Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.297
Filtrar
1.
Biomolecules ; 14(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38785995

RESUMEN

Olesoxime, a cholesterol derivative with an oxime group, possesses the ability to cross the blood-brain barrier, and has demonstrated excellent safety and tolerability properties in clinical research. These characteristics indicate it may serve as a centrally active ligand of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), whose disruption of activity with organophosphate compounds (OP) leads to uncontrolled excitation and potentially life-threatening symptoms. To evaluate olesoxime as a binding ligand and reactivator of human AChE and BChE, we conducted in vitro kinetic studies with the active metabolite of insecticide parathion, paraoxon, and the warfare nerve agents sarin, cyclosarin, tabun, and VX. Our results showed that both enzymes possessed a binding affinity for olesoxime in the mid-micromolar range, higher than the antidotes in use (i.e., 2-PAM, HI-6, etc.). While olesoxime showed a weak ability to reactivate AChE, cyclosarin-inhibited BChE was reactivated with an overall reactivation rate constant comparable to that of standard oxime HI-6. Moreover, in combination with the oxime 2-PAM, the reactivation maximum increased by 10-30% for cyclosarin- and sarin-inhibited BChE. Molecular modeling revealed productive interactions between olesoxime and BChE, highlighting olesoxime as a potentially BChE-targeted therapy. Moreover, it might be added to OP poisoning treatment to increase the efficacy of BChE reactivation, and its cholesterol scaffold could provide a basis for the development of novel oxime antidotes.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Humanos , Butirilcolinesterasa/metabolismo , Butirilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/química , Ligandos , Oximas/química , Oximas/farmacología , Reactivadores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Colestenonas/farmacología , Colestenonas/química , Cinética , Sarín/química , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/antagonistas & inhibidores , Antídotos/farmacología , Antídotos/química , Colesterol/metabolismo , Colesterol/química , Compuestos Organofosforados
2.
Chem Biol Interact ; 396: 111061, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38763347

RESUMEN

Nerve agents pose significant threats to civilian and military populations. The reactivation of acetylcholinesterase (AChE) is critical in treating acute poisoning, but there is still lacking broad-spectrum reactivators, which presents a big challenge. Therefore, insights gained from the reactivation kinetic analysis and molecular docking are essential for understanding the behavior of reactivators towards intoxicated AChE. In this research, we present a systematic determination of the reactivation kinetics of three V agents-inhibited four human ChEs [(AChE and butyrylcholinesterase (BChE)) from either native or recombinant resources, namely, red blood cell (RBC) AChE, rhAChE, hBChE, rhBChE) reactivated by five standard oximes. We unveiled the effect of native and recombinant ChEs on the reactivation kinetics of V agents ex vitro, where the reactivation kinetics characteristic of Vs-inhibited BChE was reported for the first time. In terms of the inhibition type, all of the five oxime reactivators exhibited noncompetitive inhibition. The inhibition potency of these reactivators would not lead to the difference in the reactivation kinetics between native and recombinant ChE. Despite the significant differences between the native and recombinant ChEs observed in the inhibition, aging, and spontaneous reactivation kinetics, the reactivation kinetics of V agent-inhibited ChEs by oximes were less differentiated, which were supported by the ligand docking results. We also found differences in the reactivation efficiency between five reactivators and the phosphorylated enzyme, and molecular dynamic simulations can further explain from the perspectives of conformational stability, hydrogen bonding, binding free energies, and amino acid contributions. By Poisson-Boltzmann surface area (MM-PBSA) calculations, the total binding free energy trends aligned well with the experimental kr2 values.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Inhibidores de la Colinesterasa , Simulación del Acoplamiento Molecular , Agentes Nerviosos , Oximas , Humanos , Oximas/farmacología , Oximas/química , Cinética , Agentes Nerviosos/química , Agentes Nerviosos/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/metabolismo , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/química , Butirilcolinesterasa/metabolismo , Butirilcolinesterasa/química , Simulación de Dinámica Molecular , Reactivadores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
3.
Chem Res Toxicol ; 37(4): 643-657, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38556765

RESUMEN

Organophosphorus (OP) nerve agents inhibit acetylcholinesterase (AChE), creating a cholinergic crisis in which death can occur. The phosphylated serine residue spontaneously dealkylates to the OP-aged form, which current therapeutics cannot reverse. Soman's aging half-life is 4.2 min, so immediate recovery (resurrection) of OP-aged AChE is needed. In 2018, we showed pyridin-3-ol-based quinone methide precursors (QMPs) can resurrect OP-aged electric eel AChE in vitro, achieving 2% resurrection after 24 h of incubation (pH 7, 4 mM). We prepared 50 unique 6-alkoxypyridin-3-ol QMPs with 10 alkoxy groups and five amine leaving groups to improve AChE resurrection. These compounds are predicted in silico to cross the blood-brain barrier and treat AChE in the central nervous system. This library resurrected 7.9% activity of OP-aged recombinant human AChE after 24 h at 250 µM, a 4-fold increase from our 2018 report. The best QMP (1b), with a 6-methoxypyridin-3-ol core and a diethylamine leaving group, recovered 20.8% (1 mM), 34% (4 mM), and 42.5% (predicted maximum) of methylphosphonate-aged AChE activity over 24 h. Seven QMPs recovered activity from AChE aged with Soman and a VX degradation product (EA-2192). We hypothesize that QMPs form the quinone methide (QM) to realkylate the phosphylated serine residue as the first step of resurrection. We calculated thermodynamic energetics for QM formation, but there was no trend with the experimental biochemical data. Molecular docking studies revealed that QMP binding to OP-aged AChE is not the determining factor for the observed biochemical trends; thus, QM formation may be enzyme-mediated.


Asunto(s)
Reactivadores de la Colinesterasa , Indolquinonas , Intoxicación por Organofosfatos , Soman , Humanos , Anciano , Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Simulación del Acoplamiento Molecular , Compuestos Organofosforados/farmacología , Compuestos Organofosforados/metabolismo , Serina , Oximas , Reactivadores de la Colinesterasa/química
4.
ACS Chem Neurosci ; 15(9): 1813-1827, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38621296

RESUMEN

Acetylcholinesterase (AChE) inhibition by organophosphorus (OP) compounds poses a serious health risk to humans. While many therapeutics have been tested for treatment after OP exposure, there is still a need for efficient reactivation against all kinds of OP compounds, and current oxime therapeutics have poor blood-brain barrier penetration into the central nervous system, while offering no recovery in activity from the OP-aged forms of AChE. Herein, we report a novel library of 4-amidophenol quinone methide precursors (QMP) that provide effective reactivation against multiple OP-inhibited forms of AChE in addition to resurrecting the aged form of AChE after exposure to a pesticide or some phosphoramidates. Furthermore, these QMP compounds also reactivate OP-inhibited butyrylcholinesterase (BChE) which is an in vivo, endogenous scavenger of OP compounds. The in vitro efficacies of these QMP compounds were tested for reactivation and resurrection of soluble forms of human AChE and BChE and for reactivation of cholinesterases within human blood as well as blood and brain samples from a humanized mouse model. We identify compound 10c as a lead candidate due to its broad-scope efficacy against multiple OP compounds as well as both cholinesterases. With methylphosphonates, compound 10c (250 µM, 1 h) shows >60% recovered activity from OEt-inhibited AChE in human blood as well as mouse blood and brain, thus highlighting its potential for future in vivo analysis. For 10c, the effective concentration (EC50) is less than 25 µM for reactivation of three different methylphosphonate-inhibited forms of AChE, with a maximum reactivation yield above 80%. Similarly, for OP-inhibited BChE, 10c has EC50 values that are less than 150 µM for two different methylphosphonate compounds. Furthermore, an in vitro kinetic analysis show that 10c has a 2.2- and 92.1-fold superior reactivation efficiency against OEt-inhibited and OiBu-inhibited AChE, respectively, when compared to an oxime control. In addition to 10c being a potent reactivator of AChE and BChE, we also show that 10c is capable of resurrecting (ethyl paraoxon)-aged AChE, which is another current limitation of oximes.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Inhibidores de la Colinesterasa , Reactivadores de la Colinesterasa , Compuestos Organofosforados , Animales , Inhibidores de la Colinesterasa/farmacología , Humanos , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/efectos de los fármacos , Ratones , Butirilcolinesterasa/metabolismo , Compuestos Organofosforados/farmacología , Reactivadores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/química , Indolquinonas/farmacología
5.
Chem Biol Interact ; 395: 110973, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38574837

RESUMEN

The first organophosphorus nerve agent was discovered accidently during the development of pesticides, shortly after the first use of chemical weapons (chlorine, phosgene) on the battlefield during World War I. Despite the Chemical Weapons Convention banning these substances, they have still been employed in wars, terrorist attacks or political assassinations. Characterised by their high lethality, they target the nervous system by inhibiting the acetylcholinesterase (AChE) enzyme, preventing neurotransmission, which, if not treated rapidly, inevitably leads to serious injury or the death of the person intoxicated. The limited efficacy of current antidotes, known as AChE reactivators, pushes research towards new treatments. Numerous paths have been explored, from modifying the original pyridinium oximes to developing hybrid reactivators seeking a better affinity for the inhibited AChE. Another crucial approach resides in molecules more prone to cross the blood-brain barrier: uncharged compounds, bio-conjugated reactivators or innovative formulations. Our aim is to raise awareness on the threat and toxicity of organophosphorus nerve agents and to present the main synthetic efforts deployed since the first AChE reactivator, to tackle the task of efficiently treating victims of these chemical warfare agents.


Asunto(s)
Agentes Nerviosos , Compuestos Organofosforados , Humanos , Agentes Nerviosos/toxicidad , Compuestos Organofosforados/toxicidad , Animales , Reactivadores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/uso terapéutico , Reactivadores de la Colinesterasa/química , Contramedidas Médicas , Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/toxicidad , Sustancias para la Guerra Química/toxicidad , Antídotos/farmacología , Antídotos/uso terapéutico , Oximas/farmacología , Oximas/uso terapéutico , Oximas/química
6.
Arch Toxicol ; 98(4): 1135-1149, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38446233

RESUMEN

A-series agent A-234 belongs to a new generation of nerve agents. The poisoning of a former Russian spy Sergei Skripal and his daughter in Salisbury, England, in March 2018 led to the inclusion of A-234 and other A-series agents into the Chemical Weapons Convention. Even though five years have already passed, there is still very little information on its chemical properties, biological activities, and treatment options with established antidotes. In this article, we first assessed A-234 stability in neutral pH for subsequent experiments. Then, we determined its inhibitory potential towards human recombinant acetylcholinesterase (HssAChE; EC 3.1.1.7) and butyrylcholinesterase (HssBChE; EC 3.1.1.8), the ability of HI-6, obidoxime, pralidoxime, methoxime, and trimedoxime to reactivate inhibited cholinesterases (ChEs), its toxicity in rats and therapeutic effects of different antidotal approaches. Finally, we utilized molecular dynamics to explain our findings. The results of spontaneous A-234 hydrolysis showed a slow process with a reaction rate displaying a triphasic course during the first 72 h (the residual concentration 86.2%). A-234 was found to be a potent inhibitor of both human ChEs (HssAChE IC50 = 0.101 ± 0.003 µM and HssBChE IC50 = 0.036 ± 0.002 µM), whereas the five marketed oximes have negligible reactivation ability toward A-234-inhibited HssAChE and HssBChE. The acute toxicity of A-234 is comparable to that of VX and in the context of therapy, atropine and diazepam effectively mitigate A-234 lethality. Even though oxime administration may induce minor improvements, selected oximes (HI-6 and methoxime) do not reactivate ChEs in vivo. Molecular dynamics implies that all marketed oximes are weak nucleophiles, which may explain the failure to reactivate the A-234 phosphorus-serine oxygen bond characterized by low partial charge, in particular, HI-6 and trimedoxime oxime oxygen may not be able to effectively approach the A-234 phosphorus, while pralidoxime displayed low interaction energy. This study is the first to provide essential experimental preclinical data on the A-234 compound.


Asunto(s)
Reactivadores de la Colinesterasa , Compuestos de Pralidoxima , Taurina/análogos & derivados , Ratas , Humanos , Animales , Reactivadores de la Colinesterasa/farmacología , Trimedoxima/farmacología , Butirilcolinesterasa , Acetilcolinesterasa , Oximas/farmacología , Compuestos de Piridinio/farmacología , Antídotos/farmacología , Inhibidores de la Colinesterasa/toxicidad , Fósforo , Oxígeno
7.
Chem Biol Interact ; 394: 110941, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38493910

RESUMEN

The current study imposes a new class of organophosphorus (OP)-inhibited cholinesterase reactivators by conceptualizing a family of asymmetric bisoximes with various reactivating scaffolds. Several novel nucleophilic warheads were investigated, putting forward 29 novel reactivating options, by evaluating their nucleophilicity and ability to directly decompose OP compounds. Adopting the so-called zwitterionic strategy, 17 mono-oxime and nine bisoxime reactivators were discovered with major emphasis on the bifunctional-moiety approach. Compounds were compared with clinically used standards and other known experimentally highlighted reactivators. Our results clearly favor the concept of asymmetric bisoximes as leading reactivators in terms of efficacy and versatility. These top-ranked compounds were characterized in detail by reactivation kinetics parameters and evaluated for potential CNS availability. The highlighted molecules 55, 57, and 58 with various reactivating warheads, surpassed the reactivating potency of pralidoxime and several notable uncharged reactivators. The versatility of lead drug candidate 55 was also inspected on OP-inhibited butyrylcholinesterase, revealing a much higher rate compared to existing clinical antidotes.


Asunto(s)
Butirilcolinesterasa , Reactivadores de la Colinesterasa , Intoxicación por Organofosfatos , Oximas , Oximas/química , Oximas/farmacología , Reactivadores de la Colinesterasa/química , Reactivadores de la Colinesterasa/farmacología , Butirilcolinesterasa/metabolismo , Butirilcolinesterasa/química , Humanos , Intoxicación por Organofosfatos/tratamiento farmacológico , Acetilcolinesterasa/metabolismo , Antídotos/química , Antídotos/farmacología , Cinética , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Animales , Compuestos Organofosforados/química
8.
Chem Biol Interact ; 392: 110929, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38417730

RESUMEN

Despite the international convention on the prohibition of chemical weapons ratified in 1997, the threat of conflicts and terrorist attacks involving such weapons still exists. Among these, organophosphorus-nerve agents (OPs) inhibit cholinesterases (ChE) causing cholinergic syndrome. The reactivation of these enzymes is therefore essential to protect the poisoned people. However, these reactivating molecules, mainly named oximes, have major drawbacks with limited efficacy against some OPs and a non-negligible ChE inhibitor potential if administered at an inadequate dose, an effect that they are precisely supposed to mitigate. As a result, this project focused on assessing therapeutic efficacy, in mice, up to the NOAEL dose, the maximum dose of oxime that does not induce any observable toxic effect. NOAEL doses of HI-6 DMS, a reference oxime, and JDS364. HCl, a candidate reactivator, were assessed using dual-chamber plethysmography, with respiratory ventilation impairment as a toxicity criterion. Time-course modeling parameters and pharmacodynamic profiles, reflecting the interaction between the oxime and circulating ChE, were evaluated for treatments at their NOAEL and higher doses. Finally, the therapeutic potential against OPs poisoning was determined through the assessment of protective indices. For JDS364. HCl, the NOAEL dose corresponds to the smallest dose inducing the most significant therapeutic effect without causing any abnormality in ChE activity. In contrast, for HI-6 DMS, its therapeutic benefit was observed at doses higher than its NOAEL, leading to alterations in respiratory function. These alterations could not be directly correlated with ChE inhibition and had no adverse effects on survival. They are potentially attributed to the stimulation of non-enzymatic cholinergic targets by HI-6 DMS. Thus, the NOAEL appears to be an optimal dose for evaluating the efficacy of oximes, particularly when it can be linked to respiratory alterations effectively resulting from ChE inhibition.


Asunto(s)
Sustancias para la Guerra Química , Reactivadores de la Colinesterasa , Agentes Nerviosos , Humanos , Ratones , Animales , Reactivadores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/uso terapéutico , Reactivadores de la Colinesterasa/química , Agentes Nerviosos/toxicidad , Nivel sin Efectos Adversos Observados , Sustancias para la Guerra Química/toxicidad , Oximas/farmacología , Oximas/uso terapéutico , Oximas/química , Compuestos de Piridinio/farmacología , Inhibidores de la Colinesterasa/toxicidad , Inhibidores de la Colinesterasa/química , Colinesterasas , Acetilcolinesterasa , Antídotos/farmacología , Antídotos/uso terapéutico
9.
Toxicology ; 503: 153741, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311098

RESUMEN

Organophosphate (OP) poisoning is currently treated with atropine, oximes and benzodiazepines. The nicotinic signs, i.e., respiratory impairment, can only be targeted indirectly via the use of oximes as reactivators of OP-inhibited acetylcholinesterase. Hence, compounds selectively targeting nicotinic acetylcholine receptors (nAChRs) might fundamentally improve current treatment options. The bispyridinium compound MB327 has previously shown some therapeutic effect against nerve agents in vitro and in vivo. Nevertheless, compound optimization was deemed necessary, due to limitations (e.g., toxicity and efficacy). The current study investigated a series of 4-tert-butyl bispyridinium compounds and of corresponding bispyridinium compounds without substituents in a rat diaphragm model using an indirect field stimulation technique. The length of the respective linker influenced the ability of the bispyridinium compounds to restore muscle function in rat hemidiaphragms. The current data show structure-activity relationships for a series of bispyridinium compounds and provide insight for future structure-based molecular modeling.


Asunto(s)
Reactivadores de la Colinesterasa , Agentes Nerviosos , Intoxicación por Organofosfatos , Ratas , Animales , Oximas/farmacología , Oximas/uso terapéutico , Agentes Nerviosos/toxicidad , Diafragma , Acetilcolinesterasa/metabolismo , Compuestos de Piridinio/farmacología , Compuestos de Piridinio/uso terapéutico , Relación Estructura-Actividad , Intoxicación por Organofosfatos/tratamiento farmacológico , Reactivadores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/farmacología
10.
Disaster Med Public Health Prep ; 18: e32, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38384185

RESUMEN

Pralidoxime is the only oxime antidote to organophosphate poisoning stocked in the United Kingdom, produced by rational drug design in the 1950s. Typically, it is used alongside atropine, to reverse the effects of acetylcholinesterase inhibition. However, its efficacy has been questioned by recent meta-analyses of use treating attempted suicides in less economically developed countries, where organophosphate poisoning is more common. This policy analysis assesses the likely efficacy of pralidoxime in the United Kingdom, in scenarios largely different from those evaluated in meta-analyses. In all scenarios, the UK delay in antidote administration poses a major problem, as pralidoxime acts in a time-critical reactivation mechanism before "ageing" of acetylcholinesterase occurs. Additionally, changes in the organophosphates used today versus those pralidoxime was rationally designed to reverse, have reduced efficacy since the 1950s. Finally, the current dosage regimen may be insufficient. Therefore, one must re-evaluate our preparedness and approach to organophosphate poisoning in the United Kingdom.


Asunto(s)
Reactivadores de la Colinesterasa , Intoxicación por Organofosfatos , Compuestos de Pralidoxima , Humanos , Antídotos/uso terapéutico , Intoxicación por Organofosfatos/tratamiento farmacológico , Acetilcolinesterasa/uso terapéutico , Reactivadores de la Colinesterasa/uso terapéutico , Reactivadores de la Colinesterasa/farmacología
11.
Int J Nanomedicine ; 19: 307-326, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38229703

RESUMEN

Introduction: Organophosphates are among the deadliest of known chemicals based on their ability to inactivate acetylcholinesterase in neuromuscular junctions and synapses of the central and peripheral nervous systems. The consequent accumulation of acetylcholine can produce severe acute toxicities and death. Oxime antidotes act by reactivating acetylcholinesterase with the only such reactivator approved for use in the United States being 2-pyridine aldoxime methyl chloride (a.k.a., pralidoxime or 2-PAM). However, this compound does not cross the blood-brain barrier readily and so is limited in its ability to reactivate acetylcholinesterase in the brain. Methods: We have developed a novel formulation of 2-PAM by encapsulating it within a nanocomplex designed to cross the blood-brain barrier via transferrin receptor-mediated transcytosis. This nanocomplex (termed scL-2PAM) has been subjected to head-to-head comparisons with unencapsulated 2-PAM in mice exposed to paraoxon, an organophosphate with anticholinesterase activity. Results and Discussion: In mice exposed to a sublethal dose of paraoxon, scL-2PAM reduced the extent and duration of cholinergic symptoms more effectively than did unencapsulated 2-PAM. The scL-2PAM formulation was also more effective than unencapsulated 2-PAM in rescuing mice from death after exposure to otherwise-lethal levels of paraoxon. Improved survival rates in paraoxon-exposed mice were accompanied by a higher degree of reactivation of brain acetylcholinesterase. Conclusion: Our data indicate that scL-2PAM is superior to the currently used form of 2-PAM in terms of both mitigating paraoxon toxicity in mice and reactivating acetylcholinesterase in their brains.


Asunto(s)
Inhibidores de la Colinesterasa , Reactivadores de la Colinesterasa , Paraoxon , Compuestos de Pralidoxima , Animales , Ratones , Acetilcolinesterasa/metabolismo , Encéfalo/metabolismo , Inhibidores de la Colinesterasa/toxicidad , Reactivadores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/química , Organofosfatos , Oximas/farmacología , Oximas/química , Paraoxon/toxicidad , Paraoxon/química , Compuestos de Pralidoxima/química , Compuestos de Pralidoxima/farmacología
12.
J Neurochem ; 168(4): 370-380, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36786545

RESUMEN

Millions of individuals globally suffer from inadvertent, occupational or self-harm exposures from organophosphate (OP) insecticides, significantly impacting human health. Similar to nerve agents, insecticides are neurotoxins that target and inhibit acetylcholinesterase (AChE) in central and peripheral synapses in the cholinergic nervous system. Post-exposure therapeutic countermeasures generally include administration of atropine with an oxime to reactivate the OP-inhibited AChE. However, animal model studies and recent clinical trials using insecticide-poisoned individuals have shown minimal clinical benefits of the currently approved oximes and their efficacy as antidotes has been debated. Currently used oximes either reactivate poorly, do not readily cross the blood-brain barrier (BBB), or are rapidly cleared from the circulation and must be repeatedly administered. Zwitterionic oximes of unbranched and simplified structure, for example RS194B, have been developed that efficiently cross the BBB resulting in reactivation of OP-inhibited AChE and dramatic reversal of severe clinical symptoms in mice and macaques exposed to OP insecticides or nerve agents. Thus, a single IM injection of RS194B has been shown to rapidly restore blood AChE and butyrylcholinesterase (BChE) activity, reverse cholinergic symptoms, and prevent death in macaques following lethal inhaled sarin and paraoxon exposure. The present macaque studies extend these findings and assess the ability of post-exposure RS194B treatment to counteract oral poisoning by highly toxic diethylphosphorothioate insecticides such as parathion and chlorpyrifos. These OPs require conversion by P450 in the liver of the inactive thions to the active toxic oxon forms, and once again demonstrated RS194B efficacy to reactivate and alleviate clinical symptoms within 60 mins of a single IM administration. Furthermore, when delivered orally, the Tmax of RS194B at 1-2 h was in the same range as those administered IM but were maintained in the circulation for longer periods greatly facilitating the use of RS194B as a non-invasive treatment, especially in isolated rural settings.


Asunto(s)
Acetamidas , Cloropirifos , Reactivadores de la Colinesterasa , Insecticidas , Agentes Nerviosos , Paratión , Animales , Ratones , Acetilcolinesterasa/química , Butirilcolinesterasa/química , Cloropirifos/toxicidad , Inhibidores de la Colinesterasa/química , Reactivadores de la Colinesterasa/química , Reactivadores de la Colinesterasa/farmacología , Insecticidas/toxicidad , Macaca , Compuestos Organofosforados/toxicidad , Oximas/farmacología , Oximas/química , Oximas/uso terapéutico , Paratión/efectos adversos , Paratión/toxicidad
13.
J Neurochem ; 168(4): 355-369, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37429600

RESUMEN

This review presents recent studies of the chemical and molecular regulators of acetylcholine (ACh) signaling and the complexity of the small molecule and RNA regulators of those mechanisms that control cholinergic functioning in health and disease. The underlying structural, neurochemical, and transcriptomic concepts, including basic and translational research and clinical studies, shed new light on how these processes inter-change under acute states, age, sex, and COVID-19 infection; all of which modulate ACh-mediated processes and inflammation in women and men and under diverse stresses. The aspect of organophosphorus (OP) compound toxicity is discussed based on the view that despite numerous studies, acetylcholinesterase (AChE) is still a vulnerable target in OP poisoning because of a lack of efficient treatment and the limitations of oxime-assisted reactivation of inhibited AChE. The over-arching purpose of this review is thus to discuss mechanisms of cholinergic signaling dysfunction caused by OP pesticides, OP nerve agents, and anti-cholinergic medications; and to highlight new therapeutic strategies to combat both the acute and chronic effects of these chemicals on the cholinergic and neuroimmune systems. Furthermore, OP toxicity was examined in view of cholinesterase inhibition and beyond in order to highlight improved small molecules and RNA therapeutic strategies and assess their predicted pitfalls to reverse the acute toxicity and long-term deleterious effects of OPs.


Asunto(s)
Reactivadores de la Colinesterasa , Femenino , Humanos , Reactivadores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Acetilcolinesterasa/química , Compuestos Organofosforados , Oximas/química , Oximas/farmacología , Oximas/uso terapéutico , Acetilcolina , ARN
14.
Toxicol Lett ; 391: 26-31, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38048886

RESUMEN

The bispyridinium oxime HI-6 DMS is in development as an improved therapy for the treatment of patients exposed to organophosphorus nerve agents. The aim of the work described in this paper was to provide non-clinical data to support regulatory approval of HI-6 DMS, by demonstrating efficacy against an oxime-sensitive agent, GB and an oxime-resistant agent, GD. We investigated the dose-dependent protection afforded by therapy including atropine, avizafone and HI-6 DMS in guinea-pigs challenged with GB or GD. We also compared the efficacy of 30 mg.kg-1 of HI-6 DMS to an equimolar dose of the current in-service oxime P2S and the dichloride salt of HI-6 (HI-6 Cl2). In the treatment of GB or GD poisoning there was no significant difference between the salt forms. The most effective dose of HI-6 DMS in preventing lethality following challenge with GB was 100 mg.kg-1; though protection ratios of at least 25 were obtained at 10 mg.kg-1. Protection against GD was lower, and there was no significant increase in effectiveness of HI-6 DMS doses of 30 or 100 mg.kg-1. For GD, the outcome was improved by the addition of pyridostigmine pre-treatment. These data demonstrate the benefits of HI-6 DMS as a component of nerve agent therapy. © Crown copyright (2023), Dstl.


Asunto(s)
Sustancias para la Guerra Química , Reactivadores de la Colinesterasa , Agentes Nerviosos , Humanos , Animales , Cobayas , Agentes Nerviosos/toxicidad , Oximas/uso terapéutico , Compuestos de Piridinio/uso terapéutico , Atropina/farmacología , Atropina/uso terapéutico , Reactivadores de la Colinesterasa/uso terapéutico , Sustancias para la Guerra Química/toxicidad , Antídotos/farmacología , Antídotos/uso terapéutico
15.
Chem Biol Interact ; 387: 110789, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37931869

RESUMEN

The kinetic analysis of esterase inhibition by acylating compounds (organophosphorus, carbamates and sulfonylfluorides) sometimes cannot yield consistent results by fitting simple inhibition kinetic models to experimental data of complex systems. In this work kinetic data were obtained for demeton-S-methyl (DSM) with human acetylcholinesterase in two kinds of experiments: (a) time progressive inhibition with a range of concentrations, (b) progressive spontaneous reactivation starting with pre-inhibited enzyme. DSM is an organophosphorus compound used as pesticide and considered a model for studying the dermal exposure of nerve agents such as VX gas. A kinetic model equation was deduced with four different molecular phenomena occurring simultaneously: (1) inhibition; (2) spontaneous reactivation; (3) aging; and (4) ongoing inhibition (inhibition during the substrate reaction). A 3D fit of the model was applied to analyze the inhibition experimental data. The best-fitting model is compatible with a sensitive enzymatic entity. The second-order rate constant of inhibition (ki = 0.0422 µM-1 min-1), the spontaneous reactivation constant (ks = 0.0202 min-1) and the aging constant (kg = 0.0043 min-1) were simultaneously estimated. As an example for testing the model and approach, it was tested also in the presence of 5 % ethanol (conditions as previously used in the literature), the best fitting model is compatible with two apparent sensitive enzymatic entities (17 % and 83 %) and only one spontaneously reactivates and ages. The corresponding second-order rate constants of inhibition (ki = 0.0354 and 0.0119 µM-1 min-1) and the spontaneous reactivation and aging constants for the less sensitive component (kr = 0.0203 min-1 and kg = 0.0088 min-1) were estimated. The results were also consistent with a significant ongoing inhibition. These parameters were similar to those deduced in spontaneous reactivation experiments of the pre-inhibited samples with DSM in the absence or presence of ethanol. The two apparent components fit was interpreted by an equilibrium between ethanol-free and ethanol-bound enzyme. The consistency of results in inhibition and in spontaneous reactivation experiments was considered an internal validation of the methodology and the conclusions.


Asunto(s)
Acetilcolinesterasa , Inhibidores de la Colinesterasa , Reactivadores de la Colinesterasa , Organofosfatos , Humanos , Acetilcolinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/farmacología , Etanol , Cinética , Oximas/química , Activación Enzimática , Organofosfatos/farmacología
16.
Toxicol Lett ; 392: 75-83, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160862

RESUMEN

Precision-cut lung slices (PCLS) are a suitable model for analyzing the acetylcholinesterase (AChE) activity and subsequent effects after exposure to organophosphorus (OP) compounds. In this study, the AChE activity was determined in intact PCLS for the first time. Since the current standard therapy for OP poisoning (atropine + oxime + benzodiazepine) lacks efficiency, reliable models to study novel therapeutic substances are needed. Models should depict pathophysiological mechanisms and help to evaluate the beneficial effects of new therapeutics. Here PCLS were exposed to three organophosphorus nerve agents (OPNAs): sarin (GB), cyclosarin (GF), and VX. They were then treated with three reactivators: HI-6, obidoxime (OBI), and a non-oxime (NOX-6). The endpoints investigated in this study were the AChE activity and the airway area (AA) change. OPNA exposure led to very low residual AChE activities. Depending on the reactivator properties different AChE reactivation results were measured. GB-inhibited PCLS-AChE was reactivated best, followed by VX and GF. To substantiate these findings and to understand the connection between the molecular and the functional levels in a more profound way the results were correlated to the AA changes. These investigations underline the importance of reactivator use and point to the possibilities for future improvements in the treatment of OPNA-exposed victims.


Asunto(s)
Reactivadores de la Colinesterasa , Intoxicación por Organofosfatos , Compuestos Organotiofosforados , Humanos , Acetilcolinesterasa , Reactivadores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/uso terapéutico , Inhibidores de la Colinesterasa , Compuestos Organofosforados/toxicidad , Oximas/farmacología , Oximas/uso terapéutico , Intoxicación por Organofosfatos/tratamiento farmacológico , Pulmón
17.
Chem Res Toxicol ; 36(12): 1912-1920, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-37950699

RESUMEN

Oxime reactivators of acetylcholinesterase (AChE) are used as causal antidotes for intended and unintended poisoning by organophosphate nerve agents and pesticides. Despite all efforts to develop new AChE reactivators, none of these drug candidates replaced conventional clinically used oximes. In addition to the therapeutic efficacy, determining the safety profile is crucial in preclinical drug evaluation. The exact mechanism of oxime toxicity and the structure-toxicity relationship are subjects of ongoing research, with oxidative stress proposed as a possible mechanism. In the present study, we investigated four promising bispyridinium oxime AChE reactivators, K048, K074, K075, and K203, and their ability to induce oxidative stress in vitro. Cultured human hepatoma cells were exposed to oximes at concentrations corresponding to their IC50 values determined by the MTT assay after 24 h. Their potency to generate reactive oxygen species, interfere with the thiol antioxidant system, and induce lipid peroxidation was evaluated at 1, 4, and 24 h of exposure. Reactivators without a double bond in the four-carbon linker, K048 and K074, showed a greater potential to induce oxidative stress compared with K075 and K203, which contain a double bond. Unlike oximes with a three-carbon-long linker, the number of aldoxime groups attached to the pyridinium moieties does not determine the oxidative stress induction for K048, K074, K075, and K203 oximes. In conclusion, our results emphasize that the structure of oximes plays a critical role in inducing oxidative stress, and this relationship does not correlate with their cytotoxicity expressed as the IC50 value. However, it is important to note that oxidative stress cannot be disregarded as a potential contributor to the side effects associated with oximes.


Asunto(s)
Reactivadores de la Colinesterasa , Humanos , Reactivadores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/química , Acetilcolinesterasa/metabolismo , Células Hep G2 , Inhibidores de la Colinesterasa/toxicidad , Oximas/farmacología , Oximas/química , Antídotos/farmacología , Organofosfatos/toxicidad , Estrés Oxidativo , Carbono , Compuestos de Piridinio/farmacología , Compuestos de Piridinio/química
18.
J Comput Aided Mol Des ; 37(12): 755-764, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37796381

RESUMEN

Owing to their potential to cause serious adverse health effects, significant efforts have been made to develop antidotes for organophosphate (OP) anticholinesterases, such as nerve agents. To be optimally effective, antidotes must not only reactivate inhibited target enzymes, but also have the ability to cross the blood-brain barrier (BBB). Progress has been made toward brain-penetrating acetylcholinesterase reactivators through the development of a new group of substituted phenoxyalkyl pyridinium oximes. To help in the selection and prioritization of compounds for future synthesis and testing within this class of chemicals, and to identify candidate broad-spectrum molecules, an in silico framework was developed to systematically generate structures and screen them for reactivation efficacy and BBB penetration potential.


Asunto(s)
Antídotos , Reactivadores de la Colinesterasa , Antídotos/farmacología , Antídotos/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Reactivadores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/química , Organofosfatos , Acetilcolinesterasa/química , Oximas/química
19.
Chem Biol Interact ; 385: 110734, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37788753

RESUMEN

Acetylcholinesterase (AChE, EC 3.1.1.7) reactivators (2-PAM, trimedoxime, obidoxime, asoxime) have become an integral part of antidotal treatment in cases of nerve agent and organophosphorus (OP) pesticide poisonings. They are often referred to as specific antidotes due to their ability to restore AChE function when it has been covalently inhibited by an OP compound. Currently available commercial reactivators exhibit limited ability to penetrate the blood-brain barrier, where reactivation of inhibited AChE is crucial. Consequently, there have been numerous efforts to discover more brain-penetrating AChE reactivators. In this study, we examined a derivative of 2-PAM designed to possess increased lipophilicity. This enhanced lipophilicity was achieved through the incorporation of a benzyl group into its molecular structure. Initially, a molecular modeling study was conducted, followed by a comparison of its reactivation efficacy with that of 2-PAM against 10 different AChE inhibitors in vitro. Unfortunately, this relatively significant structural modification of 2-PAM resulted in a decrease in its reactivation potency. Consequently, this derivative cannot be considered as a broad-spectrum AChE reactivator.


Asunto(s)
Reactivadores de la Colinesterasa , Intoxicación por Organofosfatos , Humanos , Reactivadores de la Colinesterasa/química , Acetilcolinesterasa/metabolismo , Compuestos de Pralidoxima/farmacología , Antídotos/farmacología , Oximas/farmacología , Oximas/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/metabolismo
20.
Chem Biol Interact ; 385: 110735, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37802409

RESUMEN

We report a green chemistry approach for preparation of oxime-functionalized ILs as AChE reactivators: amide/ester linked IL, l-alanine, and l-phenylalanine derived salts bearing pyridinium aldoxime moiety. The reactivation capacities of the novel oximes were evaluated towards AChE inhibited by typical toxic organophosphates, sarin (GB), VX, and paraoxon (PON). The studied compounds are mostly non-toxic up to the highest concentrations screened (2 mM) towards Gram-negative and Gram-positive bacteria cell lines and both filamentous fungi and yeasts in the in vitro screening experiments as well as towards the eukaryotic cell (CHO-K1 cell line). Introduction of the oxime moiety in initially biodegradable structure decreases its ability to biodegradation. The compound 3d was shown to reveal remarkable activity against the AChE inhibited by VX, exceeding conventional reactivators 2-PAM and obidoxime. The regularities on antidotal activity, cell viability, plasma stability, biodegradability as well as molecular docking study of the newly synthesized oximes will be used for further improvement of their structures.


Asunto(s)
Reactivadores de la Colinesterasa , Líquidos Iónicos , Acetilcolinesterasa/metabolismo , Simulación del Acoplamiento Molecular , Oximas/farmacología , Oximas/química , Antídotos , Reactivadores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Compuestos de Piridinio/farmacología , Compuestos de Piridinio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA