE) value of 40.95%, and its Fourier-transform infrared (FT-IR) spectrum exhibited several characteristic peaks of polysaccharides. Inspired by the wide cosmetic applications of polysaccharides, the skincare effect of the extract was evaluated via the moisture retention, total phenolic content (TPC) quantification, 2,2-Diphenyl-1-picrylhydrazyl (DPPH)-free radical scavenging activity, anti-hyaluronidase and anti-elastase activity experiments. The extract solutions demonstrated a 48 h moisture retention rate of 10.75%, which is superior to that of commercially available moisturizer hyaluronic acid (HA). Moreover, both the TPC value of 16.16 mg GAE/g (dw) and DPPH-free radical scavenging activity of 89.20% at the concentration of 2 mg/mL indicated the strong anti-oxidant properties of the extract. Furthermore, the anti-hyaluronidase activity and moderate anti-elastase activity were determined as 72.16% and 42.02%, respectively. In general, in vitro skincare effect experiments suggest moisturizing, anti-oxidant, anti-radical and anti-aging activities of the A. manihot root extract, indicating its potential applications in the cosmetic industry.


Asunto(s)
Abelmoschus , Antioxidantes , Extractos Vegetales , Raíces de Plantas , Polisacáridos , Polisacáridos/química , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Raíces de Plantas/química , Abelmoschus/química , Antioxidantes/química , Antioxidantes/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Cuidados de la Piel/métodos , Ramnosa/química , Galactosa , Ácidos Hexurónicos/química , Fenoles/química , Fenoles/análisis , Fenoles/farmacología , Humanos
8.
Sci Rep ; 14(1): 10587, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719851

RESUMEN

Cassava root-rot incited by soil-borne pathogens is one of the major diseases that reduces root yield. Although the use of resistant cultivars is the most effective method of management, the genetic basis for root-rot resistance remains poorly understood. Therefore, our work analyzed the transcriptome of two contrasting genotypes (BRS Kiriris/resistant and BGM-1345/susceptible) using RNA-Seq to understand the molecular response and identify candidate genes for resistance. Cassava seedlings (resistant and susceptible to root-rot) were both planted in infested and sterilized soil and samples from Initial-time and Final-time periods, pooled. Two controls were used: (i) seedlings collected before planting in infested soil (absolute control) and, (ii) plants grown in sterilized soil (mock treatments). For the differentially expressed genes (DEGs) analysis 23.912 were expressed in the resistant genotype, where 10.307 were differentially expressed in the control treatment, 15 DEGs in the Initial Time-period and 366 DEGs in the Final Time-period. Eighteen candidate genes from the resistant genotype were related to plant defense, such as the MLP-like protein 31 and the peroxidase A2-like gene. This is the first model of resistance at the transcriptional level proposed for the cassava × root-rot pathosystem. Gene validation will contribute to screening for resistance of germplasm, segregating populations and/or use in gene editing in the pursuit to develop most promising cassava clones with resistance to root-rot.


Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Manihot , Enfermedades de las Plantas , Raíces de Plantas , Transcriptoma , Manihot/genética , Manihot/microbiología , Resistencia a la Enfermedad/genética , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Perfilación de la Expresión Génica , Genotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas
9.
Sci Rep ; 14(1): 10525, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720057

RESUMEN

The narrow zone of soil around the plant roots with maximum microbial activity termed as rhizosphere. Rhizospheric bacteria promote the plant growth directly or indirectly by providing the nutrients and producing antimicrobial compounds. In this study, the rhizospheric microbiota of peanut plants was characterized from different farms using an Illumina-based partial 16S rRNA gene sequencing to evaluate microbial diversity and identify the core microbiome through culture-independent (CI) approach. Further, all rhizospheric bacteria that could grow on various nutrient media were identified, and the diversity of those microbes through culture-dependent method (CD) was then directly compared with their CI counterparts. The microbial population profiles showed a significant correlation with organic carbon and concentration of phosphate, manganese, and potassium in the rhizospheric soil. Genera like Sphingomicrobium, Actinoplanes, Aureimonas _A, Chryseobacterium, members from Sphingomonadaceae, Burkholderiaceae, Pseudomonadaceae, Enterobacteriaceae family, and Bacilli class were found in the core microbiome of peanut plants. As expected, the current study demonstrated more bacterial diversity in the CI method. However, a higher number of sequence variants were exclusively present in the CD approach compared to the number of sequence variants shared between both approaches. These CD-exclusive variants belonged to organisms that are more typically found in soil. Overall, this study portrayed the changes in the rhizospheric microbiota of peanuts in different rhizospheric soil and environmental conditions and gave an idea about core microbiome of peanut plant and comparative bacterial diversity identified through both approaches.


Asunto(s)
Arachis , Bacterias , Metagenómica , Microbiota , ARN Ribosómico 16S , Rizosfera , Microbiología del Suelo , Arachis/microbiología , India , Microbiota/genética , ARN Ribosómico 16S/genética , Metagenómica/métodos , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Granjas , Raíces de Plantas/microbiología , Filogenia , Metagenoma , Biodiversidad
10.
BMC Genom Data ; 25(1): 40, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724915

RESUMEN

Bulb rot, a highly damaging disease of tulip plants, has hindered their profitable cultivation worldwide. This rot occurs in both field and storage conditions posing significant challenges. While this disease has been attributed to a range of pathogens, previous investigations have solely examined it within the framework of a single-pathogen disease model. Our study took a different approach and identified four pathogens associated with the disease: Fusarium solani, Penicillium chrysogenum, Botrytis tulipae, and Aspergillus niger. The primary objective of our research was to examine the impact of co-infections on the overall virulence dynamics of these pathogens. Through co-inoculation experiments on potato dextrose agar, we delineated three primary interaction patterns: antibiosis, deadlock, and merging. In vitro trials involving individual pathogen inoculations on tulip bulbs revealed that B. tulipae,was the most virulent and induced complete bulb decay. Nonetheless, when these pathogens were simultaneously introduced in various combinations, outcomes ranged from partial bulb decay to elongated rotting periods. This indicated a notable degree of antagonistic behaviour among the pathogens. While synergistic interactions were evident in a few combinations, antagonism overwhelmingly prevailed. The complex interplay of these pathogens during co-infection led to a noticeable change in the overall severity of the disease. This underscores the significance of pathogen-pathogen interactions in the realm of plant pathology, opening new insights for understanding and managing tulip bulb rot.


Asunto(s)
Fusarium , Enfermedades de las Plantas , Tulipa , Enfermedades de las Plantas/microbiología , Fusarium/patogenicidad , Tulipa/microbiología , Botrytis/patogenicidad , Penicillium chrysogenum/patogenicidad , Aspergillus niger/patogenicidad , Virulencia , Raíces de Plantas/microbiología
11.
Microbiome ; 12(1): 83, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725008

RESUMEN

BACKGROUND: Fungi and bacteria coexist in a wide variety of environments, and their interactions are now recognized as the norm in most agroecosystems. These microbial communities harbor keystone taxa, which facilitate connectivity between fungal and bacterial communities, influencing their composition and functions. The roots of most plants are associated with arbuscular mycorrhizal (AM) fungi, which develop dense networks of hyphae in the soil. The surface of these hyphae (called the hyphosphere) is the region where multiple interactions with microbial communities can occur, e.g., exchanging or responding to each other's metabolites. However, the presence and importance of keystone taxa in the AM fungal hyphosphere remain largely unknown. RESULTS: Here, we used in vitro and pot cultivation systems of AM fungi to investigate whether certain keystone bacteria were able to shape the microbial communities growing in the hyphosphere and potentially improved the fitness of the AM fungal host. Based on various AM fungi, soil leachates, and synthetic microbial communities, we found that under organic phosphorus (P) conditions, AM fungi could selectively recruit bacteria that enhanced their P nutrition and competed with less P-mobilizing bacteria. Specifically, we observed a privileged interaction between the isolate Streptomyces sp. D1 and AM fungi of the genus Rhizophagus, where (1) the carbon compounds exuded by the fungus were acquired by the bacterium which could mineralize organic P and (2) the in vitro culturable bacterial community residing on the surface of hyphae was in part regulated by Streptomyces sp. D1, primarily by inhibiting the bacteria with weak P-mineralizing ability, thereby enhancing AM fungi to acquire P. CONCLUSIONS: This work highlights the multi-functionality of the keystone bacteria Streptomyces sp. D1 in fungal-bacteria and bacterial-bacterial interactions at the hyphal surface of AM fungi. Video Abstract.


Asunto(s)
Hifa , Microbiota , Micorrizas , Raíces de Plantas , Microbiología del Suelo , Streptomyces , Micorrizas/fisiología , Micorrizas/clasificación , Streptomyces/clasificación , Streptomyces/aislamiento & purificación , Streptomyces/genética , Streptomyces/fisiología , Hifa/crecimiento & desarrollo , Raíces de Plantas/microbiología , Fósforo/metabolismo , Interacciones Microbianas/fisiología , Suelo/química , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo
12.
Curr Microbiol ; 81(6): 160, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695903

RESUMEN

Salt stress can adversely affect plant seed germination, growth and development, and eventually lead to slow growth and even death of plants. The purpose of this study was to investigate the effects of different concentrations of NaCl and Na2SO4 stress on the physicochemical properties, enzyme activities, rhizosphere microbial community and seven active components (L-phenylalanine, Protocatechuic acid, Eleutheroside B, Chlorogenic acid, Caffeic acid, Eleutheroside E, Isofraxidin) of Acanthopanax senticosus rhizosphere soil. Statistical analysis was used to explore the correlation between the rhizosphere ecological factors of Acanthopanax senticosus and its active components. Compared with Acanthopanax senticosus under NaCl stress, Na2SO4 generally had a greater effect on Acanthopanax senticosus, which reduced the richness of fungi in rhizosphere soil and adversely affected the content of multiple active components. Pearson analysis showed that pH, organic matter, ammonium nitrogen, available phosphorus, available potassium, catalase and urease were significantly correlated with active components such as Caffeic acid and Isofraxidin. There were 11 known bacterial genera, 12 unknown bacterial genera, 9 known fungal genera and 1 unknown fungal genus significantly associated with the active ingredient. Salt stress had great changes in the physicochemical properties, enzyme activities and microorganisms of the rhizosphere soil of Acanthopanax senticosus. In conclusion, different types and concentrations of salts had different effects on Acanthopanax senticosus, and the active components of Acanthopanax senticosus were regulated by rhizosphere soil ecological factors.


Asunto(s)
Bacterias , Eleutherococcus , Hongos , Rizosfera , Estrés Salino , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Hongos/clasificación , Hongos/efectos de los fármacos , Hongos/genética , Hongos/aislamiento & purificación , Eleutherococcus/metabolismo , Microbiota/efectos de los fármacos , Suelo/química , Cloruro de Sodio/metabolismo , Raíces de Plantas/microbiología
13.
J Agric Food Chem ; 72(19): 11251-11258, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38699857

RESUMEN

Engineered nanoparticles (ENPs) have been increasingly used in agricultural operations, leading to an urgent need for robust methods to analyze co-occurring ENPs in plant tissues. In response, this study advanced the simultaneous extraction of coexisting silver, cerium oxide, and copper oxide ENPs in lettuce shoots and roots using macerozyme R-10 and analyzed them by single-particle inductively coupled plasma-mass spectrometry (ICP-MS). Additionally, the standard stock suspensions of the ENPs were stabilized with citrate, and the long-term stability (up to 5 months) was examined for the first time. The method performance results displayed satisfactory accuracies and precisions and achieved low particle concentration and particle size detection limits. Significantly, the oven drying process was proved not to impact the properties of the ENPs; therefore, oven-dried lettuce tissues were used in this study, which markedly expanded the applicability of this method. This robust methodology provides a timely approach to characterize and quantify multiple coexisting ENPs in plants.


Asunto(s)
Lactuca , Espectrometría de Masas , Nanopartículas del Metal , Raíces de Plantas , Nanopartículas del Metal/química , Lactuca/química , Espectrometría de Masas/métodos , Raíces de Plantas/química , Cobre/análisis , Brotes de la Planta/química , Plata/química , Cerio/química , Tamaño de la Partícula
14.
J Agric Food Chem ; 72(19): 10842-10852, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38708761

RESUMEN

Guvermectin, as a novel nucleoside-like biopesticide, could increase the rice yield excellently, but the potential environmental behaviors remain unclear, which pose potential health risks. Therefore, the uptake and biotransformation of guvermectin in three types of crops (rice, lettuce, and carrot) were first evaluated with a hydroponic system. Guvermectin could be rapidly absorbed and reached equilibrium in roots (12-36 h) and shoots (24-60 h) in three plants, and guvermectin was also vulnerable to dissipation in roots (t1/2 1.02-3.65 h) and shoots (t1/2 9.30-17.91 h). In addition, 8 phase I and 2 phase II metabolites, transformed from guvermectin degradation in vivo and in vitro exposure, were identified, and one was confirmed as psicofuranine, which had antibacterial and antitumor properties; other metabolites were nucleoside-like chemicals. Molecular simulation and quantitative polymerase chain reaction further demonstrated that guvermectin was metabolized by the catabolism pathway of an endogenous nucleotide. Guvermectin had similar metabolites in three plants, but the biotransformation ability had a strong species dependence. In addition, all the metabolites exhibit neglectable toxicities (bioconcentration factor <2000 L/kg b.w., LC50,rat > 5000 mg/kg b.w.) by prediction. The study provided valuable evidence for the application of guvermectin and a better understanding of the biological behavior of nucleoside-like pesticides.


Asunto(s)
Biotransformación , Daucus carota , Ivermectina , Lactuca , Oryza , Raíces de Plantas , Ivermectina/metabolismo , Ivermectina/análogos & derivados , Raíces de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo , Lactuca/metabolismo , Lactuca/química , Lactuca/crecimiento & desarrollo , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Oryza/química , Daucus carota/metabolismo , Daucus carota/química , Productos Agrícolas/metabolismo , Productos Agrícolas/química , Productos Agrícolas/crecimiento & desarrollo
15.
J Agric Food Chem ; 72(19): 10781-10793, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38709780

RESUMEN

In this study, 20-day-old soybean plants were watered with 100 mL of 100 mM NaCl solution and sprayed with silica nanoparticles (SiO2 NPs) or potassium silicate every 3 days over 15 days, with a final dosage of 12 mg of SiO2 per plant. We assessed the alterations in the plant's growth and physiological traits, and the responses of bacterial microbiome within the leaf endosphere, rhizosphere, and root endosphere. The result showed that the type of silicon did not significantly impact most of the plant parameters. However, the bacterial communities within the leaf and root endospheres had a stronger response to SiO2 NPs treatment, showing enrichment of 24 and 13 microbial taxa, respectively, compared with the silicate treatment, which led to the enrichment of 9 and 8 taxonomic taxa, respectively. The rhizosphere bacterial communities were less sensitive to SiO2 NPs, enriching only 2 microbial clades, compared to the 8 clades enriched by silicate treatment. Furthermore, SiO2 NPs treatment enriched beneficial genera, such as Pseudomonas, Bacillus, and Variovorax in the leaf and root endosphere, likely enhancing plant growth and salinity stress resistance. These findings highlight the potential of SiO2 NPs for foliar application in sustainable farming by enhancing plant-microbe interactions to improve salinity tolerance.


Asunto(s)
Bacterias , Glycine max , Nanopartículas , Rizosfera , Silicio , Glycine max/microbiología , Glycine max/crecimiento & desarrollo , Glycine max/efectos de los fármacos , Glycine max/química , Nanopartículas/química , Bacterias/clasificación , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Bacterias/crecimiento & desarrollo , Silicio/farmacología , Silicio/química , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Microbiología del Suelo , Microbiota/efectos de los fármacos , Hojas de la Planta/química , Hojas de la Planta/microbiología , Hojas de la Planta/crecimiento & desarrollo , Endófitos/fisiología , Endófitos/efectos de los fármacos , Dióxido de Silicio/química , Estrés Salino
16.
Physiol Plant ; 176(3): e14338, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38740528

RESUMEN

Bacteria can be applied as biofertilizers to improve crop growth in phosphorus (P)-limited conditions. However, their mode of action in a soil environment is still elusive. We used the strain ALC_02 as a case study to elucidate how Bacillus subtilis affects dwarf tomato cultivated in soil-filled rhizoboxes over time. ALC_02 improved plant P acquisition by increasing the size and P content of P-limited plants. We assessed three possible mechanisms, namely root growth stimulation, root hair elongation, and solubilization of soil P. ALC_02 produced auxin, and inoculation with ALC_02 promoted root growth. ALC_02 promoted root hair elongation as the earliest observed response and colonized root hairs specifically. Root and root hair growth stimulation was associated with a subsequent increase in plant P content, indicating that a better soil exploration by the root system improved plant P acquisition. Furthermore, ALC_02 affected the plant-available P content in sterilized soil differently over time and released P from native P pools in the soil. Collectively, ALC_02 exhibited all three mechanisms in a soil environment. To our knowledge, bacterial P biofertilizers have not been reported to colonize and elongate root hairs in the soil so far, and we propose that these traits contribute to the overall effect of ALC_02. The knowledge gained in this research can be applied in the future quest for bacterial P biofertilizers, where we recommend assessing all three parameters, not only root growth and P solubilization, but also root hair elongation. This will ultimately support the development of sustainable agricultural practices.


Asunto(s)
Bacillus subtilis , Fósforo , Raíces de Plantas , Suelo , Solanum lycopersicum , Fósforo/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/metabolismo , Suelo/química , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/microbiología , Solanum lycopersicum/metabolismo , Microbiología del Suelo , Solubilidad , Ácidos Indolacéticos/metabolismo , Fertilizantes
17.
Physiol Plant ; 176(3): e14341, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741264

RESUMEN

Symbiotic nitrogen fixation (SNF) is crucial for legumes, providing them with the nitrogen necessary for plant growth and development. Nodulation is the first step in the establishment of SNF. However, the determinant genes in soybean nodulation and the understanding of the underlying molecular mechanisms governing nodulation are still limited. Herein, we identified a phosphatase, GmPP2C61A, which was specifically induced by rhizobia inoculation. Using transgenic hairy roots harboring GmPP2C61A::GUS, we showed that GmPP2C61A was mainly induced in epidermal cells following rhizobia inoculation. Functional analysis revealed that knockdown or knock-out of GmPP2C61A significantly reduced the number of nodules, while overexpression of GmPP2C61A promoted nodule formation. Additionally, GmPP2C61A protein was mainly localized in the cytoplasm and exhibited conserved phosphatase activity in vitro. Our findings suggest that phosphatase GmPP2C61A serves as a critical regulator in soybean nodulation, highlighting its potential significance in enhancing symbiotic nitrogen fixation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max , Fijación del Nitrógeno , Proteínas de Plantas , Nodulación de la Raíz de la Planta , Simbiosis , Glycine max/genética , Glycine max/microbiología , Glycine max/fisiología , Nodulación de la Raíz de la Planta/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Simbiosis/genética , Rhizobium/fisiología , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/metabolismo , Plantas Modificadas Genéticamente , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo
18.
Sci Total Environ ; 930: 172796, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38692325

RESUMEN

Lead (Pb) affects gene transcription, metabolite biosynthesis and growth in plants. The tung tree (Vernicia fordii) is highly adaptive to adversity, whereas the mechanisms underlying its response to Pb remain uncertain. In this work, transcriptomic and metabolomic analyses were employed to study tung trees under Pb stress. The results showed that the biomass of tung seedlings decreased with increasing Pb doses, and excessive Pb doses resulted in leaf wilting, root rot, and disruption of Pb homeostasis. Under non-excessive Pb stress, a significant change in the expression patterns of flavonoid biosynthesis genes was observed in the roots of tung seedlings, leading to changes in the accumulation of flavonoids in the roots, especially the upregulation of catechins, which can chelate Pb and reduce its toxicity in plants. In addition, Pb-stressed roots showed a large accumulation of VfWRKY55, VfWRKY75, and VfLRR1 transcripts, which were shown to be involved in the flavonoid biosynthesis pathway by gene module analysis. Overexpression of VfWRKY55, VfWRKY75, and VfLRR1 significantly increased catechin concentrations in tung roots, respectively. These data indicate that Pb stress-induced changes in the expression patterns of those genes regulate the accumulation of catechins. Our findings will help to clarify the molecular mechanism of Pb response in plants.


Asunto(s)
Catequina , Plomo , Transcriptoma , Plomo/toxicidad , Plomo/metabolismo , Catequina/metabolismo , Metabolómica , Regulación de la Expresión Génica de las Plantas , Contaminantes del Suelo/toxicidad , Estrés Fisiológico , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Flavonoides/metabolismo
19.
BMC Plant Biol ; 24(1): 416, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760676

RESUMEN

BACKGROUND: Phytophthora root rot, a major constraint in chile pepper production worldwide, is caused by the soil-borne oomycete, Phytophthora capsici. This study aimed to detect significant regions in the Capsicum genome linked to Phytophthora root rot resistance using a panel consisting of 157 Capsicum spp. genotypes. Multi-locus genome wide association study (GWAS) was conducted using single nucleotide polymorphism (SNP) markers derived from genotyping-by-sequencing (GBS). Individual plants were separately inoculated with P. capsici isolates, 'PWB-185', 'PWB-186', and '6347', at the 4-8 leaf stage and were scored for disease symptoms up to 14-days post-inoculation. Disease scores were used to calculate disease parameters including disease severity index percentage, percent of resistant plants, area under disease progress curve, and estimated marginal means for each genotype. RESULTS: Most of the genotypes displayed root rot symptoms, whereas five accessions were completely resistant to all the isolates and displayed no symptoms of infection. A total of 55,117 SNP markers derived from GBS were used to perform multi-locus GWAS which identified 330 significant SNP markers associated with disease resistance. Of these, 56 SNP markers distributed across all the 12 chromosomes were common across the isolates, indicating association with more durable resistance. Candidate genes including nucleotide-binding site leucine-rich repeat (NBS-LRR), systemic acquired resistance (SAR8.2), and receptor-like kinase (RLKs), were identified within 0.5 Mb of the associated markers. CONCLUSIONS: Results will be used to improve resistance to Phytophthora root rot in chile pepper by the development of Kompetitive allele-specific markers (KASP®) for marker validation, genomewide selection, and marker-assisted breeding.


Asunto(s)
Capsicum , Resistencia a la Enfermedad , Estudio de Asociación del Genoma Completo , Phytophthora , Enfermedades de las Plantas , Raíces de Plantas , Polimorfismo de Nucleótido Simple , Phytophthora/fisiología , Phytophthora/patogenicidad , Capsicum/genética , Capsicum/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Raíces de Plantas/microbiología , Raíces de Plantas/genética , Genotipo
20.
BMC Plant Biol ; 24(1): 413, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760721

RESUMEN

BACKGROUND: Styrax tonkinensis (Pierre) Craib ex Hartwich faces challenges in expanding in the south provinces of Yangtze River region due to climate extremes like flood-drought abrupt alternation (FDAA) caused by global warming. Low tolerance to waterlogging and drought restricts its growth in this area. To study its antioxidant system and molecular response related to the peroxisome pathway under FDAA, we conducted experiments on two-year-old seedlings, measuring growth indexes, reactive oxygen species content, antioxidant enzyme activity, and analyzing transcriptomes under FDAA and drought (DT) conditions. RESULTS: The physiological results indicated a reduction in water content in roots, stems, and leaves under FDAA conditions. The most significant water loss, amounting to 15.53% was observed in the leaves. Also, ROS accumulation was predominantly observed in leaves rather than roots. Through transcriptome analysis, we assembled a total of 1,111,088 unigenes (with a total length of 1,111,628,179 bp). Generally, SOD1 and CAT genes in S. tonkinensis seedlings were up-regulated to scavenge ROS. Conversely, the MPV17 gene exhibited contrasting reaction with up-regulation in leaves and down-regulation in roots, leading to increased ROS accumulation in leaves. CHS and F3H were down-regulated, which did not play an essential role in scavenging ROS. Moreover, the down-regulation of PYL, CPK and CALM genes in leaves may not contribute to stomatal closure, thereby causing continuous water loss through transpiration. Whereas, the decreased root vigor during the waterlogging phase and up-regulated CPK and CALM in roots posed obstacles to water absorption by roots. Additionally, the DEGs related to energy metabolism, including LHCA and LHCB, were negatively regulated. CONCLUSIONS: The ROS generation triggered by MPV17 genes was not the main reason for the eventual mortality of the plant. Instead, plant mortality may be attributed to water loss during the waterlogging phase, decreased root water uptake capacity, and continued water loss during the subsequent drought period. This study establishes a scientific foundation for comprehending the morphological, physiological, and molecular facts of S. tonkinensis under FDAA conditions.


Asunto(s)
Antioxidantes , Sequías , Inundaciones , Perfilación de la Expresión Génica , Plantones , Plantones/genética , Plantones/fisiología , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA