Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.516
Filtrar
1.
Molecules ; 29(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731446

RESUMEN

Ilama leaves are an important source of secondary metabolites with promising anticancer properties. Cancer is a disease that affects a great number of people worldwide. This work aimed to investigate the in vivo, in vitro and in silico anticancer properties of three acyclic terpenoids (geranylgeraniol, phytol and farnesyl acetate) isolated from petroleum ether extract of ilama leaves. Their cytotoxic activity against U-937 cells was assessed using flow cytometry to determine the type of cell death and production of reactive oxygen species (ROS). Also, a morphological analysis of the lymph nodes and a molecular docking study using three proteins related with cancer as targets, namely, Bcl-2, Mcl-1 and VEGFR-2, were performed. The flow cytometry and histomorphological analysis revealed that geranylgeraniol, phytol and farnesyl acetate induced the death of U-937 cells by late apoptosis and necrosis. Geranylgeraniol and phytol induced a significant increase in ROS production. The molecular docking studies showed that geranylgeraniol had more affinity for Bcl-2 and VEGFR-2. In the case of farnesyl acetate, it showed the best affinity for Mcl-1. This study provides information that supports the anticancer potential of geranylgeraniol, phytol and farnesyl acetate as compounds for the treatment of cancer, particularly with the potential to treat non-Hodgkin's lymphoma.


Asunto(s)
Simulación del Acoplamiento Molecular , Extractos Vegetales , Hojas de la Planta , Plantas Medicinales , Especies Reactivas de Oxígeno , Humanos , Hojas de la Planta/química , Plantas Medicinales/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , México , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Animales , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Simulación por Computador , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Células U937
2.
Bioorg Chem ; 147: 107403, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38691909

RESUMEN

A novel series of pyrazole derivatives with urea/thiourea scaffolds 16a-l as hybrid sorafenib/erlotinib/celecoxib analogs was designed, synthesized and tested for its VEGFR-2, EGFRWT, EGFRT790M tyrosine kinases and COX-2, pro-inflammatory cytokines TNF-α and IL-6 inhibitory activities. All the tested compounds showed excellent COX-2 selectivity index in range of 18.04-47.87 compared to celecoxib (S.I. = 26.17) and TNF-α and IL-6 inhibitory activities (IC50 = 5.0-7.50, 6.23-8.93 respectively, compared to celecoxib IC50 = 8.40 and 8.50, respectively). Screening was carried out against 60 human cancer cell lines by National Cancer Institute (NCI), compounds 16a, 16c, 16d and 16 g were the most potent inhibitors with GI% ranges of 100 %, 99.63-87.02 %, 98.98-43.10 % and 98.68-23.62 % respectively, and with GI50 values of 1.76-15.50 µM, 1.60-5.38 µM, 1.68-7.39 µM and 1.81-11.0 µM respectively, in addition, of showing good safety profile against normal cell line (F180). Moreover, compounds 16a, 16c, 16d and 16 g had cell cycle arrest at G2/M phase with induced necrotic percentage compared to sorafenib of 2.06 %, 2.47 %, 1.57 %, 0.88 % and 1.83 % respectively. Amusingly, compounds 16a, 16c, 16d and 16 g inhibited VEGFR-2 with IC50 of 25 nM, 52 nM, 324 nM and 110 nM respectively, compared to sorafenib (IC50 = 85 nM), and had excellent EGFRWT and EGFRT790M kinase inhibitory activities (IC50 = 94 nM, 128 nM, 160 nM, 297 nM), (10 nM, 25 nM, 36 nM and 48 nM) respectively, compared to both erlotinib and osimertinib (IC50 = 114 nM, 56 nM) and (70 nM, 37 nM) respectively and showed (EGFRwt/EGFRT790M S.I.) of (range: 4.44-9.40) compared to erlotinib (2.03) and osmertinib (1.89).


Asunto(s)
Antineoplásicos , Proliferación Celular , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB , Inhibidores de Proteínas Quinasas , Pirazoles , Tiourea , Urea , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Humanos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Tiourea/farmacología , Tiourea/química , Tiourea/síntesis química , Estructura Molecular , Urea/farmacología , Urea/química , Urea/análogos & derivados , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/síntesis química , Línea Celular Tumoral , Ciclooxigenasa 2/metabolismo , Descubrimiento de Drogas , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/síntesis química
3.
Chem Biol Drug Des ; 103(5): e14534, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38697951

RESUMEN

Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor 2 (VEGFR2) are known as valid targets for cancer therapy. Overexpression of EGFR induces uncontrolled cell proliferation and VEGF expression triggering angiogenesis via VEGFR2 signaling. On the other hand, VEGF expression independent of EGFR signaling is already known as one of the mechanisms of resistance to anti-EGFR therapy. Therefore, drugs that act as dual inhibitors of EGFR and VEGFR2 can be a solution to the problem of drug resistance and increase the effectiveness of therapy. In this review, we summarize the relationship between EGFR and VEGFR2 signal transduction in promoting cancer growth and how their kinase domain structures can affect the selectivity of an inhibitor as the basis for designing dual inhibitors. In addition, several recent studies on the development of dual EGFR and VEGFR2 inhibitors involving docking simulations were highlighted in this paper to provide some references such as pharmacophore features of inhibitors and key residues for further research, especially in computer-aided drug design.


Asunto(s)
Antineoplásicos , Receptores ErbB , Neoplasias , Inhibidores de Proteínas Quinasas , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Receptores ErbB/química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/química , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Transducción de Señal/efectos de los fármacos , Simulación del Acoplamiento Molecular , Diseño de Fármacos
4.
Bioorg Chem ; 147: 107358, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38626490

RESUMEN

VEGFR-2 is an attractive target for the development of anti-tumor drugs and plays a crucial role in tumor angiogenesis. This study reports a series of novel thiophene-3-carboxamide derivatives based on PAN-90806 as VEGFR-2 inhibitors, among which compound 14d exhibits excellent anti-proliferative activity against HCT116, MCF7, PC3, and A549 cell lines, and has effective VEGFR-2 inhibitory activity with an IC50 value of 191.1 nM. Additionally, CETSA results indicated that VEGFR-2 was a relevant target of compound 14d in the cell lines, and compound 14d could also inhibit VEGFR-2 protein phosphorylation in A549 cell line. Furthermore, compound 14d inhibited colony formation, cell migration, and HUVECs tube formation in a dose-dependent manner. The mechanism by which 14d induced cancer cell death involves blocking the cell cycle, increasing ROS production, inducing apoptosis, and dose-dependently reducing the levels of phosphorylated ERK and MEK. Molecular docking and molecular dynamics simulations had shown that compound 14d could stably bind to the active site of VEGFR-2. These results confirmed that compound 14d might be a promising lead compound for anti-angiogenesis.


Asunto(s)
Inhibidores de la Angiogénesis , Antineoplásicos , Proliferación Celular , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Proteínas Quinasas , Tiofenos , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Humanos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Tiofenos/farmacología , Tiofenos/química , Tiofenos/síntesis química , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/síntesis química , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Estructura Molecular , Descubrimiento de Drogas , Movimiento Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Simulación del Acoplamiento Molecular , Línea Celular Tumoral
5.
Curr Drug Discov Technol ; 21(1): e101023222024, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38629172

RESUMEN

BACKGROUND: VEGFR-2 tyrosine kinase inhibitors are receiving a lot of attention as prospective anticancer medications in the current drug discovery process. OBJECTIVE: This work aims to explore the PubChem library for novel VEGFR-2 kinase inhibitors. 1H-Indazole-containing drug AXITINIB, or AG-013736 (FDA approved), is chosen as a rational molecule for drug design. This scaffold proved its efficiency in treating cancer and other diseases as well. METHODS: The present study used the virtual screening of the database, protein preparation, grid creation, and molecular docking analyses. RESULTS: The protein was validated on different parameters like the Ramachandran plot, the ERRAT score, and the ProSA score. The Ramachandran plot revealed that 92.1% of the amino acid residues were located in the most favorable region; this was complemented by an ERRAT score (overall quality factor) of 96.24 percent and a ProSA (Z score) of -9.24 percent. The Lipinski rule of five was used as an additional filter for screening molecules. The docking results showed values of binding affinity between -14.08 and -12.34 kcal/mol. The molecule C1 showed the highest docking value of -14.08 Kcal/mol with the maximum number of strong H-bonds by -NH of pyridine to amino acid Cys104 (4.22Å), -NH of indazole to Glu108 (4.72), and Glu70 to bridge H of -NH. These interactions are similar to Axitinib docking interactions like Glu70, Cys104, and Glu102. The docking studies revealed that pi-alkyl bonds are formed with unsubstituted pyridine, whereas important H-bonds are observed with different substitutions around -NH. Based on potential findings, we designed new molecules, and molecular docking studies were performed on the same protein along with ADMET studies. The designed molecules (M1-M4) also showed comparable docking results similar to Axitinib, along with a synthetic accessibility score of less than 4.5. CONCLUSION: The docking method employed in this work opens up new possibilities for the design and synthesis of novel compounds that can act as VEGFR-2 tyrosine kinase inhibitors and treat cancer.


Asunto(s)
Antineoplásicos , Simulación del Acoplamiento Molecular , Factores de Crecimiento Endotelial Vascular , Antineoplásicos/química , Antineoplásicos/farmacología , Axitinib/química , Axitinib/farmacología , Estudios Prospectivos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Diseño de Fármacos
6.
J Med Chem ; 67(9): 7406-7430, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38642371

RESUMEN

A dual-targeting approach is predicted to yield better cancer therapy outcomes. Consequently, a series of coumarin-based thiazoles (5a-h, 6, and 7a-e) were designed and constructed as potential carbonic anhydrase (CA) and VEGFR-2 suppressors. The inhibitory actions of the target compounds were assessed against CA isoforms IX and VEGFR-2. The assay results showed that coumarin-based thiazoles 5a, 5d, and 5e can effectively inhibit both targets. 5a, 5d, and 5e cytotoxic effects were tested on pancreatic, breast, and prostate cancer cells (PANC1, MCF7, and PC3). Further mechanistic investigation disclosed the ability of 5e to interrupt the PANC1 cell progression in the S stage by triggering the apoptotic cascade, as seen by increased levels of caspases 3, 9, and BAX, alongside the Bcl-2 decline. Moreover, the in vivo efficacy of compound 5e as an antitumor agent was evaluated. Also, molecular docking and dynamics displayed distinctive interactions between 5e and CA IX and VEGFR-2 binding pockets.


Asunto(s)
Antineoplásicos , Anhidrasa Carbónica IX , Inhibidores de Anhidrasa Carbónica , Cumarinas , Simulación del Acoplamiento Molecular , Tiazoles , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Humanos , Cumarinas/química , Cumarinas/farmacología , Cumarinas/síntesis química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Anhidrasa Carbónica IX/antagonistas & inhibidores , Anhidrasa Carbónica IX/metabolismo , Tiazoles/química , Tiazoles/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Animales , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/síntesis química , Línea Celular Tumoral , Relación Estructura-Actividad , Ratones , Cristalografía por Rayos X , Apoptosis/efectos de los fármacos , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Masculino , Antígenos de Neoplasias/metabolismo
7.
SAR QSAR Environ Res ; 35(4): 265-284, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38591137

RESUMEN

Eight QSAR models (M1-M8) were developed from a dataset of 118 benzo-fused heteronuclear derivatives targeting VEGFR-2 by Monte Carlo optimization method of CORALSEA 2023 software. Models were generated with hybrid optimal descriptors using both SMILES and Graphs with zero- and first-order Morgan extended connectivity index from a training set of 103 derivatives. All statistical parameters for model validation were within the prescribed limits, establishing the models to be robust and of excellent quality. Among all models, split-2 of M5 was the best-fit as reflected by rvalidation2, Qvalidation2 and MAE. Mechanistic interpretation of this model assisted the identification of structural descriptors as promoters and hinderers for VEGFR-2 inhibition. These descriptors were utilized to design novel VEGFR-2 inhibitors (YS01-YS07) by bringing modifications in compound MS90 in the dataset. Docking of all designed compounds, MS90 and sorafenib with VEGFR-2 binding site revealed favourable binding interactions. Docking score of YS07 was higher than that of MS90 and sorafenib. Molecular dynamics simulation study revealed sustained interactions of YS07 with key amino acids of VEGFR-2 at a run time of 100 ns. This study concludes the development of a best fit QSAR model which can assist the design of new anticancer agents targeting VEGFR-2.


Asunto(s)
Diseño de Fármacos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad Cuantitativa , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/química , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Método de Montecarlo , Simulación por Computador
8.
Biochim Biophys Acta Gen Subj ; 1868(6): 130599, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38521471

RESUMEN

BACKGROUND: VEGFR-2 has emerged as a prominent positive regulator of cancer progression. AIM: Discovery of new anticancer agents and apoptotic inducers targeting VEGFR-2. METHODS: Design and synthesis of new thiazolidine-2,4-diones followed by extensive in vitro studies, including VEGFR-2 inhibition assay, MTT assay, apoptosis analysis, and cell migration assay. In silico investigations including docking, MD simulations, ADMET, toxicity, and DFT studies were performed. RESULTS: Compound 15 showed the strongest VEGFR-2 inhibitory activity with an IC50 value of 0.066 µM. Additionally, most of the synthesized compounds showed anti-proliferative activity against HepG2 and MCF-7 cancer cell lines at the micromolar range with IC50 values ranging from 0.04 to 4.71 µM, relative to sorafenib (IC50 = 2.24 ± 0.06 and 3.17 ± 0.01 µM against HepG2 and MCF-7, respectively). Also, compound 15 showed selectivity indices of 1.36 and 2.08 against HepG2 and MCF-7, respectively. Furthermore, compound 15 showed a significant apoptotic effect and arrested the cell cycle of MCF-7 cells at the S phase. Moreover, compound 15 had a significant inhibitory effect on the ability of MCF-7 cells to heal from. Docking studies revealed that the synthesized thiazolidine-2,4-diones have a binding pattern approaching sorafenib. MD simulations indicated the stability of compound 15 in the active pocket of VEGFR-2 for 200 ns. ADMET and toxicity studies indicated an acceptable pharmacokinetic profile. DFT studies confirmed the ability of compound 15 to interact with VEGFR-2. CONCLUSION: Compound 15 has promising anticancer activity targeting VEGFR-2 with significant activity as an apoptosis inducer.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Tiazolidinedionas , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Humanos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Tiazolidinedionas/farmacología , Tiazolidinedionas/química , Tiazolidinedionas/síntesis química , Células MCF-7 , Células Hep G2 , Proliferación Celular/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Ensayos de Selección de Medicamentos Antitumorales , Sorafenib/farmacología , Sorafenib/química , Simulación de Dinámica Molecular , Movimiento Celular/efectos de los fármacos
9.
Cancer Invest ; 42(2): 176-185, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38486424

RESUMEN

The study investigates titanium and zinc nanoparticles as inhibitors for the epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor-2 (VEGFR-2), pivotal regulators of cell processes. VEGFR-2 activation fuels tumor angiogenesis in cancer cells, sustaining malignant tissue expansion. Molecular docking analysis illustrates the nanoparticles' binding to the active sites, inhibiting the phosphorylation of key proteins in downstream signaling. This inhibition offers a promising therapeutic approach to impede cancer-related signaling, potentially slowing down aberrant protein cascades controlled by EGFR and VEGFR-2. The findings propose a novel avenue for cancer treatment, targeting abnormal growth pathways using titanium and zinc nanoparticles.


Asunto(s)
Receptores ErbB , Nanopartículas del Metal , Neoplasias , Inhibidores de Proteínas Quinasas , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Humanos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/química , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Titanio/química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/química , Zinc , Unión Proteica , Dominio Catalítico , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/uso terapéutico
10.
J Transl Med ; 22(1): 198, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395884

RESUMEN

BACKGROUND: Angiogenesis inhibitors have been identified to improve the efficacy of immunotherapy in recent studies. However, the delayed therapeutic effect of immunotherapy poses challenges in treatment planning. Therefore, this study aims to explore the potential of non-invasive imaging techniques, specifically intravoxel-incoherent-motion diffusion-weighted imaging (IVIM-DWI) and blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI), in detecting the anti-tumor response to the combination therapy involving immune checkpoint blockade therapy and anti-angiogenesis therapy in a tumor-bearing animal model. METHODS: The C57BL/6 mice were implanted with murine MC-38 cells to establish colon cancer xenograft model, and randomly divided into the control group, anti-PD-1 therapy group, and combination therapy group (VEGFR-2 inhibitor combined with anti-PD-1 antibody treatment). All mice were imaged before and, on the 3rd, 6th, 9th, and 12th day after administration, and pathological examinations were conducted at the same time points. RESULTS: The combination therapy group effectively suppressed tumor growth, exhibiting a significantly higher tumor inhibition rate of 69.96% compared to the anti-PD-1 group (56.71%). The f value and D* value of IVIM-DWI exhibit advantages in reflecting tumor angiogenesis. The D* value showed the highest correlation with CD31 (r = 0.702, P = 0.001), and the f value demonstrated the closest correlation with vessel maturity (r = 0.693, P = 0.001). While the BOLD-MRI parameter, R2* value, shows the highest correlation with Hif-1α(r = 0.778, P < 0.001), indicating the capability of BOLD-MRI to evaluate tumor hypoxia. In addition, the D value of IVIM-DWI is closely related to tumor cell proliferation, apoptosis, and infiltration of lymphocytes. The D value was highly correlated with Ki-67 (r = - 0.792, P < 0.001), TUNEL (r = 0.910, P < 0.001) and CD8a (r = 0.918, P < 0.001). CONCLUSIONS: The combination of VEGFR-2 inhibitors with PD-1 immunotherapy shows a synergistic anti-tumor effect on the mouse colon cancer model. IVIM-DWI and BOLD-MRI are expected to be used as non-invasive approaches to provide imaging-based evidence for tumor response detection and efficacy evaluation.


Asunto(s)
Neoplasias del Colon , Inhibidores de Puntos de Control Inmunológico , Receptor de Muerte Celular Programada 1 , Animales , Humanos , Ratones , Neoplasias del Colon/diagnóstico por imagen , Neoplasias del Colon/tratamiento farmacológico , Imagen de Difusión por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
11.
Bioorg Chem ; 143: 107102, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38211551

RESUMEN

Monoamine oxidases (MAOs) and vascular endothelial growth factor receptor-2 (VEGFR-2) are promoters of colorectal cancer (CRC) and central signaling nodes in epithelial-mesenchymal transition (EMT) induced by activating hypoxia-inducible factors (HIFs). Herein, a novel series of rationally designed triazole-tethered quinoxalines were synthesized and evaluated against HCT-116 CRC cells. The tailored scaffolds combine the pharmacophoric themes of both VEGFR-2 inhibitors and MAO inhibitors. All the synthesized derivatives were screened utilizing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay for their possible cytotoxic effects on normal human colonocytes, then evaluated for their anticancer activities against HCT-116 cells overexpressing MAOs. The hit derivatives 11 and 14 exhibited IC50 = 18.04 and 7.850 µM, respectively, against HCT-116cells within their EC100 doses on normal human colonocytes. Wound healing assay revealed their efficient CRC antimetastatic activities recording HCT-116 cell migration inhibition exceeding 75 %. In vitro enzymatic assays demonstrated that both 11 and 14 efficiently inhibited VEGFR-2 (IC50 = 88.79 and 9.910 nM), MAO-A (IC50 = 0.763 and 629.1 nM) and MAO-B (IC50 = 0.488 and 209.6 nM) with observed MAO-B over MAO-A selectivity (SI = 1.546 and 3.001), respectively. Enzyme kinetics studies were performed for both compounds to identify their mode of MAO-B inhibition. Furthermore, qRT-PCR analysis showed that the hits efficiently downregulated HIF-1α in HCT-116cells by 3.420 and 16.96 folds relative to untreated cells. Docking studies simulated their possible binding modes within the active sites of VEGFR-2 and MAO-B to highlight their essential structural determinants of activities. Finally, they recorded in silico drug-like absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles as well as ligand efficiency metrics.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Simulación del Acoplamiento Molecular , Estructura Molecular , Monoaminooxidasa/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Quinoxalinas/farmacología , Relación Estructura-Actividad , Triazoles/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/farmacología , Neoplasias Colorrectales/tratamiento farmacológico
12.
Bioorg Chem ; 143: 107062, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38150938

RESUMEN

Herein, we report the synthesis of a series of new fourteen iodoquinazoline derivatives 7a-c to 13a-e and their evaluation as potential anticancer agents via dual targeting of EGFRT790M and VEGFR-2. The new derivatives were designed according to the target receptors structural requirements. The compounds were evaluated for their cytotoxicity against HepG2, MCF-7, HCT116 and A549 cancer cell lines using MTT assay. Compound 13e showed the highest anticancer activities with IC50 = 5.70, 7.15, 5.76 and 6.50 µM against HepG2, MCF-7, HCT116 and A549 cell lines correspondingly. Compounds 7c, 9b and 13a-d exhibited very good anticancer effects against the tested cancer cell lines. The highly effective six derivatives 7c, 10, 13b, 13c, 13d and 13e were examined against VERO normal cell lines to estimate their cytotoxic capabilities. Our conclusion revealed that compounds 7c, 10, 13b, 13c, 13d and 13e possessed low toxicity against VERO normal cells with IC50 prolonging from 41.66 to 53.99 µM. Also compounds 7a-c to 13a-e were further evaluated for their inhibitory activity against EGFRT790M and VEGFR-2. Also, their ability to bind with both EGFR and VEGFR-2 receptors was examined by molecular modeling. Compounds 13e, 13d, 7c and 13c excellently inhibited VEGFR-2 activity with IC50 = 0.90, 1.00, 1.25 and 1.50 µM respectively. Moreover, Compounds 13e, 7c, 10 and 13d excellently inhibited EGFRT790M activity with IC50 = 0.30, 0.35, 0.45 and 0.47 µM respectively. Finally, our derivatives 7b, 13d and 13e showed good in silico calculated ADMET profile.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Quinazolinas , Humanos , Antineoplásicos/química , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Estructura Molecular , Mutación , Inhibidores de Proteínas Quinasas , Relación Estructura-Actividad , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Quinazolinas/química , Quinazolinas/farmacología
13.
Bioorg Chem ; 141: 106883, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37774433

RESUMEN

Cancer is a leading cause of death globally and has been associated with Mycobacterium tuberculosis (Mtb). The angiogenesis-related VEGFR-2 is a common target between cancer and Mtb. Here, we aimed to synthesize and validate potent dual human VEGFR-2 inhibitors as anticancer and anti-mycobacterial agents. Two series of 1,2,4-triazole-based compounds (6a-l and 11a-e) were designed and synthesized through a molecular hybridization approach. Activities of all synthesized compounds were evaluated against human VEGFR-2 in addition to drug-sensitive, multidrug-resistant and extensive-drug resistant Mtb. Compounds 6a, 6c, 6e, 6f, 6h, 6l, 11a, 11d and 11e showed promising inhibitory effect on VEGFR-2 (IC50 = 0.15 - 0.39 µM), anti-proliferative activities against cancerous cells and low cytotoxicity against normal cells. The most potent compounds (6e and 11a) increased apoptosis percentage. Additionally, compounds 6h, 6i, 6l and 11c showed the highest activities against all Mtb strains, and thus were evaluated against enoyl-acyl carrier protein reductase (InhA) which is essential for Mtb cell wall synthesis. Interestingly, the compounds showed excellent InhA inhibition activities with IC50 range of 1.3 - 4.7 µM. Docking study revealed high binding affinities toward targeted enzymes; human VEGFR-2 and Mtb InhA. In conclusion, 1,2,4-triazole analogues are suggested as potent anticancer and antimycobacterial agents via inhibition of human VEGFR-2 and Mtb InhA.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacología , Antituberculosos/farmacología , Proliferación Celular , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Oxidorreductasas/antagonistas & inhibidores
14.
Comput Biol Chem ; 107: 107958, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37714080

RESUMEN

Novel thiazolidine-2,4-dione derivatives, 11a-g, were designed, and synthesized targeting the VEGFR-2 protein. The in vitro studies indicated the abilities of the synthesized derivatives to inhibit VEGFR-2 and prevent the growth of two different cancer cell types, HepG2 and MCF-7. Compound 11 f exhibited the strongest anti-VEGFR-2 activity (IC50 = 0.053 µM). As well, compound 11 f showed impressive anti-proliferative activity against the mentioned cancer cell lines with IC50 values of 0.64 ± 0.01 and 0.53 ± 0.04 µM, respectively. Additionally, compound 11 f arrested the MCF-7 cell cycle at the S phase and increased the overall apoptosis percentage. Furthermore, cell migration assay revealed that compound 11 f has a significant ability to prevent migration and healing potentialities of MCF-7. Moreover, computational studies were used to conduct the molecular investigation of the VEGFR-2-11 f complex. The kinetic and structural features of the complex were examined using molecular dynamics simulations and molecular docking. Besides, Principal component analysis (PCA) was used to explain the dynamics of the VEGFR-2-11 f complex at various spatial scales. The DFT calculations also provided further clarity regarding compound 11 f's structural and electronic features. To evaluate how closely the developed compounds might look like drugs, ADMET and toxicity experiments were computed. To conclude, the presented study demonstrates the potential of compound 11 f as a viable anti-cancer drug, which can serve as a prototype for future structural modifications and further biological investigations.


Asunto(s)
Antineoplásicos , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Antineoplásicos/farmacología , Apoptosis , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Simulación del Acoplamiento Molecular , Estructura Molecular , Fosforilación , Inhibidores de Proteínas Quinasas , Relación Estructura-Actividad , Tiazolidinas/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores
15.
Comput Biol Chem ; 107: 107953, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37673011

RESUMEN

A group of theobromine derivatives was designed based on the key pharmacophoric characteristics of VEGFR-2 inhibitors. HepG2 and MCF-7 cancer cell lines were used to test the obtained compounds for their in vitro anti-proliferative activities. Compound 15 (2-(3,7-Dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)-N-(4-(1-(2-(4-hydroxybenzoyl)hydrazono)ethyl) phenyl)acetamide) was the most potent cytotoxic member against MCF-7 (IC50 = 0.42 µM) and HepG2 (IC50 = 0.22 µM). The effectiveness of VEGFR-2 inhibition was assessed for compound 15, and its IC50 value was calculated to be 0.067 µM. Additional cellular mechanistic investigations showed that compound 15 dramatically increased the population of apoptotic HepG2 cells in both early and late apoptosis. The investigation of apoptotic markers confirmed that compound 15 upregulated the levels of BAX (2.26-fold) and downregulated the levels of Bcl-2 (4.4-fold). The molecular docking investigations, MM-GPSA, PLIP studies, and MD simulations validated the potential of compound 15 to be a VEGFR-2 inhibitor. DFT calculations have been completed to comprehend how the electrical charge is distributed within compound 15 and to predict how it would bond to VEGFR-2. Lastly, ADMET prediction showed that the designed members have drug-like characteristics and minimal levels of toxicity. In conclusion, our in vitro and in silico investigations showed that compound 15 exhibited promising apoptotic anticancer potential through the suppression of VEGFR-2.


Asunto(s)
Antineoplásicos , Teobromina , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular , Simulación por Computador , Ensayos de Selección de Medicamentos Antitumorales , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas , Relación Estructura-Actividad , Teobromina/química , Teobromina/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores
16.
Bioorg Chem ; 139: 106735, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37531818

RESUMEN

Vascular endothelial growth factor receptor-2 is a dynamic target for therapeutic intervention in various types of cancer. This study was aimed at exploring the VEGFR-2 inhibitory activity of a novel library of quinoxalin-2-one derivatives such as 3-furoquinoxaline carboxamides, 3-pyrazolylquinoxalines, and 3-pyridopyrimidyl-quinoxalines. Among them, 6c, 7a, and 7d-f produced remarkable cytotoxicity against HCT-116 (IC50's 4.28-9.31 µM) and MCF-7 (IC50's 3.57-7.57 µM) cell lines using the MTT assay and doxorubicin (DOX) as a reference standard. Interestingly, results of cytotoxicity towards the human fibroblast cell line WI38 revealed that these hits demonstrated higher selectivity indices towards both HCT-116 (SI 8.69-23.19) and MCF-7 (SI 9.48-27.80) than DOX, SI 0.72 and 0.90, respectively. Then, these hits were subjected to a mechanistic study; they showed direct inhibition of VEGFR-2. Impressively, compound 7f displayed 1.2 times the VEGFR-2 inhibitory activity of sorafenib. The antiangiogenic potential of 7f was proved via lowering the level of VEGF-A, than that of control. It as well, exhibited scratch closure percent of 61.8%, compared with 74.5% of control at 48 hrs, indicating the potential anti-migratory effect of the compound 7f. It significantly increased the expression of tumor suppressor gene (p53) on MCF-7 cells by almost 18 folds and upregulated the caspase-3 level by 10.7 folds, compared to the control. Cell cycle analysis revealed cell cycle arrest at G2/M together with a PreG increase which indicated apoptosis induction potential. Annexin V-FITC apoptosis results proposed the two modes of cell death (apoptosis and necrosis) as an inherent mechanism of cytotoxicity of compound 7f. Molecular docking further supported the mechanism showing the affinity of target compounds for VEGFR-2 active site. Moreover, physicochemical and drug-like properties were assessed from the ADME properties.


Asunto(s)
Antineoplásicos , Quinoxalinas , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Proliferación Celular , Doxorrubicina/farmacología , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Quinoxalinas/farmacología , Relación Estructura-Actividad , Factor A de Crecimiento Endotelial Vascular/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores
17.
Eur J Med Chem ; 259: 115626, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37453330

RESUMEN

Angiogenesis, the formation of new blood vessels from the existing vasculature, is pivotal in the migration, growth, and differentiation of endothelial cells in normal physiological conditions. In various types of tumour microenvironments, dysregulated angiogenesis plays a crucial role in supplying oxygen and nutrients to cancerous cells, leading to tumour size growth. VEGFR-2 tyrosine kinase has been extensively studied as a critical regulator of angiogenesis; thus, inhibition of VEGFR-2 has been widely used for cancer treatments in recent years. Quinazoline nucleus is a privileged and versatile scaffold with a broad range of pharmacological activity, especially in the field of tyrosine kinase inhibitors with more than twenty small molecule inhibitors approved by the US Food and Drug Administration in the last two decades. As of now, the U.S. FDA has approved eleven small chemical inhibitors of VEGFR-2 for various types of malignancies, with a prime example being vandetanib, a quinazoline derivative, which is a multi targeted kinase inhibitor used for the treatment of late-stage medullary thyroid cancer. Despite of prosperous discovery and development of VEGFR-2 down regulator drugs, there still exists limitations in clinical efficacy, adverse effects, a high rate of clinical discontinuation and drug resistance. Therefore, there is an urgent need for the design and synthesis of more selective and effective inhibitors to tackle these challenges. Through the gathering of this review, we have strived to broaden the extent of our view over the entire scope of quinazoline-based VEGFR-2 inhibitors. Herein, we give an overview of the importance and advancement status of reported structures, highlighting the SAR, biological evaluations and their binding modes.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Inhibidores de la Angiogénesis/química , Antineoplásicos/farmacología , Células Endoteliales/metabolismo , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/química , Quinazolinas/química , Microambiente Tumoral , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores
18.
J Biochem Mol Toxicol ; 37(5): e23315, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36732937

RESUMEN

Vascular endothelial growth factor (VEGF) exerts neuroprotective or proinflammatory effects, depending on what VEGF forms (A-E), receptor types (VEGFR1-3), and intracellular signaling pathways are involved. Neonatal monosodium glutamate (MSG) treatment triggers neuronal death by excitotoxicity, which is commonly involved in different neurological disorders, including neurodegenerative diseases. This study was designed to evaluate the effects of VEGFR-2 inhibition on neuronal damage triggered by excitotoxicity in the cerebral motor cortex (CMC) and hippocampus (Hp) after neonatal MSG treatment. MSG was administered at a dose of 4 g/kg of body weight (b.w.) subcutaneously on postnatal days (PD) 1, 3, 5, and 7, whereas the VEGFR-2 inhibitor SU5416 was administered at a dose of 10 mg/kg b.w. subcutaneously on PD 5 and 7, 30 min before the MSG treatment. Neuronal damage was assessed using hematoxylin and eosin staining, fluoro-Jade staining, and TUNEL assay. Additionally, western blot assays for some proteins of the VEGF-A/VEGFR-2 signaling pathway (VEGF-A, VEGFR-2, PI3K, Akt, and iNOS) were carried out. All assays were performed on PD 6, 8, 10, and 14. Inhibition of VEGFR-2 signaling by SU5416 increases the neuronal damage induced by neonatal MSG treatment in both the CMC and Hp. Moreover, neonatal MSG treatment increased the expression levels of the studied VEGF-A/VEGFR-2 signaling pathway proteins, particularly in the CMC. We conclude that VEGF-A/VEGFR-2 signaling pathway activation could be part of the neuroprotective mechanisms that attempt to compensate for neuronal damage induced by neonatal MSG treatment and possibly also in other conditions involving excitotoxicity.


Asunto(s)
Hipocampo , Corteza Motora , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Hipocampo/efectos de los fármacos , Corteza Motora/efectos de los fármacos , Glutamato de Sodio/toxicidad , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales
19.
J Biochem Mol Toxicol ; 37(5): e23321, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36808794

RESUMEN

Vascular endothelial growth factor receptor-2 (VEGFR-2) is crucial in promoting tumor angiogenesis and cancer metastasis. Thus, inhibition of VEGFR-2 has appeared as a good tactic for cancer treatment. To find out novel VEGFR-2 inhibitors, first, the PDB structure of VEGFR-2, 6GQO, was selected based on atomic nonlocal environment assessment (ANOLEA) and PROCHECK assessment. 6GQO was then further used for structure-based virtual screening (SBVS) of different molecular databases, including US-FDA approved drugs, US-FDA withdrawn drugs, may bridge, MDPI, and Specs databases using Glide. Based on SBVS, receptor fit, drug-like filters, and absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis of 427877 compounds, the best 22 hits were selected. From the 22 hits, hit 5 complex with 6GQO was put through molecular mechanics/generalized born surface area (MM/GBSA) study and hERG binding. The MM/GBSA study revealed that hit 5 possesses lesser binding free energy with more inferior stability in the receptor pocket than the reference compound. The VEGFR-2 inhibition assay of hit 5 disclosed an IC50 of 165.23 nM against VEGFR-2, which can be possibly enhanced through structural modifications.


Asunto(s)
Inhibidores de Proteínas Quinasas , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico
20.
Bioorg Chem ; 133: 106404, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36812829

RESUMEN

New phthalazone tethered 1,2,3-triazole derivatives 12-21 were synthesized utilizing the Cu(I)-catalyzed click reactions of alkyne-functionalized phthalazone 1 with functionalized azides 2-11. The new phthalazone-1,2,3-triazoles structures 12-21 were confirmed by different spectroscopic tools, like IR; 1H, 13C, 2D HMBC and 2D ROESY NMR; EI MS, and elemental analysis. The antiproliferative efficacy of the molecular hybrids 12-21 against four cancer cell lines was evaluated, including colorectal cancer, hepatoblastoma, prostate cancer, breast adenocarcinoma, and the normal cell line WI38. The antiproliferative assessment of derivatives 12-21 showed potent activity of compounds 16, 18, and 21 compared to the anticancer drug doxorubicin. Compound 16 showed selectivity (SI) towardthe tested cell lines ranging from 3.35 to 8.84 when compared to Dox., that showed SI ranged from 0.75 to 1.61. Derivatives 16, 18 and 21 were assessed towards VEGFR-2 inhibitory activity and result in that derivative 16 showed the potent activity (IC50 = 0.123 µM) in comparison with sorafenib (IC50 = 0.116 µM). Compound 16 caused an interference with the cell cycle distribution of MCF7 and increased the percentage of cells in S phase by 1.37-fold. In silico molecular docking of the effective derivatives 16, 18, and 21 against vascular endothelial growth factor receptor-2 (VEGFR-2) confirmed the formation of stable protein-ligand interactions within the pocket.


Asunto(s)
Antineoplásicos , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad , Triazoles/farmacología , Triazoles/química , Factor A de Crecimiento Endotelial Vascular/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA