Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 876
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 135, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702792

RESUMEN

BACKGROUND: Rhabdomyosarcoma (RMS) is a rare malignancy and the most common soft tissue sarcoma in children. Vasculogenic mimicry (VM) is a novel tumor microcirculation model different from traditional tumor angiogenesis, which does not rely on endothelial cells to provide sufficient blood supply for tumor growth. In recent years, VM has been confirmed to be closely associated with tumor progression. However, the ability of RMS to form VM has not yet been reported. METHODS: Immunohistochemistry, RT-qPCR and western blot were used to test the expression level of SNAI2 and its clinical significance. The biological function in regulating vasculogenic mimicry and malignant progression of SNAI2 was examined both in vitro and in vivo. Mass spectrometry, co-immunohistochemistry, immunofluorescence staining, and ubiquitin assays were performed to explore the regulatory mechanism of SNAI2. RESULTS: Our study indicated that SNAI2 was abnormally expressed in patients with RMS and RMS cell lines and promoted the proliferation and metastasis of RMS. Through cell tubule formation experiments, nude mice Matrigel plug experiments, and immunohistochemistry (IHC), we confirmed that RMS can form VM and that SNAI2 promotes the formation of VM. Due to SNAI2 is a transcription factor that is not easily drugged, we used Co-IP combined with mass spectrometry to screen for the SNAI2-binding protein USP7 and TRIM21. USP7 depletion inhibited RMS VM formation, proliferation and metastasis by promoting SNAI2 degradation. We further demonstrated that TRIM21 is expressed at low levels in human RMS tissues and inhibits VM in RMS cells. TRIM21 promotes SNAI2 protein degradation through ubiquitination in the RMS. The deubiquitinase USP7 and E3 ligase TRIM21 function in an antagonistic rather than competitive mode and play a key role in controlling the stability of SNAI2 to determine the VM formation and progression of RMS. CONCLUSION: Our findings reveal a previously unknown mechanism by which USP7 and TRIM21 balance the level of SNAI2 ubiquitination, determining RMS vasculogenic mimicry, proliferation, and migration. This new mechanism may provide new targeted therapies to inhibit the development of RMS by restoring TRIM21 expression or inhibiting USP7 expression in RMS patients with high SNAI2 protein levels.


Asunto(s)
Neovascularización Patológica , Rabdomiosarcoma , Ribonucleoproteínas , Factores de Transcripción de la Familia Snail , Peptidasa Específica de Ubiquitina 7 , Humanos , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética , Animales , Ratones , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/patología , Rabdomiosarcoma/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Femenino , Progresión de la Enfermedad , Proliferación Celular , Masculino , Homeostasis , Línea Celular Tumoral , Ratones Desnudos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
2.
Biomed Pharmacother ; 174: 116562, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38626518

RESUMEN

Rhabdomyosarcoma (RMS), a mesenchymal tumor occurring in the soft tissue of children, is associated with a defect in differentiation. This study unveils a novel anti-tumor mechanism of dimethylaminomicheliolide (DMAMCL), which is a water-soluble derivative of Micheliolide. First, we demonstrate that DMAMCL inhibits RMS cell growth without obvious cell death, leading to morphological alterations, enhanced expression of muscle differentiation markers, and a shift from a malignant to a more benign metabolic phenotype. Second, we detected decreased expression of DLL1 in RMS cells after DMAMCL treatment, known as a pivotal ligand in the Notch signaling pathway. Downregulation of DLL1 inhibits RMS cell growth and induces morphological changes similar to the effects of DMAMCL. Furthermore, DMAMCL treatment or loss of DLL1 expression also inhibits RMS xenograft tumor growth and augmented the expression of differentiation markers. Surprisingly, in C2C12 cells DMAMCL treatment or DLL1 downregulation also induces cell growth inhibition and an elevation in muscle differentiation marker expression. These data indicated that DMAMCL induced RMS differentiation and DLL1 is an important factor for RMS differentiation, opening a new window for the clinical use of DMAMCL as an agent for differentiation-inducing therapy for RMS treatment.


Asunto(s)
Proteínas de Unión al Calcio , Diferenciación Celular , Proliferación Celular , Regulación hacia Abajo , Rabdomiosarcoma , Diferenciación Celular/efectos de los fármacos , Rabdomiosarcoma/patología , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/metabolismo , Animales , Regulación hacia Abajo/efectos de los fármacos , Humanos , Línea Celular Tumoral , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Proliferación Celular/efectos de los fármacos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Desnudos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antineoplásicos/farmacología
3.
Histochem Cell Biol ; 161(5): 435-444, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38396247

RESUMEN

Rhabdomyosarcoma (RMS) is the most common soft tissue malignancy in children and adolescents. Respecting the age of the patients and the tumor aggressiveness, investigation of the molecular mechanisms of RMS tumorigenesis is directed toward the identification of novel therapeutic targets. To contribute to a better understanding of the molecular pathology of RMS, we investigated ankyrin repeat domain 1 (ANKRD1), designated as a potential marker for differential diagnostics. In this study, we used three RMS cell lines (SJRH30, RD, and HS-729) to assess its expression profile, intracellular localization, and turnover. They express wild-type ANKRD1, as judged by the sequencing of the open reading frame. Each cell line expressed a different amount of ANKRD1 protein, although the transcript level was similar. According to western blot analysis, ANKRD1 protein was expressed at detectable levels in the SJRH30 and RD cells (SJRH30 > RD), but not in the HS-729, even after immunoprecipitation. Immunocytochemistry revealed nuclear and cytoplasmic localization of ANKRD1 in all examined cell lines. Moreover, the punctate pattern of ANKRD1 staining in the nuclei of RD and HS-729 cells overlapped with coilin, indicating its association with Cajal bodies. We have shown that RMS cells are not able to overexpress ANKRD1 protein, which can be attributed to its proteasomal degradation. The unsuccessful attempt to overexpress ANKRD1 in RMS cells indicates the possibility that its overexpression may have detrimental effects for RMS cells and opens a window for further research into its role in RMS pathogenesis and for potential therapeutic targeting.


Asunto(s)
Proteínas Nucleares , Complejo de la Endopetidasa Proteasomal , Proteínas Represoras , Rabdomiosarcoma , Humanos , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/patología , Rabdomiosarcoma/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Represoras/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/análisis , Línea Celular Tumoral
4.
BMC Cancer ; 24(1): 79, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225540

RESUMEN

BACKGROUND: GEFT is a key regulator of tumorigenesis in rhabdomyosarcoma (RMS), and overexpression of GEFT is significantly correlated with distant metastasis, lymph node metastasis, and a poor prognosis, yet the underlying molecular mechanism is still poorly understood. This study aimed to investigate and validate the molecular mechanism of GEFT-activated lncRNAs in regulating mTOR expression to promote the progression of RMS. METHODS: GEFT-regulated lncRNAs were identified through microarray analysis. The effects of GEFT-regulated lncRNAs on the proliferation, apoptosis, invasion, and migration of RMS cells were confirmed through cell functional experiments. The target miRNAs of GEFT-activated lncRNAs in the regulation of mTOR expression were predicted by bioinformatics analysis combined with quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The expression of lnc-PSMA8-1, miR-144-3p, and mTOR was measured by qRT-PCR in RMS tissue samples and cell lines. The regulatory mechanisms of the lnc-PSMA8-1-miR-144-3p-mTOR signaling axis were verified by RNA-binding protein immunoprecipitation (RIP), a luciferase reporter assay, qRT-PCR analysis, Western blot analysis, and cell functional experiments. RESULTS: The microarray-based analysis identified 31 differentially expressed lncRNAs (fold change > 2.0, P < 0.05). Silencing the 4 upregulated lncRNAs (lnc-CEACAM19-1, lnc-VWCE-2, lnc-GPX7-1, and lnc-PSMA8-1) and overexpressing the downregulated lnc-FAM59A-1 inhibited the proliferation, invasion, and migration and induced the apoptosis of RMS cells. Among the factors analyzed, the expression of lnc-PSMA8-1, miR-144-3p, and mTOR in RMS tissue samples and cells was consistent with the correlations among their expression indicated by the lncRNA-miRNA-mRNA regulatory network based on the ceRNA hypothesis. lnc-PSMA8-1 promoted RMS progression by competitively binding to miR-144-3p to regulate mTOR expression. CONCLUSION: Our research demonstrated that lnc-PSMA8-1 was activated by GEFT and that the former positively regulated mTOR expression by sponging miR-144-3p to promote the progression of RMS. Therefore, targeting this network may constitute a potential therapeutic approach for the management of RMS.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Rabdomiosarcoma , Serina-Treonina Quinasas TOR , Humanos , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Rabdomiosarcoma/genética , Rabdomiosarcoma/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Regulación hacia Arriba
5.
PLoS One ; 19(1): e0295629, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38277404

RESUMEN

Targeted therapies for inhibiting the growth of cancer cells or inducing apoptosis are urgently needed for effective rhabdomyosarcoma (RMS) treatment. However, identifying cancer-targeting compounds with few side effects, among the many potential compounds, is expensive and time-consuming. A computational approach to reduce the number of potential candidate drugs can facilitate the discovery of attractive lead compounds. To address this and obtain reliable predictions of novel cell-line-specific drugs, we apply prediction models that have the potential to improve drug discovery approaches for RMS treatment. The results of two prediction models were ensemble and validated via in vitro experiments. The computational models were trained using data extracted from the Genomics of Drug Sensitivity in Cancer database and tested on two RMS cell lines to select potential RMS drug candidates. Among 235 candidate drugs, 22 were selected following the result of the computational approach, and three candidate drugs were identified (NSC207895, vorinostat, and belinostat) that showed selective effectiveness in RMS cell lines in vitro via the induction of apoptosis. Our in vitro experiments have demonstrated that our proposed methods can effectively identify and repurpose drugs for treating RMS.


Asunto(s)
Rabdomiosarcoma , Humanos , Línea Celular Tumoral , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/metabolismo , Apoptosis , Genómica , Resultado del Tratamiento
6.
Eur J Pharm Biopharm ; 194: 49-61, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38029941

RESUMEN

Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma. More effective and less toxic therapies are urgently needed for high-risk patients. Peptide-guided targeted drug delivery can increase the therapeutic index of encapsulated drugs and improve patients' well-being. To apply this strategy to RMS, we identified the peptide F3 in a screening for peptides binding to RMS cells surface. F3 binds to nucleolin, which is present on the surface of RMS cells and is abundantly expressed at the mRNA level in RMS patients' biopsies compared to healthy tissues. We developed a rapid microfluidic formulation of F3-decorated PEGylated liposomes and remote loading of the chemotherapeutic drug vincristine. Size, surface charge, drug loading and retention of targeted and control liposomes were studied. Enhanced cellular binding and uptake were observed in three different nucleolin-positive RMS cell lines. Importantly, F3-functionalized liposomes loaded with vincristine were up to 11 times more cytotoxic than non-targeted liposomes for RMS cell lines. These results demonstrate that F3-functionalized liposomes are promising for targeted drug delivery to RMS and warrant further in vivo investigations.


Asunto(s)
Liposomas , Rabdomiosarcoma , Niño , Humanos , Liposomas/metabolismo , Nucleolina , Vincristina/uso terapéutico , Línea Celular Tumoral , Péptidos/metabolismo , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/metabolismo
7.
Sci Adv ; 9(17): eade8184, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37115930

RESUMEN

Rhabdomyosarcoma (RMS) is a common soft tissue sarcoma in children that resembles developing skeletal muscle. Unlike normal muscle cells, RMS cells fail to differentiate despite expression of the myogenic determination protein MYOD. The TWIST2 transcription factor is frequently overexpressed in fusion-negative RMS (FN-RMS). TWIST2 blocks differentiation by inhibiting MYOD activity in myoblasts, but its role in FN-RMS pathogenesis is incompletely understood. Here, we show that knockdown of TWIST2 enables FN-RMS cells to exit the cell cycle and undergo terminal myogenesis. TWIST2 knockdown also substantially reduces tumor growth in a mouse xenograft model of FN-RMS. Mechanistically, TWIST2 controls H3K27 acetylation at distal enhancers by interacting with the chromatin remodelers SMARCA4 and CHD3 to activate growth-related target genes and repress myogenesis-related target genes. These findings provide insights into the role of TWIST2 in maintaining an undifferentiated and tumorigenic state of FN-RMS and highlight the potential of suppressing TWIST2-regulated pathways to treat FN-RMS.


Asunto(s)
Rabdomiosarcoma , Sarcoma , Humanos , Animales , Ratones , Ensamble y Desensamble de Cromatina/genética , Regulación Neoplásica de la Expresión Génica , Rabdomiosarcoma/genética , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/patología , Sarcoma/genética , Diferenciación Celular/genética , Línea Celular Tumoral , ADN Helicasas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Represoras/metabolismo , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo
8.
Exp Anim ; 72(4): 446-453, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37081671

RESUMEN

Pleomorphic rhabdomyosarcoma (PRMS) predominantly arises in adult skeletal musculature and is usually associated with poor prognosis. Thus, effective treatments must be developed. PRMS is a rare tumor; therefore, it is critical to develop an experimental system to understand the cellular and molecular mechanisms of PRMS. We previously demonstrated that PRMS develops after p53 gene deletion and oncogenic K-Ras expression in the skeletal muscle tissue. In that study, oncogenic K-Ras-expressing cells were diverse and the period until disease onset was difficult to control. In this study, we developed an experimental system to address this problem. Single cell-derived murine cell lines, designated as RMS310 and RMSg2, were established by limiting the dilution of cells from a lung metastatic tumor colony that were positive for various cancer stem cells and activated skeletal muscle-resident stem/progenitor cell marker genes by RT-PCR. All cell lines stably recapitulated the histological characteristics of human PRMS as bizarre giant cells, desmin-positive cells, and lung metastases in C57BL/6 mice. All subclones of the RMSg2 cells by the limiting dilution in vitro could seed PRMS subcutaneously, and as few as 500 RMSg2 cells were sufficient to form tumors. These results suggest that the RMSg2 cells are multipotent cancer cells that partially combine the properties of skeletal muscle-resident stem/progenitor cells and high tumorigenicity. Thus, our model system's capacity to regenerate tumor tissue in vivo and maintain stable cells in vitro makes it useful for developing therapeutics to treat PRMS.


Asunto(s)
Rabdomiosarcoma , Proteína p53 Supresora de Tumor , Adulto , Humanos , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Ratones Endogámicos C57BL , Rabdomiosarcoma/genética , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/patología , Músculo Esquelético/metabolismo , Línea Celular
9.
J Cachexia Sarcopenia Muscle ; 14(2): 781-793, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36797054

RESUMEN

BACKGROUND: Rhabdomyosarcoma (RMS) is an aggressive soft tissue sarcoma that most often develops in children. Chemoradiation therapy is a standard treatment modality; however, the detrimental long-term skeletal muscle consequences of this therapy in juvenile cancer survivors include muscle atrophy and fibrosis resulting in decreased physical performance. Using a novel model of murine resistance and endurance exercise training, we investigate its role in preventing the long-term effects of juvenile RMS plus therapy. METHODS: Four-week-old male (n = 10) and female (n = 10) C57Bl/6J mice were injected with M3-9-M RMS cell into the left gastrocnemius with the right limb serving as an internal control (CON). Mice received a systemic vincristine injection and then five doses of 4.8 Gy of gamma radiation localized to the left hindlimb (RMS + Tx). Mice were then randomly divided into either sedentary (SED) or resistance and endurance exercise training (RET) groups. Changes in exercise performance, body composition, myocellular adaptations and the inflammatory/fibrotic transcriptome were assessed. RESULTS: RET improved endurance performance (P < 0.0001) and body composition (P = 0.0004) compared to SED. RMS + Tx resulted in significantly lower muscle weight (P = 0.015) and significantly smaller myofibre cross-sectional area (CSA) (P = 0.014). Conversely, RET resulted in significantly higher muscle weight (P = 0.030) and significantly larger Type IIA (P = 0.014) and IIB (P = 0.015) fibre CSA. RMS + Tx resulted in significantly more muscle fibrosis (P = 0.028), which was not prevented by RET. RMS + Tx resulted in significantly fewer mononuclear cells (P < 0.05) and muscle satellite (stem) cells (MuSCs) (P < 0.05) and significantly more immune cells (P < 0.05) than CON. RET resulted in significantly more fibro-adipogenic progenitors (P < 0.05), a trend for more MuSCs (P = 0.076) than SED and significantly more endothelial cells specifically in the RMS + Tx limb. Transcriptomic changes revealed significantly higher expression of inflammatory and fibrotic genes in RMS + Tx, which was prevented by RET. In the RMS + Tx model, RET also significantly altered expression of genes involved in extracellular matrix turnover. CONCLUSIONS: Our study suggests that RET preserves muscle mass and performance in a model of juvenile RMS survivorship while partially restoring cellular dynamics and the inflammatory and fibrotic transcriptome.


Asunto(s)
Rabdomiosarcoma , Transcriptoma , Humanos , Masculino , Femenino , Ratones , Animales , Células Endoteliales , Músculo Esquelético/patología , Rabdomiosarcoma/metabolismo , Fibrosis
10.
Clin Exp Med ; 23(6): 2487-2502, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36764998

RESUMEN

Rhabdomyosarcoma (RMS) is an aggressive rare neoplasm that derives from mesenchymal cells, which frequently develops resistance to the current therapies and the formation of metastases. Thus, new therapies are needed. The alteration of iron metabolism in cancer cells was effective in reducing the progression of many tumors but not yet investigated in RMS. Here we investigated the effect of iron modulation in RMS both in vitro and in vivo. We first characterized the most used RMS cell lines representing the most common subtypes, embryonal (ERMS, RD cells) and alveolar (ARMS, RH30 cells), for their iron metabolism, in basal condition and in response to its modulation. Then we investigated the effects of both iron overload and chelation strategies in vitro and in vivo. RMS cell lines expressed iron-related proteins, even if at lower levels compared to hepatic cell lines and they are correctly modulated in response to iron increase and deprivation. Interestingly, the treatment with different doses of ferric ammonium citrate (FAC, as iron source) and with deferiprone (DFP, as iron chelator), significantly affected the cell viability of RD and RH30. Moreover, iron supplementation (in the form of iron dextran) or iron chelation (in the form of DFP) were also effective in vivo in inhibiting the tumor mass growth both derived from RD and RH30 with iron chelation treatment the most effective one. All the data suggest that the iron modulation could be a promising approach to overcome the RMS tumor growth. The mechanism of action seems to involve the apoptotic cell death for both iron supplementation and chelation with the concomitant induction of ferroptosis in the case of iron supplementation.


Asunto(s)
Rabdomiosarcoma , Humanos , Línea Celular Tumoral , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/patología , Apoptosis , Hierro , Quelantes del Hierro/farmacología , Quelantes del Hierro/uso terapéutico
11.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36768928

RESUMEN

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. The prognosis for patients with high-grade and metastatic disease is still very poor, and survivors are burdened with long-lasting side effects. Therefore, more effective and less toxic therapies are needed. Surface proteins are ideal targets for antibody-based therapies, like bispecific antibodies, antibody-drug conjugates, or chimeric antigen receptor (CAR) T-cells. Specific surface targets for RMS are scarce. Here, we performed a surfaceome profiling based on differential centrifugation enrichment of surface/membrane proteins and detection by LC-MS on six fusion-positive (FP) RMS cell lines, five fusion-negative (FN) RMS cell lines, and three RMS patient-derived xenografts (PDXs). A total of 699 proteins were detected in the three RMS groups. Ranking based on expression levels and comparison to expression in normal MRC-5 fibroblasts and myoblasts, followed by statistical analysis, highlighted known RMS targets such as FGFR4, NCAM1, and CD276/B7-H3, and revealed AGRL2, JAM3, MEGF10, GPC4, CADM2, as potential targets for immunotherapies of RMS. L1CAM expression was investigated in RMS tissues, and strong L1CAM expression was observed in more than 80% of alveolar RMS tumors, making it a practicable target for antibody-based therapies of alveolar RMS.


Asunto(s)
Molécula L1 de Adhesión de Célula Nerviosa , Rabdomiosarcoma , Niño , Animales , Humanos , Xenoinjertos , Rabdomiosarcoma/metabolismo , Línea Celular , Factores de Transcripción , Modelos Animales de Enfermedad , Moléculas de Adhesión de Célula Nerviosa/uso terapéutico , Línea Celular Tumoral , Antígenos B7 , Moléculas de Adhesión Celular/uso terapéutico , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo
12.
Int J Mol Sci ; 23(22)2022 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36430468

RESUMEN

Adolescents and young adults (AYA) with rhabdomyosarcoma (RMS) form a subgroup of patients whose optimal clinical management and best possible access to care remain a challenge and whose survival rates lag behind that of children diagnosed with histologically similar tumors. A better understanding of tumor biology that differentiates children (PEDS-) from AYA-RMS could provide critical information and drive new initiatives to improve their final outcome. We investigated the functional role of miRNAs implicated in AYA-RMS development, as they have the potential to lead to discovery of new targets pathways for a more tailored treatment in these age groups of young RMS patients. MiR-223 and miR-486 were observed de-regulated in nine RMS tissues compared to their normal counterparts, yet only miR-223 replacement impaired proliferation and aggressiveness of AYA-RMS cell lines, while inducing apoptosis and determining cell cycle arrest. Interestingly, IGF1R resulted in the direct target of miR-223 in AYA-RMS cells, as demonstrated by IGF1R silencing. Our results highlight an exclusive functional role of miR-223 in AYA-RMS development and aggressiveness.


Asunto(s)
MicroARNs , Rabdomiosarcoma , Niño , Humanos , Adulto Joven , Adolescente , Línea Celular Tumoral , Rabdomiosarcoma/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Apoptosis/genética , Tasa de Supervivencia , Receptor IGF Tipo 1/genética
13.
Br J Cancer ; 127(11): 1939-1953, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36097178

RESUMEN

BACKGROUND: Rhabdomyosarcoma (RMS) is a paediatric cancer driven either by fusion proteins (e.g., PAX3-FOXO1) or by mutations in key signalling molecules (e.g., RAS or FGFR4). Despite the latter providing opportunities for precision medicine approaches in RMS, there are currently no such treatments implemented in the clinic. METHODS: We evaluated biologic properties and targeting strategies for the FGFR4 V550L activating mutation in RMS559 cells, which have a high allelic fraction of this mutation and are oncogenically dependent on FGFR4 signalling. Signalling and trafficking of FGFR4 V550L were characterised by confocal microscopy and proteomics. Drug effects were determined by live-cell imaging, MTS assay, and in a mouse model. RESULTS: Among recently developed FGFR4-specific inhibitors, FGF401 inhibited FGFR4 V550L-dependent signalling and cell proliferation at low nanomolar concentrations. Two other FGFR4 inhibitors, BLU9931 and H3B6527, lacked potent activity against FGFR4 V550L. Alternate targeting strategies were identified by RMS559 phosphoproteomic analyses, demonstrating that RAS/MAPK and PI3K/AKT are essential druggable pathways downstream of FGFR4 V550L. Furthermore, we found that FGFR4 V550L is HSP90-dependent, and HSP90 inhibitors efficiently impeded RMS559 proliferation. In a RMS559 mouse xenograft model, the pan-FGFR inhibitor, LY2874455, did not efficiently inhibit growth, whereas FGF401 potently abrogated growth. CONCLUSIONS: Our results pave the way for precision medicine approaches against FGFR4 V550L-driven RMS.


Asunto(s)
Rabdomiosarcoma Embrionario , Rabdomiosarcoma , Humanos , Ratones , Animales , Fosfatidilinositol 3-Quinasas , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/genética , Rabdomiosarcoma/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proliferación Celular , Línea Celular Tumoral
14.
Cell Rep ; 40(9): 111267, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36044855

RESUMEN

Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma of childhood characterized by the inability to exit the proliferative myoblast-like stage. The alveolar fusion positive subtype (FP-RMS) is the most aggressive and is mainly caused by the expression of PAX3/7-FOXO1 oncoproteins, which are challenging pharmacological targets. Here, we show that the DEAD box RNA helicase 5 (DDX5) is overexpressed in alveolar RMS cells and that its depletion and pharmacological inhibition decrease FP-RMS viability and slow tumor growth in xenograft models. Mechanistically, we provide evidence that DDX5 functions upstream of the EHMT2/AKT survival signaling pathway, by directly interacting with EHMT2 mRNA, modulating its stability and consequent protein expression. We show that EHMT2 in turns regulates PAX3-FOXO1 activity in a methylation-dependent manner, thus sustaining FP-RMS myoblastic state. Together, our findings identify another survival-promoting loop in FP-RMS and highlight DDX5 as a potential therapeutic target to arrest RMS growth.


Asunto(s)
ARN Helicasas DEAD-box , Rabdomiosarcoma Alveolar , Rabdomiosarcoma Embrionario , Rabdomiosarcoma , Línea Celular Tumoral , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Regulación Neoplásica de la Expresión Génica , Antígenos de Histocompatibilidad , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Proteínas de Fusión Oncogénica/metabolismo , Factores de Transcripción Paired Box/genética , ARN Helicasas/metabolismo , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma Alveolar/genética , Rabdomiosarcoma Alveolar/metabolismo , Rabdomiosarcoma Alveolar/patología
15.
Cells ; 11(15)2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35892564

RESUMEN

Rhabdomyosarcoma (RMS) is an aggressive childhood soft-tissue tumor, with propensity for local invasion and distant metastasis. Exosomes are secreted vesicles that mediate paracrine signaling by delivering functional proteins and miRNA to recipient cells. The transmembrane protein CD147, also known as Basigin or EMMPRIN, is enriched in various tumor cells, as well as in tumor-derived exosomes, and has been correlated with poor prognosis in several types of cancer, but has not been previously investigated in RMS. We investigated the effects of CD147 on RMS cell biology and paracrine signaling, specifically its contribution to invasion and metastatic phenotype. CD147 downregulation diminishes RMS cell invasion and inhibits anchorage-independent growth in vitro. While treatment of normal fibroblasts with RMS-derived exosomes results in a significant increase in proliferation, migration, and invasion, these effects are reversed when using exosomes from CD147-downregulated RMS cells. In human RMS tissue, CD147 was expressed exclusively in metastatic tumors. Altogether, our results demonstrate that CD147 contributes to RMS tumor cell aggressiveness, and is involved in modulating the microenvironment through RMS-secreted exosomes. Targeted inhibition of CD147 reduces its expression levels within the isolated exosomes and reduces the capacity of these exosomes to enhance cellular invasive properties.


Asunto(s)
Basigina , Exosomas , Rabdomiosarcoma , Basigina/genética , Carcinogénesis , Transformación Celular Neoplásica , Exosomas/metabolismo , Humanos , Rabdomiosarcoma/metabolismo , Transducción de Señal , Microambiente Tumoral
16.
BMC Cancer ; 22(1): 725, 2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35780096

RESUMEN

BACKGROUND: Metastatic soft tissue sarcoma (STS) are a heterogeneous group of malignancies which are not curable with chemotherapy alone. Therefore, understanding the molecular mechanisms of sarcomagenesis and therapy resistance remains a critical clinical need. ASPP2 is a tumor suppressor, that functions through both p53-dependent and p53-independent mechanisms. We recently described a dominant-negative ASPP2 isoform (ASPP2κ), that is overexpressed in human leukemias to promote therapy resistance. However, ASPP2κ  has never been studied in STS.  MATERIALS AND METHODS: Expression of ASPP2κ was quantified in human rhabdomyosarcoma tumors using immunohistochemistry and qRT-PCR from formalin-fixed paraffin-embedded (FFPE) and snap-frozen tissue. To study the functional role of ASPP2κ in rhabdomyosarcoma, isogenic cell lines were generated by lentiviral transduction with short RNA hairpins to silence ASPP2κ expression. These engineered cell lines were used to assess the consequences of ASPP2κ silencing on cellular proliferation, migration and sensitivity to damage-induced apoptosis. Statistical analyses were performed using Student's t-test and 2-way ANOVA. RESULTS: We found elevated ASPP2κ mRNA in different soft tissue sarcoma cell lines, representing five different sarcoma sub-entities. We found that ASSP2κ mRNA expression levels were induced in these cell lines by cell-stress. Importantly, we found that the median ASPP2κ expression level was higher in human rhabdomyosarcoma in comparison to a pool of tumor-free tissue. Moreover, ASPP2κ levels were elevated in patient tumor samples versus adjacent tumor-free tissue within individual patients. Using isogenic cell line models with silenced ASPP2κ expression, we found that suppression of ASPP2κ enhanced chemotherapy-induced apoptosis and attenuated cellular proliferation. CONCLUSION: Detection of oncogenic ASPP2κ in human sarcoma provides new insights into sarcoma tumor biology. Our data supports the notion that ASPP2κ promotes sarcomagenesis and resistance to therapy. These observations provide the rationale for further evaluation of ASPP2κ as an oncogenic driver as well as a prognostic tool and potential therapeutic target in STS.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Carcinogénesis , Rabdomiosarcoma , Sarcoma , Neoplasias de los Tejidos Blandos , Empalme Alternativo , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/fisiología , Humanos , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Rabdomiosarcoma/genética , Rabdomiosarcoma/metabolismo , Sarcoma/genética , Sarcoma/metabolismo , Neoplasias de los Tejidos Blandos/genética , Neoplasias de los Tejidos Blandos/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
17.
Elife ; 112022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35348112

RESUMEN

Myogenic regulatory factors (MRFs) are pivotal transcription factors in myogenic differentiation. MyoD commits cells to the skeletal muscle lineage by inducing myogenic genes through recruitment of chromatin remodelers to its target loci. This study showed that actin-related protein 5 (Arp5) acts as an inhibitory regulator of MyoD and MyoG by binding to their cysteine-rich (CR) region, which overlaps with the region essential for their epigenetic functions. Arp5 expression was faint in skeletal muscle tissues. Excessive Arp5 in mouse hind limbs caused skeletal muscle fiber atrophy. Further, Arp5 overexpression in myoblasts inhibited myotube formation by diminishing myogenic gene expression, whereas Arp5 depletion augmented myogenic gene expression. Arp5 disturbed MyoD-mediated chromatin remodeling through competition with the three-amino-acid-loop-extension-class homeodomain transcription factors the Pbx1-Meis1 heterodimer for binding to the CR region. This antimyogenic function was independent of the INO80 chromatin remodeling complex, although Arp5 is an important component of that. In rhabdomyosarcoma (RMS) cells, Arp5 expression was significantly higher than in normal myoblasts and skeletal muscle tissue, probably contributing to MyoD and MyoG activity dysregulation. Arp5 depletion in RMS partially restored myogenic properties while inhibiting tumorigenic properties. Thus, Arp5 is a novel modulator of MRFs in skeletal muscle differentiation.


Asunto(s)
Proteína MioD , Rabdomiosarcoma , Actinas/metabolismo , Animales , Diferenciación Celular/genética , Ratones , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo , Rabdomiosarcoma/genética , Rabdomiosarcoma/metabolismo
18.
Cell Rep ; 38(5): 110323, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35108532

RESUMEN

Rhabdomyosarcoma (RMS) is a pediatric muscle sarcoma characterized by expression of the myogenic lineage transcription factors (TFs) MYOD1 and MYOG. Despite high expression of these TFs, RMS cells fail to terminally differentiate, suggesting the presence of factors that alter their functions. Here, we demonstrate that the developmental TF SIX1 is highly expressed in RMS and critical for maintaining a muscle progenitor-like state. SIX1 loss induces differentiation of RMS cells into myotube-like cells and impedes tumor growth in vivo. We show that SIX1 maintains the RMS undifferentiated state by controlling enhancer activity and MYOD1 occupancy at loci more permissive to tumor growth over muscle differentiation. Finally, we demonstrate that a gene signature derived from SIX1 loss correlates with differentiation status and predicts RMS progression in human disease. Our findings demonstrate a master regulatory role of SIX1 in repression of RMS differentiation via genome-wide alterations in MYOD1 and MYOG-mediated transcription.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Desarrollo de Músculos/genética , Rabdomiosarcoma/genética , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Diferenciación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Ratones , Desarrollo de Músculos/fisiología , Proteína MioD/metabolismo , Miogenina/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma Embrionario , Pez Cebra
19.
Cell Mol Life Sci ; 79(2): 122, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35128576

RESUMEN

Skeletal muscle demonstrates a high degree of regenerative capacity repeating the embryonic myogenic program under strict control. Rhabdomyosarcoma is the most common sarcoma in childhood and is characterized by impaired muscle differentiation. In this study, we observed that silencing the expression of syndecan-4, the ubiquitously expressed transmembrane heparan sulfate proteoglycan, significantly enhanced myoblast differentiation, and fusion. During muscle differentiation, the gradually decreasing expression of syndecan-4 allows the activation of Rac1, thereby mediating myoblast fusion. Single-molecule localized superresolution direct stochastic optical reconstruction microscopy (dSTORM) imaging revealed nanoscale changes in actin cytoskeletal architecture, and atomic force microscopy showed reduced elasticity of syndecan-4-knockdown cells during fusion. Syndecan-4 copy-number amplification was observed in 28% of human fusion-negative rhabdomyosarcoma tumors and was accompanied by increased syndecan-4 expression based on RNA sequencing data. Our study suggests that syndecan-4 can serve as a tumor driver gene in promoting rabdomyosarcoma tumor development. Our results contribute to the understanding of the role of syndecan-4 in skeletal muscle development, regeneration, and tumorigenesis.


Asunto(s)
Actinas/metabolismo , Rabdomiosarcoma/patología , Sindecano-4/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Citoesqueleto de Actina , Animales , Diferenciación Celular , Línea Celular , Variaciones en el Número de Copia de ADN , Humanos , Masculino , Ratones , Desarrollo de Músculos , Músculo Esquelético/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Wistar , Rabdomiosarcoma/metabolismo , Sindecano-4/antagonistas & inhibidores , Sindecano-4/genética , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/metabolismo
20.
Skelet Muscle ; 12(1): 2, 2022 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-35065666

RESUMEN

BACKGROUND: The sarcoglycan complex (SC) is part of a network that links the striated muscle cytoskeleton to the basal lamina across the sarcolemma. The SC coordinates changes in phosphorylation and Ca++-flux during mechanical deformation, and these processes are disrupted with loss-of-function mutations in gamma-sarcoglycan (Sgcg) that cause Limb girdle muscular dystrophy 2C/R5. METHODS: To gain insight into how the SC mediates mechano-signaling in muscle, we utilized LC-MS/MS proteomics of SC-associated proteins in immunoprecipitates from enriched sarcolemmal fractions. Criteria for inclusion were co-immunoprecipitation with anti-Sgcg from C57BL/6 control muscle and under-representation in parallel experiments with Sgcg-null muscle and with non-specific IgG. Validation of interaction was performed in co-expression experiments in human RH30 rhabdomyosarcoma cells. RESULTS: We identified 19 candidates as direct or indirect interactors for Sgcg, including the other 3 SC proteins. Novel potential interactors included protein-phosphatase-1-catalytic-subunit-beta (Ppp1cb, PP1b) and Na+-K+-Cl--co-transporter NKCC1 (SLC12A2). NKCC1 co-localized with Sgcg after co-expression in human RH30 rhabdomyosarcoma cells, and its cytosolic domains depleted Sgcg from cell lysates upon immunoprecipitation and co-localized with Sgcg after detergent permeabilization. NKCC1 localized in proximity to the dystrophin complex at costameres in vivo. Bumetanide inhibition of NKCC1 cotransporter activity in isolated muscles reduced SC-dependent, strain-induced increases in phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). In silico analysis suggests that candidate SC interactors may cross-talk with survival signaling pathways, including p53, estrogen receptor, and TRIM25. CONCLUSIONS: Results support that NKCC1 is a new SC-associated signaling protein. Moreover, the identities of other candidate SC interactors suggest ways by which the SC and NKCC1, along with other Sgcg interactors such as the membrane-cytoskeleton linker archvillin, may regulate kinase- and Ca++-mediated survival signaling in skeletal muscle.


Asunto(s)
Rabdomiosarcoma , Sarcoglicanos , Animales , Cromatografía Liquida , Humanos , Ratones , Músculo Esquelético/metabolismo , Rabdomiosarcoma/metabolismo , Sarcoglicanos/genética , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA