Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
BMC Genom Data ; 24(1): 4, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36782118

RESUMEN

Cytoskeleton-related proteins are essential for cell shape maintenance and cytoskeleton remodeling. The spermatozoa of Eriocheir sinensis (Chinese mitten crab) have a unique cellular structure, and the mechanism of spermatozoal metamorphosis during the acrosome reaction is not well understood. In this study, the E. sinensis spermatozoa were induced using calcium ionophore A23187 to undergo the acrosome reaction in vitro, and the acrosome-reacting and fresh (non-reacting) spermatozoa were collected separately. The differential expression of cytoskeleton-related protein genes in acrosome-reacting and fresh spermatozoa of E. sinensis was analyzed by whole transcriptome sequencing and bioinformatics analysis, and PPI network and miRNA-mRNA regulation network were constructed to analyze their possible function and regulation mechanism. The results showed that numerous differentially expressed cytoskeleton-related protein genes, miRNAs and lncRNAs were found in acrosome-reacting and fresh spermatozoa of E. sinensis; 27 cytoskeleton-related protein genes were down regulated and 687 miRNAs were up regulated in acrosome-reacting spermatozoa; 147 miRNAs target these 27 cytoskeleton-related protein genes. In the PPI networks, RAC1, BCAR1, RDX, NCKAP1, EPS8, CDC42BPA, LIMK1, ELMO2, GNAI1 and OCRL were identified as hub proteins. These proteins are mainly involved in the regulation of cytoskeleton organization, actin cytoskeleton organization, microtubule skeleton organization and small GTPase-mediated signal transduction and other biological processes, and play roles in pathways such as actin cytoskeletal regulation and axon guidance. miR-9, miR-31 and two novel miRNAs in the miRNA-mRNA regulatory network are the core miRNAs targeting cytoskeleton-related protein genes. miR-9 targets and regulates OBSCN, CDC42BPA, ELMO2, BCAS3, TPR and OCRL; while miR-31 targets and regulates CDC42BPA and TPR. This study provides a theoretical basis for revealing the mechanism of acrosome reaction under the special spermatozoa morphology of E. sinensis.


Asunto(s)
Reacción Acrosómica , Braquiuros , Proteínas del Citoesqueleto , MicroARNs , Espermatozoides , Masculino , Reacción Acrosómica/genética , Reacción Acrosómica/fisiología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/análisis , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/genética , MicroARNs/genética , ARN Mensajero/genética , Espermatozoides/metabolismo , Braquiuros/genética , Braquiuros/metabolismo
2.
Commun Biol ; 5(1): 984, 2022 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-36115925

RESUMEN

SPACA6 is a sperm-expressed surface protein that is critical for gamete fusion during mammalian sexual reproduction. Despite this fundamental role, little is known about how SPACA6 specifically functions. We elucidated the crystal structure of the SPACA6 ectodomain at 2.2-Å resolution, revealing a two-domain protein containing a four-helix bundle and Ig-like ß-sandwich connected via a quasi-flexible linker. This structure is reminiscent of IZUMO1, another gamete fusion-associated protein, making SPACA6 and IZUMO1 founding members of a superfamily of fertilization-associated proteins, herein dubbed the IST superfamily. The IST superfamily is defined structurally by its distorted four-helix bundle and a pair of disulfide-bonded CXXC motifs. A structure-based search of the AlphaFold human proteome identified more protein members to this superfamily; remarkably, many of these proteins are linked to gamete fusion. The SPACA6 structure and its connection to other IST-superfamily members provide a missing link in our knowledge of mammalian gamete fusion.


Asunto(s)
Reacción Acrosómica , Proteínas de la Membrana , Espermatozoides , Reacción Acrosómica/genética , Reacción Acrosómica/fisiología , Animales , Disulfuros , Células Germinativas/metabolismo , Humanos , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Masculino , Mamíferos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteoma , Semen/metabolismo , Espermatozoides/metabolismo
3.
Hum Reprod ; 37(7): 1394-1405, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35551387

RESUMEN

STUDY QUESTION: Are there new genetic factors responsible for male infertility with normal sperm quantity and morphology? SUMMARY ANSWER: We identified the bi-allelic variants in KCNU1 and confirmed it a novel pathogenetic gene for male infertility mainly due to impaired sperm acrosome reactions (ARs). WHAT IS KNOWN ALREADY: Until now, the underlying genetic determinants for male affected individuals exhibiting normal sperm quantity and morphology have been largely unknown. Potassium/calcium-activated channel subfamily U member 1 (KCNU1) is a sperm-specific potassium channel. The Kcnu1 null mutation in male mice causes infertility due to the impaired progressive motility and AR. STUDY DESIGN, SIZE, DURATION: We recruited a cohort of 126 male infertility individuals with typical asthenospermia or fertilization failure and focused on two infertile males from two consanguineous families from 2015 to 2020; whole-exome sequencing and homozygosity mapping were performed. We identified a homozygous missense variant (c.2144A>G, p.His715Arg) and a homozygous donor splice-site variant (c.1295 + 3A>C, p.Val405Glyfs*8) in KCNU1. Then, we generated a knock-in (KI) mouse model in September 2020 and have now carried out functional studies and possible treatment strategies. PARTICIPANTS/MATERIALS, SETTING, METHODS: The affected individuals with infertility were recruited from the Shanghai Ninth Hospital affiliated to Shanghai Jiao Tong University. Genomic DNA from the affected individual was extracted from peripheral blood. Whole-exome sequencing, homozygosity mapping and in silico analyses were used to screen and identify KCNU1 variants, and the variants were confirmed by Sanger sequencing. We used C57BL/6N mouse to construct KI mouse model to mimic the reproductive phenotype in vivo. We performed functional experiments by western blotting, AR assay and immunofluorescent Staining. Finally, we performed IVF and ICSI to explore the treatment strategies. MAIN RESULTS AND THE ROLE OF CHANCE: We identified a homozygous missense variant (c.2144A>G, p.His715Arg) and a homozygous donor splice-site variant (c.1295 + 3A>C, p.Val405Glyfs*8) in KCNU1 in two infertile males. We demonstrated that the splice-site variant affected normal alternative splicing of KCNU1, thus leading to the loss of function of KCNU1. Meanwhile, the missense pathogenic variant reduced the KCNU1 protein levels in sperm of both the affected individual and the KI mouse model, resulting in impaired ARs and male infertility. Intracytoplasmic sperm injection was able to rescue the deficiencies. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: The exact molecular mechanism of KCNU1 and pathways need to be further explore in the future. WIDER IMPLICATIONS OF THE FINDINGS: This is the first report that establishes a causal relationship between KCNU1 deficiency and male infertility, confirming the critical role of KCNU1 in human reproduction. Our findings expand our knowledge of the genes that play critical roles in the human sperm AR and provide a new genetic marker for infertility. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the SHIPM-pi fund no. JY201801 from the Shanghai Institute of Precision Medicine, Ninth People's Hospital Shanghai Jiao Tong University School of Medicine, the National Natural Science Foundation of China (81725006, 81771649, 81822019, 81771581, 81971450, 81971382, 82001538 and 82071642). The authors declare no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Reacción Acrosómica , Infertilidad Masculina , Canales de Potasio de Gran Conductancia Activados por el Calcio , Reacción Acrosómica/genética , Animales , China , Humanos , Infertilidad Masculina/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Semen , Espermatozoides
4.
Reprod Biol Endocrinol ; 20(1): 5, 2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-34980136

RESUMEN

BACKGROUND: Potassium channels are important for the structure and function of the spermatozoa. As a potassium transporter, the mSlo3 is essential for male fertility as Slo3 knockout male mice were infertile with the series of functional defects in sperm cells. However, no pathogenic variant has been detected in human SLO3 to date. Here we reported a human case with homozygous SLO3 mutation. The function of SLO3 in human sperm and the corresponding assisted reproductive strategy are also investigated. METHODS: We performed whole-exome sequencing analysis from a large cohort of 105 patients with asthenoteratozoospermia. The effects of the variant were investigated by quantitative RT-PCR, western blotting, and immunofluorescence assays using the patient spermatozoa. Sperm morphological and ultrastructural studies were conducted using haematoxylin and eosin staining, scanning and transmission electron microscopy. RESULTS: We identified a homozygous missense variant (c.1237A > T: p.Ile413Phe) in the sperm-specific SLO3 in one Chinese patient with male infertility. This SLO3 variant was rare in human control populations and predicted to be deleterious by multiple bioinformatic tools. Sperm from the individual harbouring the homozygous SLO3 variant exhibited severe morphological abnormalities, such as acrosome hypoplasia, disruption of the mitochondrial sheath, coiled tails, and motility defects. The levels of SLO3 mRNA and protein in spermatozoa from the affected individual were reduced. Furthermore, the acrosome reaction, mitochondrial membrane potential, and membrane potential during capacitation were also afflicted. The levels of acrosome marker glycoproteins and PLCζ1 as well as the mitochondrial sheath protein HSP60 and SLO3 auxiliary subunit LRRC52, were significantly reduced in the spermatozoa from the affected individual. The affected man was sterile due to acrosome and mitochondrial dysfunction; however, intra-cytoplasmic sperm injection successfully rescued this infertile condition. CONCLUSIONS: SLO3 deficiency seriously impact acrosome formation, mitochondrial sheath assembly, and the function of K+ channels. Our findings provided clinical implications for the genetic and reproductive counselling of affected families.


Asunto(s)
Acrosoma/patología , Astenozoospermia/genética , Infertilidad Masculina/genética , Reacción Acrosómica/genética , Adulto , Astenozoospermia/patología , China , Estudios de Cohortes , Consanguinidad , Composición Familiar , Femenino , Homocigoto , Humanos , Infertilidad Masculina/patología , Infertilidad Masculina/terapia , Canales de Potasio de Gran Conductancia Activados por el Calcio , Masculino , Potencial de la Membrana Mitocondrial/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Membranas Mitocondriales/patología , Mutación Missense , Linaje , Embarazo , Inyecciones de Esperma Intracitoplasmáticas , Espermatozoides/anomalías , Espermatozoides/patología
5.
Mol Reprod Dev ; 88(7): 479-481, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34114279

RESUMEN

Many factors are involved in acrosome biogenesis in order for appropriate acrosome formation to occur. Here, we demonstrate that IZUMO family member 3, IZUMO3, plays an important role in acrosome biogenesis, as proven by gene disruption experiments. A loss of IZUMO3 in round spermatids affects acrosomal granule positioning due to lack of acrosomal granule contact with the inner acrosomal membrane, leading to the formation of grossly malformed spermatozoa associated with male subfertility. Thus, we suggest that mammalian spermiogenesis needs an elaborate acrosome biogenesis through IZUMO3 involvement.


Asunto(s)
Acrosoma/fisiología , Fertilidad/genética , Proteínas de la Membrana/fisiología , Reacción Acrosómica/genética , Animales , Infertilidad Masculina/genética , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Espermatogénesis/genética , Espermatozoides/anomalías , Espermatozoides/fisiología
6.
Curr Mol Med ; 21(10): 850-859, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33475072

RESUMEN

Male infertility is rising nowadays and accounts for a major part of infertility cases worldwide. Novel tests are being developed for better detection and management of male infertility. Though there are many tests available for diagnosing male infertility like acrosome reaction rate, hemizona assay, in vivo or in vitro sperm penetration assay, sperm DNA damage tests, however, a semen analysis is the most commonly used initial test for male infertility. It is usually associated with failure to detect the cause in many cases, as seminal composition gets affected by a number of factors and can give false reports. Furthermore, it does not give any information about defects in capacitation, sperm-zona pellucida interaction, and sperm's ability to fertilize oocytes. This results in failure of detection and delayed management of male infertility. Hence, the present review was conducted to identify various sperm proteins that play a significant role in spermatogenesis, sperm motility, sperm-zona pellucida interaction, and fertilization. These proteins can be used in the future as markers of male infertility and will aid in better detection and management of male infertility. Methodology: Search for literature was made from 1970 to 2020 from various databases like PUBMED, SCOPUS, Google Scholar on sperm proteins and their role in male fertility using keywords: "sperm protein as bio-markers", "novel sperm proteins as markers of infertility", "Sperm proteins essential for capacitation, sperm motility and oocyte fertilization". Inclusion criteria: All full-length research articles, systematic reviews, meta-analyses, or abstracts on sperm proteins and male infertility published in the English language in peer-reviewed journals were considered.


Asunto(s)
Infertilidad Masculina , Motilidad Espermática/genética , Espermatogénesis/genética , Reacción Acrosómica/genética , Humanos , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Masculino , Zona Pelúcida/metabolismo
7.
J Clin Endocrinol Metab ; 106(4): e1775-e1792, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33340048

RESUMEN

CONTEXT: The calcium-sensing receptor (CaSR) is essential to maintain a stable calcium concentration in serum. Spermatozoa are exposed to immense changes in concentrations of CaSR ligands such as calcium, magnesium, and spermine during epididymal maturation, in the ejaculate, and in the female reproductive environment. However, the role of CaSR in human spermatozoa is unknown. OBJECTIVE: This work aimed to investigate the role of CaSR in human spermatozoa. METHODS: We identified CaSR in human spermatozoa and characterized the response to CaSR agonists on intracellular calcium, acrosome reaction, and 3',5'-cyclic adenosine 5'-monophosphate (cAMP) in spermatozoa from men with either loss-of-function or gain-of-function mutations in CASR and healthy donors. RESULTS: CaSR is expressed in human spermatozoa and is essential for sensing extracellular free ionized calcium (Ca2+) and Mg2+. Activators of CaSR augmented the effect of sperm-activating signals such as the response to HCO3- and the acrosome reaction, whereas spermatozoa from men with a loss-of-function mutation in CASR had a diminished response to HCO3-, lower progesterone-mediated calcium influx, and were less likely to undergo the acrosome reaction in response to progesterone or Ca2+. CaSR activation increased cAMP through soluble adenylyl cyclase (sAC) activity and increased calcium influx through CatSper. Moreover, external Ca2+ or Mg2+ was indispensable for HCO3- activation of sAC. Two male patients with a CASR loss-of-function mutation in exon 3 presented with normal sperm counts and motility, whereas a patient with a loss-of-function mutation in exon 7 had low sperm count, motility, and morphology. CONCLUSION: CaSR is important for the sensing of Ca2+, Mg2+, and HCO3- in spermatozoa, and loss-of-function may impair male sperm function.


Asunto(s)
Bicarbonatos/metabolismo , Calcio/metabolismo , Receptores Sensibles al Calcio/fisiología , Espermatozoides/metabolismo , Reacción Acrosómica/efectos de los fármacos , Reacción Acrosómica/genética , Adulto , Bicarbonatos/farmacología , Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/genética , Estudios de Casos y Controles , Femenino , Humanos , Hipercalcemia/congénito , Hipercalcemia/genética , Hipercalcemia/metabolismo , Hipercalcemia/patología , Hipercalciuria/genética , Hipercalciuria/metabolismo , Hipercalciuria/patología , Hipocalcemia/genética , Hipocalcemia/metabolismo , Hipocalcemia/patología , Hipoparatiroidismo/congénito , Hipoparatiroidismo/genética , Hipoparatiroidismo/metabolismo , Hipoparatiroidismo/patología , Riñón/metabolismo , Riñón/patología , Magnesio/metabolismo , Magnesio/farmacología , Masculino , Mutación , Receptores Sensibles al Calcio/genética , Motilidad Espermática/efectos de los fármacos , Motilidad Espermática/genética , Espermatozoides/efectos de los fármacos , Espermatozoides/fisiología , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/patología
8.
Methods Mol Biol ; 2233: 139-168, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33222133

RESUMEN

Acrosome reaction is an exocytic process that enables a sperm to penetrate the zona pellucida and fertilize an egg. The process involves the fenestration and vesiculation of the sperm plasma membrane and outer acrosomal membrane, releasing the acrosomal content. Given the importance of the acrosome secretion in fertilization, many different methods have been developed to detect the acrosome reaction of sperm. In this chapter, we describe detailed practical procedures to assess the acrosomal status of human spermatozoa. To do this, we resorted to light optical and epifluorescence microscopy, flow cytometry, and transmission electron microscopy. We also itemize the protocol for real-time measurements of the acrosome reaction by confocal microscopy. Further, we discuss the level of complexity, costs, and the reasons why a researcher should choose each technique.This chapter is designed to provide the user with sufficient background to measure acrosomal exocytosis in human sperm.


Asunto(s)
Reacción Acrosómica/genética , Membrana Celular/ultraestructura , Exocitosis/genética , Espermatozoides/ultraestructura , Acrosoma/metabolismo , Membrana Celular/genética , Humanos , Masculino , Espermatozoides/patología , Zona Pelúcida/metabolismo
9.
FASEB J ; 34(12): 16224-16242, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33058343

RESUMEN

Importin α proteins play a central role in the transport of cargo from the cytoplasm to the nucleus. In this study, we observed that male knock-out mice for importin α4, which is encoded by the Kpna4 gene (Kpna4-/- ), were subfertile and yielded smaller litter sizes than those of wild-type (WT) males. In contrast, mice lacking the closely related importin α3 (Kpna3-/- ) were fertile. In vitro fertilization and sperm motility assays demonstrated that sperm from Kpna4-/- mice had significantly reduced quality and motility. In addition, acrosome reaction was also impaired in Kpna4-/- mice. Transmission electron microscopy revealed striking defects, including abnormal head morphology and multiple axoneme structures in the flagella of Kpna4-/- mice. A five-fold increase in the frequency of abnormalities in Kpna4-/- mice compared to WT mice indicates the functional importance of importin α4 in normal sperm development. Moreover, Nesprin-2, which is a component of the linker of nucleus and cytoskeleton complex, was expressed at lower levels in sperm from Kpna4-/- mice and was localized with abnormal axonemes, suggesting incorrect formation of the nuclear membrane-cytoskeleton structure during spermiogenesis. Proteomics analysis of Kpna4-/- testis showed significantly altered expression of proteins related to sperm formation, which provided evidence that genetic loss of importin α4 perturbed chromatin status. Collectively, these findings indicate that importin α4 is critical for establishing normal sperm morphology in mice, providing new insights into male germ cell development by highlighting the requirement of importin α4 for normal fertility.


Asunto(s)
Fertilidad/genética , Infertilidad Masculina/genética , Carioferinas/genética , Motilidad Espermática/genética , Espermatozoides/anomalías , alfa Carioferinas/genética , Reacción Acrosómica/genética , Animales , Flagelos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Espermatogénesis/genética , Testículo/anomalías
10.
Proc Natl Acad Sci U S A ; 117(21): 11493-11502, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32393636

RESUMEN

Sperm-oocyte membrane fusion is one of the most important events for fertilization. So far, IZUMO1 and Fertilization Influencing Membrane Protein (FIMP) on the sperm membrane and CD9 and JUNO (IZUMO1R/FOLR4) on the oocyte membrane have been identified as fusion-required proteins. However, the molecular mechanisms for sperm-oocyte fusion are still unclear. Here, we show that testis-enriched genes, sperm-oocyte fusion required 1 (Sof1/Llcfc1/1700034O15Rik), transmembrane protein 95 (Tmem95), and sperm acrosome associated 6 (Spaca6), encode sperm proteins required for sperm-oocyte fusion in mice. These knockout (KO) spermatozoa carry IZUMO1 but cannot fuse with the oocyte plasma membrane, leading to male sterility. Transgenic mice which expressed mouse Sof1, Tmem95, and Spaca6 rescued the sterility of Sof1, Tmem95, and Spaca6 KO males, respectively. SOF1 and SPACA6 remain in acrosome-reacted spermatozoa, and SPACA6 translocates to the equatorial segment of these spermatozoa. The coexpression of SOF1, TMEM95, and SPACA6 in IZUMO1-expressing cultured cells did not enhance their ability to adhere to the oocyte membrane or allow them to fuse with oocytes. SOF1, TMEM95, and SPACA6 may function cooperatively with IZUMO1 and/or unknown fusogens in sperm-oocyte fusion.


Asunto(s)
Reacción Acrosómica , Proteínas de la Membrana , Proteínas de Plasma Seminal , Espermatozoides/fisiología , Reacción Acrosómica/genética , Reacción Acrosómica/fisiología , Animales , Femenino , Infertilidad Masculina/genética , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas de Plasma Seminal/genética , Proteínas de Plasma Seminal/metabolismo
11.
Mol Reprod Dev ; 87(5): 534-541, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32311190

RESUMEN

Haprin (TRIM36) is a ubiquitin-protein ligase that mediates ubiquitination and subsequent proteasomal degradation of target proteins. It is expressed in the testes in both mice and humans and is thought to be involved in spermiogenesis, the acrosome reaction, and fertilization. However, the functional role of Haprin is poorly understood. The aim of this study was to investigate the physiological role of Haprin in fertility. Homozygous haprin-deficient mice were generated and these mice, and their spermatozoa, were analyzed to detect morphological and fertility-related abnormalities. In these models, normal spermatogenesis was observed but sperm quality was reduced with haprin-deficient mice having poorer sperm morphology and motility than wild-type mice. Interestingly, haprin-deficient mice showed normal in vivo fertility but could not fertilize oocytes under standard in vitro fertilization conditions. In conclusion, this study demonstrated that Haprin deficiency causes morphological abnormalities in spermatozoa, indicating that Haprin is involved in spermiogenesis.


Asunto(s)
Proteínas Portadoras/genética , Infertilidad Masculina/genética , Proteínas de Plasma Seminal/genética , Espermatozoides/fisiología , Reacción Acrosómica/genética , Animales , Proteínas Portadoras/metabolismo , Femenino , Fertilización/genética , Fertilización In Vitro , Infertilidad Masculina/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas de Plasma Seminal/metabolismo , Espermatogénesis/genética , Espermatozoides/metabolismo
12.
Biochim Biophys Acta Mol Cell Res ; 1867(7): 118704, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32194132

RESUMEN

Exocytosis of spermatozoon's secretory vesicle, named acrosome reaction (AR), is a regulated event that plays a central role in fertilization. It is coupled to a complex calcium signaling. Ceramide is a multitasking lipid involved in exocytosis. Nevertheless, its effect on secretion is controversial and the underlying cellular and molecular mechanisms remain unknown. Human spermatozoa are useful to dissect the role of ceramide in secretion given that the gamete is not capable to undergo any trafficking mechanisms other than exocytosis. We report for the first time, the presence of sphingolipid metabolism enzymes such as neutral-sphingomyelinase and ceramide synthase in sperm. Ceramidases are also present and active. Both the addition of cell-permeable ceramide and the rise of the endogenous one, increase intracellular calcium acting as potent inducers of exocytosis. Ceramide triggers AR in capacitated spermatozoa and enhances the gamete response to progesterone. The lipid induces physiological ultrastructural changes in the acrosome and triggers an exocytosis-signaling cascade involving protein tyrosine phosphatase 1B and VAMP2. Real-time imaging showed an increment of calcium in the cytosol upon ceramide treatment either in the absence or in the presence of extracellular calcium. Pharmacological experiments demonstrate that at early stages the process involves ryanodine receptors, CatSper (calcium channel of sperm), and store-operated calcium channels. We set out the signaling sequence of events that connect ceramide to internal calcium mobilization and external calcium signals during secretion. These results allow the coordination of lipids and proteins in a pathway that accomplishes secretion. Our findings contribute to the understanding of ceramide's role in regulated exocytosis and fertilization.


Asunto(s)
Reacción Acrosómica/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Espermatozoides/efectos de los fármacos , Proteína 2 de Membrana Asociada a Vesículas/genética , Acrosoma/efectos de los fármacos , Acrosoma/metabolismo , Reacción Acrosómica/efectos de los fármacos , Adulto , Calcio/química , Canales de Calcio/genética , Señalización del Calcio/efectos de los fármacos , Ceramidas/farmacología , Citoplasma/efectos de los fármacos , Citoplasma/genética , Exocitosis/genética , Fertilización/genética , Humanos , Masculino , Canal Liberador de Calcio Receptor de Rianodina/genética , Vesículas Secretoras/efectos de los fármacos , Vesículas Secretoras/genética , Espermatozoides/patología
13.
J Cell Physiol ; 235(6): 5340-5352, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31903553

RESUMEN

Calmodulin is a small, highly conserved acidic protein present at high levels in spermatozoa that mediates numerous intracellular Ca2+ -dependent events. Sperm motility and fertilizing ability results from an array of biochemical pathways under Ca2+ control, in which the importance of calmodulin is not fully understood. The role of calmodulin in sperm function has been mostly assessed using antagonists. Nevertheless, few known calmodulin-regulated enzymes have been described in spermatozoa regarding their involvement in sperm function. To further understand the role of this important Ca2+ mediator in spermatozoa, different studies were also undertaken to investigate and to identify sperm calmodulin-binding proteins and determine their localization and subcellular distribution as an attempt to elucidate the role of this important Ca2+ mediator. In the present study, sperm calmodulin-binding proteins were identified by mass spectrometry after Ca2+ -dependent biotinylated-calmodulin binding on sperm head proteins subjected to 2D electrophoresis and transferred on a polyvinylidene difluoride membrane. Calmodulin binding protein identification was also done on detergent extracted whole sperm proteins pulled down in a Ca2+ -dependent manner by calmodulin-conjugated sepharose beads. In this latter group, 300 proteins were identified in at least two experiments out of three, and those identified in the three independent experiments were analyzed for overrepresented biological processes using the Bos taurus Gene Ontology database. Proteins with known function in reproductive processes, fertilization, sperm-egg recognition, sperm binding to the zona pellucida, regulation of sperm capacitation, and sperm motility were identified and further emphasize the importance of calmodulin in sperm function.


Asunto(s)
Calcio/metabolismo , Proteínas de Unión a Calmodulina/genética , Calmodulina/genética , Espermatozoides/crecimiento & desarrollo , Reacción Acrosómica/genética , Animales , Bovinos , Fertilización/genética , Humanos , Masculino , Unión Proteica/genética , Capacitación Espermática , Motilidad Espermática/genética , Espermatozoides/fisiología , Zona Pelúcida/metabolismo
14.
Mol Hum Reprod ; 25(8): 458-470, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31194867

RESUMEN

Human spermatozoa can fertilize an oocyte only after post-testicular maturation and capacitation. These processes involve dynamic modification and reorganization of the sperm plasma membrane, which allow them to bind to the zona pellucida (ZP) of the oocyte. Defective sperm-ZP binding is one of the major causes of male subfertility. Galectin-3 is a secretory lectin in human seminal plasma well known for its action on cell adhesion. The aim of this study was to determine the role of galectin-3 in spermatozoa-ZP interaction and its association with fertilization rate in clinical assisted reproduction. Our studies revealed that the acrosomal region of ejaculated and capacitated spermatozoa possess strong galectin-3 immunoreactivity, which is much stronger than that of epididymal spermatozoa. Expression of galectin-3 can also be detected on seminal plasma-derived extracellular vesicles (EVs) and can be transferred to the sperm surface. Blocking of sperm surface galectin-3 function by antibody or carbohydrate substrate reduced the ZP-binding capacity of spermatozoa. Purified galectin-3 is capable of binding to ZP, indicating that galectin-3 may serve as a cross-linking bridge between ZP glycans and sperm surface glycoproteins. Galectin-3 levels in seminal plasma-derived EVs were positively associated with fertilization rates. These results suggest that galectin-3 in EVs is transferred to the sperm surface during post-testicular maturation and plays a crucial role in spermatozoa-ZP binding after capacitation. Reduced galectin-3 expression in seminal plasma-derived EVs may be a cause behind a low fertilization rate. Further studies with more clinical samples are required to confirm the relationship between galectin-3 levels and IVF outcomes.


Asunto(s)
Fertilización/fisiología , Galectina 3/metabolismo , Zona Pelúcida/metabolismo , Reacción Acrosómica/genética , Reacción Acrosómica/fisiología , Adhesión Celular/fisiología , Fertilización/genética , Galectina 3/genética , Humanos , Masculino , Oocitos/metabolismo , Semen/metabolismo , Capacitación Espermática/fisiología , Interacciones Espermatozoide-Óvulo/genética , Interacciones Espermatozoide-Óvulo/fisiología , Espermatozoides/metabolismo
15.
J Reprod Dev ; 65(2): 97-102, 2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-30606959

RESUMEN

Gene-knockout mice lacking ACRBP, a proacrosin-binding protein localized in the acrosome of sperm, have been shown to exhibit male subfertility, owing to abnormal formation of the acrosome. In this study, to elucidate the mechanism contributing to the subfertility phenotype, we examined the behavior of ACRBP-deficient mouse sperm in the female reproductive tract. When sperm that had migrated into the uterus and oviduct after mating were counted, the number of ACRBP-deficient sperm was noticeably smaller in the oviduct of mice post mating. However, ACRBP-deficient sperm recovered from the oviduct possessed morphologically normal head shape and retained normal motility. Importantly, ACRBP-deficient sperm displayed a marked reduction in the ability to successfully gain access to unfertilized oocytes. These data suggest that male subfertility of ACRBP-deficient mice may be attributed to incompleteness of the acrosome reaction rather than impairment in sperm migration from the uterus to the oviduct.


Asunto(s)
Reacción Acrosómica/genética , Proteínas Portadoras/genética , Genitales Femeninos/metabolismo , Interacciones Espermatozoide-Óvulo/genética , Espermatozoides/metabolismo , Acrosoma/metabolismo , Animales , Proteínas Portadoras/metabolismo , Trompas Uterinas/metabolismo , Femenino , Fertilización/genética , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Especificidad de Órganos/genética , Análisis de Semen , Motilidad Espermática/genética
16.
J Cell Mol Med ; 23(4): 2583-2594, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30680919

RESUMEN

Oligoasthenozoospermia is a major cause of male infertility; however, its etiology and pathogenesis are unclear and may be associated with specific gene abnormalities. This study focused on Tppp2 (tubulin polymerization promoting protein family member 2), whose encoded protein localizes in elongating spermatids at stages IV-VIII of the seminiferous epithelial cycle in testis and in mature sperm in the epididymis. In human and mouse sperm, in vitro inhibition of TPPP2 caused significantly decreased motility and ATP content. Studies on Tppp2 knockout (KO) mice demonstrated that deletion of TPPP2 resulted in male subfertility with a significantly decreased sperm count and motility. In Tppp2-/- mice, increased irregular mitochondria lacking lamellar cristae, abnormal expression of electron transfer chain molecules, lower ATP levels, decreased mitochondrial membrane potential and increased apoptotic index were observed in sperm, which could be the potential causes for its oligoasthenozoospermia phenotype. Moreover, we identified a potential TPPP2-interactive protein, eEf1b (eukaryotic translation elongation factor 1 beta), which plays an important role in protein translation extension. Thus, TPPP2 is probably a potential pathogenic factor in oligoasthenozoospermia. Deficiency of TPPP2 might affect the translation of specific proteins, altering the structure and function of sperm mitochondria, and resulting in decreased sperm count, motility and fertility.


Asunto(s)
Adenosina Trifosfato/deficiencia , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/genética , Oligospermia/genética , Factores de Elongación de Péptidos/genética , Espermatozoides/metabolismo , Reacción Acrosómica/genética , Animales , Epidídimo/metabolismo , Epidídimo/patología , Femenino , Expresión Génica , Humanos , Tamaño de la Camada , Masculino , Ratones , Ratones Noqueados , Mitocondrias/patología , Proteínas del Tejido Nervioso/deficiencia , Oligospermia/metabolismo , Oligospermia/patología , Factores de Elongación de Péptidos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Capacitación Espermática/genética , Recuento de Espermatozoides , Motilidad Espermática , Espermatozoides/patología , Testículo/metabolismo , Testículo/patología
17.
J Reprod Dev ; 65(2): 147-153, 2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-30662011

RESUMEN

Previously, we reported that neurotensin (NT), which is expressed in the uterus and oviduct, enhanced bovine sperm capacitation and acrosome reactions. As NT mRNA expression in bovine oviducts increases dramatically in the follicular phase, we hypothesized that NT modulates fertilization and subsequent conception in cattle. The objective of this study was to evaluate the effect of NT on embryo development and blastocyst quality. The rate of embryo cleavage was significantly increased by the addition of NT to the fertilization medium. Furthermore, the total number of cells and numbers of cells in the inner cell mass of blastocysts were significantly increased by NT during in vitro fertilization (IVF). These results suggested that NT enhanced the efficiency of early bovine embryo development and blastocyst quality. The expression of NT receptors (NTRs) in sperm, testes, oocytes, and cumulus cells was evaluated to determine whether NT acted via NTRs in sperm alone or in both male and female reproductive cells during IVF. Immunocytochemistry and reverse transcription polymerase chain reaction revealed that NTR1 and NTR2 were expressed in sperm and testes, but not in oocytes and cumulus cells. We propose that NT selectively acts upon sperm via NTR1 and NTR2 during IVF to improve the cleavage rate and quality of blastocysts, which are important determinants of sperm quality for successful conception. This research supports our hypothesis that NT acts as a key modulator of fertilization and conception in cattle. Further studies are necessary to apply our findings to the industrial framework of bovine reproduction.


Asunto(s)
Blastocisto/citología , Blastocisto/efectos de los fármacos , Fertilización In Vitro , Neurotensina/farmacología , Receptores de Neurotensina/fisiología , Espermatozoides/efectos de los fármacos , Reacción Acrosómica/efectos de los fármacos , Reacción Acrosómica/genética , Animales , Blastocisto/fisiología , Bovinos/embriología , Células Cultivadas , Técnicas de Cultivo de Embriones/métodos , Técnicas de Cultivo de Embriones/veterinaria , Embrión de Mamíferos , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/genética , Femenino , Fertilización/efectos de los fármacos , Fertilización/genética , Fertilización In Vitro/veterinaria , Masculino , Neurotensina/metabolismo , Neurotensina/fisiología , Receptores de Neurotensina/genética , Receptores de Neurotensina/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Capacitación Espermática/efectos de los fármacos , Capacitación Espermática/genética , Espermatozoides/fisiología
18.
PLoS One ; 13(11): e0206224, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30412589

RESUMEN

Calcium signalling is critical for successful fertilization. In spermatozoa, capacitation, hyperactivation of motility and acrosome reactions are all mediated by increases in intracellular Ca2+. Our previous reports have shown that deficiency of MTMR14, a novel phosphoinositide phosphatase, induces a muscle disorder by disrupting Ca2+ homeostasis. Recently, we found that MTMR14 is also expressed in the testes; however, whether deficiency of MTMR14 in the testes also alters the Ca2+ concentration and impairs male fertility remains entirely unknown. In the present study, we found that MTMR14 is also expressed in the testes and mature sperm cells, suggesting that deficiency of MTMR14 might have some effect on male fertility. Both in vivo fertility and in vitro fertilization tests were then performed, and we found that MTMR14-/- male mice showed decreased fertility. A series of experiments were then arranged to test the testis and sperm parameters; we found that MTMR14 deficiency caused small size of the testes, small numbers of both total and immotile sperm, expanded membrane of sperm tail, a decreased proportion of acrosome reaction, and in contrast, an increased proportion of abnormal sperm and augmented apoptosis, etc. Further study also found that the muscle force of the vas deferens decreased significantly in KO mice. Intracellular calcium homeostasis in the testes and epididymis was impaired by MTMR14 deletion; moreover, the relative mRNA expression levels of Itpr1, Itpr2, and Ryr3 were dramatically decreased in MTMR14 KO mice. Thus, MTMR14 deletion impairs male fertility by causing decreased muscle force of the vas deferens and intracellular calcium imbalance.


Asunto(s)
Señalización del Calcio/genética , Fertilidad/genética , Monoéster Fosfórico Hidrolasas/genética , Espermatozoides/metabolismo , Reacción Acrosómica/genética , Animales , Epidídimo/crecimiento & desarrollo , Epidídimo/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Masculino , Ratones , Ratones Noqueados , Canal Liberador de Calcio Receptor de Rianodina/genética , Capacitación Espermática/genética , Espermatozoides/patología , Testículo/crecimiento & desarrollo , Testículo/metabolismo
19.
Biol Reprod ; 99(4): 817-827, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29733332

RESUMEN

Male infertility has become an increasingly common health concern in recent years. Apart from environmental factors, nutrition, lifestyle, and sexually transmitted diseases, genetic defects are important causes of male infertility. Many genes have been demonstrated to be associated with male infertility. However, the roles of some functional genes in infertility, especially those that are specifically expressed in the reproductive system, remain to be elucidated. Here, we demonstrated that the testis-specific gene coiled-coil domain-containing 87 (Ccdc87) is critical for male fertility. Reverse-transcriptase polymerase chain reaction and western blot analyses revealed that the Ccdc87 mRNA and protein were only expressed in mouse testis. Ccdc87 expression first appeared at postnatal day 14 and remained at a relatively high level until adulthood. Male mice lacking Ccdc87 gene (Ccdc87-/-) were found to be subfertile. Approximately 20% of Ccdc87-null sperm from the testis and epididymis displayed severe abnormity of acrosome and cell nucleus. Sperm isolated from the cauda epididymides of Ccdc87-/- mice exhibited decreased initial motility but did not show any change in capacitation. Additionally, Ccdc87 disruption led to the impotency of sperm spontaneous and progesterone-induced acrosome reaction. Moreover, in vitro fertilization assays indicated that the fertilizing capacity of Ccdc87-/- sperm was significantly reduced. Taken together, these findings provide a new clue to understand the genetic causes of male infertility.


Asunto(s)
Fertilidad/fisiología , Proteínas/genética , Proteínas/fisiología , Espermatozoides/fisiología , Reacción Acrosómica/genética , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Femenino , Fertilidad/genética , Expresión Génica , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Infertilidad Masculina/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/metabolismo , Motilidad Espermática/genética , Interacciones Espermatozoide-Óvulo/genética , Espermatozoides/anomalías , Espermatozoides/ultraestructura , Testículo/metabolismo
20.
Biol Reprod ; 99(2): 373-383, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29481619

RESUMEN

Epididymal sperm protein CRISP1 has the ability to both regulate murine CatSper, a key sperm calcium channel, and interact with egg-binding sites during fertilization. In spite of its relevance for sperm function, Crisp1-/-mice are fertile. Considering that phenotypes can be influenced by the genetic background, in the present work mice from the original mixed Crisp1-/- colony (129/SvEv*C57BL/6) were backcrossed onto the C57BL/6 strain for subsequent analysis of their reproductive phenotype. Whereas fertility and fertilization rates of C57BL/6 Crisp1-/- males did not differ from those reported for mice from the mixed background, several sperm functional parameters were clearly affected by the genetic background. Crisp1-/- sperm from the homogeneous background exhibited defects in both the progesterone-induced acrosome reaction and motility not observed in the mixed background, and normal rather than reduced protein tyrosine phosphorylation. Additional studies revealed a significant decrease in sperm hyperactivation as well as in cAMP and protein kinase A (PKA) substrate phosphorylation levels in sperm from both colonies. The finding that exposure of mutant sperm to a cAMP analog and phosphodiesterase inhibitor overcame the sperm functional defects observed in each colony indicated that a common cAMP-PKA signaling defect led to different phenotypes depending on the genetic background. Altogether, our observations indicate that the phenotype of CRISP1 null males is modulated by the genetic context and reveal new roles for the protein in both the functional events and signaling pathways associated to capacitation.


Asunto(s)
Fertilidad/genética , Fertilización/genética , Glicoproteínas de Membrana/genética , Reproducción/genética , Espermatozoides/metabolismo , Reacción Acrosómica/efectos de los fármacos , Reacción Acrosómica/genética , Animales , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Antecedentes Genéticos , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Progesterona/farmacología , Motilidad Espermática/genética , Espermatozoides/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...