Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.236
Filtrar
1.
Nat Commun ; 15(1): 6931, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138215

RESUMEN

Artificial intelligence (AI) algorithms hold the potential to revolutionize radiology. However, a significant portion of the published literature lacks transparency and reproducibility, which hampers sustained progress toward clinical translation. Although several reporting guidelines have been proposed, identifying practical means to address these issues remains challenging. Here, we show the potential of cloud-based infrastructure for implementing and sharing transparent and reproducible AI-based radiology pipelines. We demonstrate end-to-end reproducibility from retrieving cloud-hosted data, through data pre-processing, deep learning inference, and post-processing, to the analysis and reporting of the final results. We successfully implement two distinct use cases, starting from recent literature on AI-based biomarkers for cancer imaging. Using cloud-hosted data and computing, we confirm the findings of these studies and extend the validation to previously unseen data for one of the use cases. Furthermore, we provide the community with transparent and easy-to-extend examples of pipelines impactful for the broader oncology field. Our approach demonstrates the potential of cloud resources for implementing, sharing, and using reproducible and transparent AI pipelines, which can accelerate the translation into clinical solutions.


Asunto(s)
Inteligencia Artificial , Nube Computacional , Humanos , Reproducibilidad de los Resultados , Aprendizaje Profundo , Radiología/métodos , Radiología/normas , Algoritmos , Neoplasias/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos
2.
Radiol Artif Intell ; 6(4): e240225, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38984986

RESUMEN

The Radiological Society of North of America (RSNA) and the Medical Image Computing and Computer Assisted Intervention (MICCAI) Society have led a series of joint panels and seminars focused on the present impact and future directions of artificial intelligence (AI) in radiology. These conversations have collected viewpoints from multidisciplinary experts in radiology, medical imaging, and machine learning on the current clinical penetration of AI technology in radiology and how it is impacted by trust, reproducibility, explainability, and accountability. The collective points-both practical and philosophical-define the cultural changes for radiologists and AI scientists working together and describe the challenges ahead for AI technologies to meet broad approval. This article presents the perspectives of experts from MICCAI and RSNA on the clinical, cultural, computational, and regulatory considerations-coupled with recommended reading materials-essential to adopt AI technology successfully in radiology and, more generally, in clinical practice. The report emphasizes the importance of collaboration to improve clinical deployment, highlights the need to integrate clinical and medical imaging data, and introduces strategies to ensure smooth and incentivized integration. Keywords: Adults and Pediatrics, Computer Applications-General (Informatics), Diagnosis, Prognosis © RSNA, 2024.


Asunto(s)
Inteligencia Artificial , Radiología , Humanos , Radiología/métodos , Sociedades Médicas
3.
Pediatr Radiol ; 54(9): 1428-1436, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39012407

RESUMEN

Radiological imaging is a crucial diagnostic tool for the pediatric population. However, it is associated with several unique challenges in this age group compared to adults. These challenges mainly come from the fact that children are not small-sized adults and differ in development, anatomy, physiology, and pathology compared to adults. This paper reviews relevant articles published between January 2015 and October 2023 to analyze challenges associated with imaging technologies currently used in pediatric radiology, emerging technologies, and their role in resolving the challenges and future prospects of pediatric radiology. In recent decades, imaging technologies have advanced rapidly, developing advanced ultrasound, computed tomography, magnetic resonance, nuclear imaging, teleradiology, artificial intelligence, machine learning, three-dimensional printing, radiomics, and radiogenomics, among many others. By prioritizing the unique needs of pediatric patients while developing such technologies, we can significantly alleviate the challenges faced in pediatric radiology.


Asunto(s)
Predicción , Pediatría , Humanos , Niño , Pediatría/métodos , Diagnóstico por Imagen/métodos , Diagnóstico por Imagen/tendencias , Radiología/tendencias , Radiología/métodos , Inteligencia Artificial
4.
Sci Rep ; 14(1): 13218, 2024 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851825

RESUMEN

The purposes were to assess the efficacy of AI-generated radiology reports in terms of report summary, patient-friendliness, and recommendations and to evaluate the consistent performance of report quality and accuracy, contributing to the advancement of radiology workflow. Total 685 spine MRI reports were retrieved from our hospital database. AI-generated radiology reports were generated in three formats: (1) summary reports, (2) patient-friendly reports, and (3) recommendations. The occurrence of artificial hallucinations was evaluated in the AI-generated reports. Two radiologists conducted qualitative and quantitative assessments considering the original report as a standard reference. Two non-physician raters assessed their understanding of the content of original and patient-friendly reports using a 5-point Likert scale. The scoring of the AI-generated radiology reports were overall high average scores across all three formats. The average comprehension score for the original report was 2.71 ± 0.73, while the score for the patient-friendly reports significantly increased to 4.69 ± 0.48 (p < 0.001). There were 1.12% artificial hallucinations and 7.40% potentially harmful translations. In conclusion, the potential benefits of using generative AI assistants to generate these reports include improved report quality, greater efficiency in radiology workflow for producing summaries, patient-centered reports, and recommendations, and a move toward patient-centered radiology.


Asunto(s)
Inteligencia Artificial , Atención Dirigida al Paciente , Humanos , Imagen por Resonancia Magnética/métodos , Radiología/métodos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Flujo de Trabajo , Anciano
5.
J Comput Biol ; 31(6): 486-497, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38837136

RESUMEN

Automatic radiology medical report generation is a necessary development of artificial intelligence technology in the health care. This technology serves to aid doctors in producing comprehensive diagnostic reports, alleviating the burdensome workloads of medical professionals. However, there are some challenges in generating radiological reports: (1) visual and textual data biases and (2) long-distance dependency problem. To tackle these issues, we design a visual recalibration and gating enhancement network (VRGE), which composes of the visual recalibration module and the gating enhancement module (gating enhancement module, GEM). Specifically, the visual recalibration module enhances the recognition of abnormal features in lesion areas of medical images. The GEM dynamically adjusts the contextual information in the report by introducing gating mechanisms, focusing on capturing professional medical terminology in medical text reports. We have conducted sufficient experiments on the public datasets of IU X-Ray to illustrate that the VRGE outperforms existing models.


Asunto(s)
Inteligencia Artificial , Humanos , Radiología/métodos , Algoritmos
7.
J Med Internet Res ; 26: e54948, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691404

RESUMEN

This study demonstrates that GPT-4V outperforms GPT-4 across radiology subspecialties in analyzing 207 cases with 1312 images from the Radiological Society of North America Case Collection.


Asunto(s)
Radiología , Radiología/métodos , Radiología/estadística & datos numéricos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos
9.
Lab Invest ; 104(6): 102060, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38626875

RESUMEN

Precision medicine aims to provide personalized care based on individual patient characteristics, rather than guideline-directed therapies for groups of diseases or patient demographics. Images-both radiology- and pathology-derived-are a major source of information on presence, type, and status of disease. Exploring the mathematical relationship of pixels in medical imaging ("radiomics") and cellular-scale structures in digital pathology slides ("pathomics") offers powerful tools for extracting both qualitative and, increasingly, quantitative data. These analytical approaches, however, may be significantly enhanced by applying additional methods arising from fields of mathematics such as differential geometry and algebraic topology that remain underexplored in this context. Geometry's strength lies in its ability to provide precise local measurements, such as curvature, that can be crucial for identifying abnormalities at multiple spatial levels. These measurements can augment the quantitative features extracted in conventional radiomics, leading to more nuanced diagnostics. By contrast, topology serves as a robust shape descriptor, capturing essential features such as connected components and holes. The field of topological data analysis was initially founded to explore the shape of data, with functional network connectivity in the brain being a prominent example. Increasingly, its tools are now being used to explore organizational patterns of physical structures in medical images and digitized pathology slides. By leveraging tools from both differential geometry and algebraic topology, researchers and clinicians may be able to obtain a more comprehensive, multi-layered understanding of medical images and contribute to precision medicine's armamentarium.


Asunto(s)
Medicina de Precisión , Medicina de Precisión/métodos , Humanos , Radiología/métodos , Procesamiento de Imagen Asistido por Computador/métodos
10.
Arq Neuropsiquiatr ; 82(6): 1-12, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38565188

RESUMEN

Radiology has a number of characteristics that make it an especially suitable medical discipline for early artificial intelligence (AI) adoption. These include having a well-established digital workflow, standardized protocols for image storage, and numerous well-defined interpretive activities. The more than 200 commercial radiologic AI-based products recently approved by the Food and Drug Administration (FDA) to assist radiologists in a number of narrow image-analysis tasks such as image enhancement, workflow triage, and quantification, corroborate this observation. However, in order to leverage AI to boost efficacy and efficiency, and to overcome substantial obstacles to widespread successful clinical use of these products, radiologists should become familiarized with the emerging applications in their particular areas of expertise. In light of this, in this article we survey the existing literature on the application of AI-based techniques in neuroradiology, focusing on conditions such as vascular diseases, epilepsy, and demyelinating and neurodegenerative conditions. We also introduce some of the algorithms behind the applications, briefly discuss a few of the challenges of generalization in the use of AI models in neuroradiology, and skate over the most relevant commercially available solutions adopted in clinical practice. If well designed, AI algorithms have the potential to radically improve radiology, strengthening image analysis, enhancing the value of quantitative imaging techniques, and mitigating diagnostic errors.


A radiologia tem uma série de características que a torna uma disciplina médica especialmente adequada à adoção precoce da inteligência artificial (IA), incluindo um fluxo de trabalho digital bem estabelecido, protocolos padronizados para armazenamento de imagens e inúmeras atividades interpretativas bem definidas. Tal adequação é corroborada pelos mais de 200 produtos radiológicos comerciais baseados em IA recentemente aprovados pelo Food and Drug Administration (FDA) para auxiliar os radiologistas em uma série de tarefas restritas de análise de imagens, como quantificação, triagem de fluxo de trabalho e aprimoramento da qualidade das imagens. Entretanto, para o aumento da eficácia e eficiência da IA, além de uma utilização clínica bem-sucedida dos produtos que utilizam essa tecnologia, os radiologistas devem estar atualizados com as aplicações em suas áreas específicas de atuação. Assim, neste artigo, pesquisamos na literatura existente aplicações baseadas em IA em neurorradiologia, mais especificamente em condições como doenças vasculares, epilepsia, condições desmielinizantes e neurodegenerativas. Também abordamos os principais algoritmos por trás de tais aplicações, discutimos alguns dos desafios na generalização no uso desses modelos e introduzimos as soluções comercialmente disponíveis mais relevantes adotadas na prática clínica. Se cautelosamente desenvolvidos, os algoritmos de IA têm o potencial de melhorar radicalmente a radiologia, aperfeiçoando a análise de imagens, aumentando o valor das técnicas de imagem quantitativas e mitigando erros de diagnóstico.


Asunto(s)
Inteligencia Artificial , Radiología , Humanos , Algoritmos , Radiología/métodos
11.
IEEE Trans Med Imaging ; 43(7): 2657-2669, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38437149

RESUMEN

The automatic generation of accurate radiology reports is of great clinical importance and has drawn growing research interest. However, it is still a challenging task due to the imbalance between normal and abnormal descriptions and the multi-sentence and multi-topic nature of radiology reports. These features result in significant challenges to generating accurate descriptions for medical images, especially the important abnormal findings. Previous methods to tackle these problems rely heavily on extra manual annotations, which are expensive to acquire. We propose a multi-grained report generation framework incorporating sentence-level image-sentence contrastive learning, which does not require any extra labeling but effectively learns knowledge from the image-report pairs. We first introduce contrastive learning as an auxiliary task for image feature learning. Different from previous contrastive methods, we exploit the multi-topic nature of imaging reports and perform fine-grained contrastive learning by extracting sentence topics and contents and contrasting between sentence contents and refined image contents guided by sentence topics. This forces the model to learn distinct abnormal image features for each specific topic. During generation, we use two decoders to first generate coarse sentence topics and then the fine-grained text of each sentence. We directly supervise the intermediate topics using sentence topics learned by our contrastive objective. This strengthens the generation constraint and enables independent fine-tuning of the decoders using reinforcement learning, which further boosts model performance. Experiments on two large-scale datasets MIMIC-CXR and IU-Xray demonstrate that our approach outperforms existing state-of-the-art methods, evaluated by both language generation metrics and clinical accuracy.


Asunto(s)
Procesamiento de Lenguaje Natural , Humanos , Algoritmos , Aprendizaje Automático , Sistemas de Información Radiológica , Bases de Datos Factuales , Radiología/métodos
12.
Jpn J Radiol ; 42(7): 685-696, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38551772

RESUMEN

The advent of Deep Learning (DL) has significantly propelled the field of diagnostic radiology forward by enhancing image analysis and interpretation. The introduction of the Transformer architecture, followed by the development of Large Language Models (LLMs), has further revolutionized this domain. LLMs now possess the potential to automate and refine the radiology workflow, extending from report generation to assistance in diagnostics and patient care. The integration of multimodal technology with LLMs could potentially leapfrog these applications to unprecedented levels.However, LLMs come with unresolved challenges such as information hallucinations and biases, which can affect clinical reliability. Despite these issues, the legislative and guideline frameworks have yet to catch up with technological advancements. Radiologists must acquire a thorough understanding of these technologies to leverage LLMs' potential to the fullest while maintaining medical safety and ethics. This review aims to aid in that endeavor.


Asunto(s)
Aprendizaje Profundo , Radiología , Humanos , Radiología/métodos , Radiólogos , Inteligencia Artificial , Flujo de Trabajo
13.
Pediatr Radiol ; 54(6): 936-943, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38483592

RESUMEN

Human factors engineering involves the study and development of methods aimed at enhancing performance, improving safety, and optimizing user satisfaction. The focus of human factors engineering encompasses the design of work environments and an understanding of human mental processes to prevent errors. In this review, we summarize the history, applications, and impacts of human factors engineering on the healthcare field. To illustrate these applications and impacts, we provide several examples of how successful integration of a human factors engineer in our pediatric radiology department has positively impacted various projects. The successful integration of human factors engineering expertise has contributed to projects including improving response times for portable radiography requests, deploying COVID-19 response resources, informing the redesign of scheduling workflows, and implementation of a virtual ergonomics program for remote workers. In sum, the integration of human factors engineering insight into our department has resulted in tangible benefits and has also positioned us as proactive contributors to broader hospital-wide improvements.


Asunto(s)
Ergonomía , Pediatría , Ergonomía/métodos , Humanos , Pediatría/métodos , Servicio de Radiología en Hospital/organización & administración , Radiología/organización & administración , Radiología/métodos , COVID-19/prevención & control , SARS-CoV-2
14.
Pediatr Radiol ; 54(5): 684-692, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38332355

RESUMEN

As the field of three-dimensional (3D) visualization rapidly advances, how healthcare professionals perceive and interact with real and virtual objects becomes increasingly complex. Lack of clear vocabulary to navigate the changing landscape of 3D visualization hinders clinical and scientific advancement, particularly within the field of radiology. In this article, we provide foundational definitions and illustrative examples for 3D visualization in clinical care, with a focus on the pediatric patient population. We also describe how understanding 3D visualization tools enables better alignment of hardware and software products with intended use-cases, thereby maximizing impact for patients, families, and healthcare professionals.


Asunto(s)
Imagenología Tridimensional , Radiología , Niño , Humanos , Imagenología Tridimensional/métodos , Pediatría/métodos , Radiología/métodos , Programas Informáticos
15.
Semin Ultrasound CT MR ; 45(2): 152-160, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403128

RESUMEN

Artificial intelligence's (AI) emergence in radiology elicits both excitement and uncertainty. AI holds promise for improving radiology with regards to clinical practice, education, and research opportunities. Yet, AI systems are trained on select datasets that can contain bias and inaccuracies. Radiologists must understand these limitations and engage with AI developers at every step of the process - from algorithm initiation and design to development and implementation - to maximize benefit and minimize harm that can be enabled by this technology.


Asunto(s)
Inteligencia Artificial , Radiología , Humanos , Algoritmos , Diagnóstico por Imagen/métodos , Radiología/métodos
17.
Semin Ultrasound CT MR ; 45(2): 134-138, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38373670

RESUMEN

There are approximately 200 academic radiology departments in the United States. While academic medical centers vary widely depending on their size, complexity, medical school affiliation, research portfolio, and geographic location, they are united by their 3 core missions: patient care, education and training, and scholarship. Despite inherent differences, the current challenges faced by all academic radiology departments have common threads; potential solutions and future adaptations will need to be tailored and individualized-one size will not fit all. In this article, we provide an overview based on our experiences at 4 academic centers across the United States, from relatively small to very large size, and discuss creative and innovative ways to adapt, including community expansion, hybrid models of faculty in-person vs teleradiology (traditional vs non-traditional schedule), work-life integration, recruitment and retention, mentorship, among others.


Asunto(s)
Centros Médicos Académicos , Humanos , Estados Unidos , Servicio de Radiología en Hospital/organización & administración , Radiología/métodos , Radiología/educación , Radiología/tendencias
18.
Br J Radiol ; 97(1156): 744-746, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38335929

RESUMEN

Artificial Intelligence (AI) applied to radiology is so vast that it provides applications ranging from becoming a complete replacement for radiologists (a potential threat) to an efficient paperwork-saving time assistant (an evident strength). Nowadays, there are AI applications developed to facilitate the diagnostic process of radiologists without directly influencing (or replacing) the proper diagnostic decision step. These tools may help to reduce administrative workload, in different scenarios ranging from assisting in scheduling, study prioritization, or report communication, to helping with patient follow-up, including recommending additional exams. These are just a few of the highly time-consuming tasks that radiologists have to deal with every day in their routine workflow. These tasks hinder the time that radiologists should spend evaluating images and caring for patients, which will have a direct and negative impact on the quality of reports and patient attention, increasing the delay and waiting list of studies pending to be performed and reported. These types of AI applications should help to partially face this worldwide shortage of radiologists.


Asunto(s)
Inteligencia Artificial , Radiología , Humanos , Radiología/métodos , Radiólogos , Flujo de Trabajo , Carga de Trabajo
19.
Semin Musculoskelet Radiol ; 28(1): 3-13, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38330966

RESUMEN

The integration of biomarkers into medical practice has revolutionized the field of radiology, allowing for enhanced diagnostic accuracy, personalized treatment strategies, and improved patient care outcomes. This review offers radiologists a comprehensive understanding of the diverse applications of biomarkers in medicine. By elucidating the fundamental concepts, challenges, and recent advancements in biomarker utilization, it will serve as a bridge between the disciplines of radiology and epidemiology. Through an exploration of various biomarker types, such as imaging biomarkers, molecular biomarkers, and genetic markers, I outline their roles in disease detection, prognosis prediction, and therapeutic monitoring. I also discuss the significance of robust study designs, blinding, power and sample size calculations, performance metrics, and statistical methodologies in biomarker research. By fostering collaboration between radiologists, statisticians, and epidemiologists, I hope to accelerate the translation of biomarker discoveries into clinical practice, ultimately leading to improved patient care.


Asunto(s)
Diagnóstico por Imagen , Radiología , Humanos , Biomarcadores , Radiografía , Diagnóstico por Imagen/métodos , Radiología/métodos , Atención al Paciente
20.
Eur Radiol ; 34(8): 5028-5040, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38180530

RESUMEN

OBJECTIVE: To evaluate the use of reporting checklists and quality scoring tools for self-reporting purposes in radiomics literature. METHODS: Literature search was conducted in PubMed (date, April 23, 2023). The radiomics literature was sampled at random after a sample size calculation with a priori power analysis. A systematic assessment for self-reporting, including the use of documentation such as completed checklists or quality scoring tools, was conducted in original research papers. These eligible papers underwent independent evaluation by a panel of nine readers, with three readers assigned to each paper. Automatic annotation was used to assist in this process. Then, a detailed item-by-item confirmation analysis was carried out on papers with checklist documentation, with independent evaluation of two readers. RESULTS: The sample size calculation yielded 117 papers. Most of the included papers were retrospective (94%; 110/117), single-center (68%; 80/117), based on their private data (89%; 104/117), and lacked external validation (79%; 93/117). Only seven papers (6%) had at least one self-reported document (Radiomics Quality Score (RQS), Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD), or Checklist for Artificial Intelligence in Medical Imaging (CLAIM)), with a statistically significant binomial test (p < 0.001). Median rate of confirmed items for all three documents was 81% (interquartile range, 6). For quality scoring tools, documented scores were higher than suggested scores, with a mean difference of - 7.2 (standard deviation, 6.8). CONCLUSION: Radiomic publications often lack self-reported checklists or quality scoring tools. Even when such documents are provided, it is essential to be cautious, as the accuracy of the reported items or scores may be questionable. CLINICAL RELEVANCE STATEMENT: Current state of radiomic literature reveals a notable absence of self-reporting with documentation and inaccurate reporting practices. This critical observation may serve as a catalyst for motivating the radiomics community to adopt and utilize such tools appropriately, thereby fostering rigor, transparency, and reproducibility of their research, moving the field forward. KEY POINTS: • In radiomics literature, there has been a notable absence of self-reporting with documentation. • Even if such documents are provided, it is critical to exercise caution because the accuracy of the reported items or scores may be questionable. • Radiomics community needs to be motivated to adopt and appropriately utilize the reporting checklists and quality scoring tools.


Asunto(s)
Lista de Verificación , Autoinforme , Humanos , Radiología/normas , Radiología/métodos , Diagnóstico por Imagen/métodos , Diagnóstico por Imagen/normas , Radiómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...