Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.436
Filtrar
1.
Commun Biol ; 7(1): 1346, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39420035

RESUMEN

Tinnitus has been identified as a potential contributor to anxiety. Thalamo-cortical pathway plays a crucial role in the transmission of auditory and emotional information, but its casual link to tinnitus-associated anxiety remains unclear. In this study, we explore the neural activities in the thalamus and cortex of the sodium salicylate (NaSal)-treated mice, which exhibit both hyperacusis and anxiety-like behaviors. We find an increase in gamma band oscillations (GBO) in both auditory cortex (AC) and prefrontal cortex (PFC), as well as phase-locking between cortical GBO and thalamic neural activity. These changes are attributable to a suppression of GABAergic neuron activity in thalamic reticular nucleus (TRN), and optogenetic activation of TRN reduces NaSal-induced hyperacusis and anxiety-like behaviors. The elevation of endocannabinoid (eCB)/ cannabinoid receptor 1 (CB1R) transmission in TRN contributes to the NaSal-induced abnormalities. Our results highlight the regulative role of TRN in the auditory and limbic thalamic-cortical pathways.


Asunto(s)
Ansiedad , Corteza Auditiva , Hiperacusia , Salicilato de Sodio , Animales , Salicilato de Sodio/toxicidad , Ratones , Ansiedad/fisiopatología , Ansiedad/inducido químicamente , Hiperacusia/fisiopatología , Masculino , Corteza Auditiva/fisiopatología , Corteza Auditiva/metabolismo , Corteza Auditiva/efectos de los fármacos , Corteza Prefrontal/fisiopatología , Corteza Prefrontal/metabolismo , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Ratones Endogámicos C57BL , Tálamo/metabolismo , Tálamo/fisiopatología , Receptor Cannabinoide CB1/metabolismo , Conducta Animal/efectos de los fármacos
2.
Biomolecules ; 14(9)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39334909

RESUMEN

Given the increasing use of cannabis in the US, there is an urgent need to better understand the drug's effects on central signaling mechanisms. Extracellular vesicles (EVs) have been identified as intercellular signaling mediators that contain a variety of cargo, including proteins. Here, we examined whether the main psychoactive component in cannabis, Δ9-tetrahydrocannabinol (THC), alters EV protein signaling dynamics in the brain. We first conducted in vitro studies, which found that THC activates signaling in choroid plexus epithelial cells, resulting in transcriptional upregulation of the cannabinoid 1 receptor and immediate early gene c-fos, in addition to the release of EVs containing RNA cargo. Next, male and female rats were examined for the effects of either acute or chronic exposure to aerosolized ('vaped') THC on circulating brain EVs. Cerebrospinal fluid was extracted from the brain, and EVs were isolated and processed with label-free quantitative proteomic analyses via high-resolution tandem mass spectrometry. Interestingly, circulating EV-localized proteins were differentially expressed based on acute or chronic THC exposure in a sex-specific manner. Taken together, these findings reveal that THC acts in the brain to modulate circulating EV signaling, thereby providing a novel understanding of how exogenous factors can regulate intercellular communication in the brain.


Asunto(s)
Encéfalo , Dronabinol , Vesículas Extracelulares , Proteómica , Dronabinol/farmacología , Dronabinol/administración & dosificación , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efectos de los fármacos , Masculino , Femenino , Ratas , Proteómica/métodos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Ratas Sprague-Dawley , Administración por Inhalación , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/genética , Transducción de Señal/efectos de los fármacos
3.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(9): 827-833, 2024 Sep 12.
Artículo en Chino | MEDLINE | ID: mdl-39266480

RESUMEN

Objective: To observe the effects of targeting and blocking cannabinoid receptor 1 (CB1R) on mouse spleen immune function and inflammatory response under chronic intermittent hypoxia (CIH) conditions, and to explore its regulatory effort. Methods: Forty SPF male C57BL/6 mice aged 4 to 5 weeks,from May 2021 to August 2021 in Experimental Animal Center of the Second Hospital of Shanxi Medical University, were randomly divided into normal oxygen control group (NC), 6-week CIH group (6w CIH), 10-week CIH group (10w CIH), 6-week CIH+CB1R group (6w CIH+AM251) and 10-week CIH+CB1R group (10w CIH+AM251) according to the method of random number table. The advanced programmable intermittent low oxygen chamber was used to prepare the CIH mouse model. The morphological structure of spleen tissue of CIH mice was stained by hematoxylin-eosin (HE) staining. The expression levels of M1 and M2 macrophage surface markers CD86, CD206 were determined by immunofluorescence. The mRNA expression levels of CB1R, CD86, CD206 and the relative expression levels of RORγt and Foxp3,which are characteristic transcriptional regulators of T helper 17(Th17) and Treg cells were detected by quantitative reverse transcriptase PCR(qRT-PCR). The expression of inflammatory factors IL-6 and IL-10 was determined by ELISA. SPSS 26.0 and Graphpad prism 8.3 were used to analyze the data. Results: (1) Compared with NC group, spleen tissue structure was disordered, fibrous tissue hyperplasia, lymphocyte proliferation and disordered arrangement in periarteriole lymphatic sheath in CIH group. The expression of CB1R in CIH group was higher than that in NC group (P<0.05), and with the prolongation of CIH time, the expression of 10w CIH group was higher than that in 6w CIH group(P<0.05). The expression of CB1R in CIH+AM251 group was lower than that in the corresponding CIH group(all P<0.05). (2) Compared with NC group, the expression level of CD86 in macrophages in CIH group was higher than that in NC group(all P<0.05). The relative expression of RORγt in 6w and 10w CIH groups was 0.76±0.03 and 0.91±0.04, respectively, which was higher than that in NC group (0.65±0.06)(all P<0.05). The relative expression levels of inflammatory factor IL-6 were 10.80±1.73 and 14.86±0.01, respectively, which were higher than 6.69±0.23 in the NC group (all P<0.05). The expression level of CD206 in macrophages in the CIH+AM251 group was higher than that in the CIH group(all P<0.05). The relative expression levels of Foxp3 in 6w and 10w CIH+AM251 groups were 0.62±0.05 and 0.32±0.21, respectively, which were higher than those in 6w CIH group (0.28±0.02) and 10w CIH group (0.02±0.01)(P<0.05). The relative expression levels of anti-inflammatory factor IL-10 were 668.45±15.71 and 379.15±56.84, respectively, which were higher than those in CIH group (all P<0.05). Conclusion: Targeted sealing of CB1R may alleviate inflammatory response of mouse spleen under CIH conditions by regulating macrophage polarization and the expression of inflammatory factors, and may have some protective effect.


Asunto(s)
Hipoxia , Inflamación , Receptor Cannabinoide CB1 , Bazo , Animales , Masculino , Ratones , Modelos Animales de Enfermedad , Hipoxia/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Ratones Endogámicos C57BL , Piperidinas/farmacología , Pirazoles/farmacología , Receptor Cannabinoide CB1/metabolismo , Bazo/metabolismo , Linfocitos T Reguladores/inmunología
4.
Int J Mol Sci ; 25(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39273484

RESUMEN

Hypercholesterolemia forms the background of several cardiovascular pathologies. LDL receptor-knockout (LDLR-KO) mice kept on a high-fat diet (HFD) develop high cholesterol levels and atherosclerosis (AS). Cannabinoid type 1 receptors (CB1Rs) induce vasodilation, although their role in cardiovascular pathologies is still controversial. We aimed to reveal the effects of CB1Rs on vascular function and remodeling in hypercholesterolemic AS-prone LDLR-KO mice. Experiments were performed on a newly established LDLR and CB1R double-knockout (KO) mouse model, in which KO and wild-type (WT) mice were kept on an HFD or a control diet (CD) for 5 months. The vascular functions of abdominal aorta rings were tested with wire myography. The vasorelaxation effects of acetylcholine (Ach, 1 nM-1 µM) were obtained after phenylephrine precontraction, which was repeated with inhibitors of nitric oxide synthase (NOS) and cyclooxygenase (COX), Nω-nitro-L-arginine (LNA), and indomethacin (INDO), respectively. Blood pressure was measured with the tail-cuff method. Immunostaining of endothelial NOS (eNOS) was carried out. An HFD significantly elevated the cholesterol levels in the LDLR-KO mice more than in the corresponding WT mice (mean values: 1039 ± 162 mg/dL vs. 91 ± 18 mg/dL), and they were not influenced by the presence of the CB1R gene. However, with the defect of the CB1R gene, damage to the Ach relaxation ability was moderated. The blood pressure was higher in the LDLR-KO mice compared to their WT counterparts (systolic/diastolic values: 110/84 ± 5.8/6.8 vs. 102/80 ± 3.3/2.5 mmHg), which was significantly elevated with an HFD (118/96 ± 1.9/2 vs. 100/77 ± 3.4/3.1 mmHg, p < 0.05) but attenuated in the CB1R-KO HFD mice. The expression of eNOS was depressed in the HFD WT mice compared to those on the CD, but it was augmented if CB1R was knocked out. This newly established double-knockout mouse model provides a tool for studying the involvement of CB1Rs in the development of hypercholesterolemia and atherosclerosis. Our results indicate that knocking out the CB1R gene significantly attenuates vascular damage in hypercholesterolemic mice.


Asunto(s)
Modelos Animales de Enfermedad , Hipercolesterolemia , Ratones Noqueados , Receptor Cannabinoide CB1 , Receptores de LDL , Vasodilatación , Animales , Hipercolesterolemia/metabolismo , Hipercolesterolemia/genética , Hipercolesterolemia/patología , Ratones , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Receptores de LDL/deficiencia , Vasodilatación/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Masculino , Óxido Nítrico Sintasa de Tipo III/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/etiología , Remodelación Vascular/efectos de los fármacos , Ratones Endogámicos C57BL , Acetilcolina/farmacología
5.
J Neurosci Res ; 102(9): e25380, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39245959

RESUMEN

The findings concerning the association between endocannabinoid system (ECS) and Alzheimer's disease (AD) exhibited inconsistencies when examining the expression levels of endocannabinoids. This study aimed to provide a comprehensive summary of the studies regarding alterations of the ECS in AD. Six databases were thoroughly searched for literature to select relevant studies investigating the ECS in AD, including changes in cannabinoid receptors (CB1R and CB2R), endocannabinoids (2-AG and AEA), and their associated enzymes (FAAH and MAGL). Traditional meta-analysis evaluated the expression levels of the ECS in AD, and the results showed no significant differences in ECS components between healthy controls and AD patients. However, subgroup analysis revealed significantly lower expression levels of CB1R in AD than in controls, particularly in studies using western blot (SMD = -0.88, p < 0.01) and in studies testing CB1R of frontal cortex (SMD = -1.09, p < 0.01). For studies using HPLC, the subgroup analysis indicated significantly higher 2-AG levels in AD than in controls (SMD = 0.46, p = 0.02). Network meta-analysis examined the rank of ECS alterations in AD compared to controls, and the findings revealed that 2-AG and MAGL exhibited the largest increase and CB1R showed the largest decrease relative to the control group. Based on the findings of traditional meta-analysis and network meta-analysis, we proposed that AD patients may present decreased expression levels of CB1R and increased expression levels of 2-AG and its degrading enzyme MAGL. Our results may contribute to the growing body of research supporting the therapeutic potential of ECS modulation in the management of AD.


Asunto(s)
Enfermedad de Alzheimer , Endocannabinoides , Receptor Cannabinoide CB1 , Enfermedad de Alzheimer/metabolismo , Humanos , Endocannabinoides/metabolismo , Receptor Cannabinoide CB1/metabolismo , Metaanálisis en Red , Receptor Cannabinoide CB2/metabolismo
6.
Mol Autism ; 15(1): 39, 2024 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300547

RESUMEN

BACKGROUND: Defective mitochondria and aberrant brain mitochondrial bioenergetics are consistent features in syndromic intellectual disability disorders, such as Rett syndrome (RTT), a rare neurologic disorder that severely affects mainly females carrying mutations in the X-linked MECP2 gene. A pool of CB1 cannabinoid receptors (CB1R), the primary receptor subtype of the endocannabinoid system in the brain, is located on brain mitochondrial membranes (mtCB1R), where it can locally regulate energy production, synaptic transmission and memory abilities through the inhibition of the intra-mitochondrial protein kinase A (mtPKA). In the present study, we asked whether an overactive mtCB1R-mtPKA signaling might underlie the brain mitochondrial alterations in RTT and whether its modulation by systemic administration of the CB1R inverse agonist rimonabant might improve bioenergetics and cognitive defects in mice modeling RTT. METHODS: Rimonabant (0.3 mg/kg/day, intraperitoneal injections) was administered daily to symptomatic female mice carrying a truncating mutation of the Mecp2 gene and its effects on brain mitochondria functionality, systemic oxidative status, and memory function were assessed. RESULTS: mtCB1R is overexpressed in the RTT mouse brain. Subchronic treatment with rimonabant normalizes mtCB1R expression in RTT mouse brains, boosts mtPKA signaling, and restores the defective brain mitochondrial bioenergetics, abnormal peripheral redox homeostasis, and impaired cognitive abilities in RTT mice. LIMITATIONS: The lack of selectivity of the rimonabant treatment towards mtCB1R does not allow us to exclude that the beneficial effects exerted by the treatment in the RTT mouse model may be ascribed more broadly to the modulation of CB1R activity and distribution among intracellular compartments, rather than to a selective effect on mtCB1R-mediated signaling. The low sample size of few experiments is a further limitation that has been addressed replicating the main findings under different experimental conditions. CONCLUSIONS: The present data identify mtCB1R overexpression as a novel molecular alteration in the RTT mouse brain that may underlie defective brain mitochondrial bioenergetics and cognitive dysfunction.


Asunto(s)
Encéfalo , Modelos Animales de Enfermedad , Metabolismo Energético , Mitocondrias , Receptor Cannabinoide CB1 , Síndrome de Rett , Rimonabant , Animales , Femenino , Ratones , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Proteína 2 de Unión a Metil-CpG/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/antagonistas & inhibidores , Síndrome de Rett/metabolismo , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/genética , Rimonabant/farmacología
7.
Chin J Dent Res ; 27(3): 225-234, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221983

RESUMEN

OBJECTIVE: To reveal the role and mechanism of cannabinoid receptor 1 (CB1) and mitochondria in promoting osteogenic differentiation of periodontal ligament stem cells (PDLSCs) in the inflammatory microenvironment. METHODS: Bidirectional mitochondrial transfer was performed in bone mesenchymal stem cells (BMSCs) and PDLSCs. Laser confocal microscopy and quantitative flow cytometry were used to observe the mitochondrial transfer and quantitative mitochondrial transfer efficiency. Realtime reverse transcription polymerase chain reaction (RT-PCR) was employed to detect gene expression. Alkaline phosphatase (ALP) activity, alizarin red staining (ARS) and quantitative calcium ion analysis were used to evaluate the degree of osteogenic differentiation of PDLSCs. RESULTS: Bidirectional mitochondrial transfer was observed between BMSCs and PDLSCs. The indirect co-culture system could simulate intercellular mitochondrial transfer. Compared with the conditioned medium (CM) for BMSCs, that for HA-CB1 BMSCs could significantly enhance the mineralisation ability of PDLSCs. The mineralisation ability of PDLSCs could not be enhanced after removing the mitochondria in CM for HA-CB1 BMSCs. The expression level of HO-1, PGC-1α, NRF-1, ND1 and HK2 was significantly increased in HA-CB1 BMSCs. CONCLUSION: CM for HA-CB1 BMSCs could significantly enhance the damaged osteogenic differentiation ability of PDLSCs in the inflammatory microenvironment, and the mitochondria of CM played an important role. CB1 was related to the activation of the HO-1/PGC-1α/NRF-1 mitochondrial biogenesis pathway, and significantly increased the mitochondrial content in BMSCs.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas , Mitocondrias , Osteogénesis , Ligamento Periodontal , Receptor Cannabinoide CB1 , Adolescente , Humanos , Células de la Médula Ósea , Células Cultivadas , Técnicas de Cocultivo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Mitocondrias/metabolismo , Osteogénesis/fisiología , Ligamento Periodontal/citología , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/genética
8.
Biomolecules ; 14(9)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39334832

RESUMEN

INTRODUCTION: Cannabis sativa L. (CSL) extract has pain-relieving potential due to its cannabinoid content, so the effects of two CSL extracts on alleviating neuropathic pain were investigated in vivo. Methods and groups: Male Wistar rats (n = 130) were divided into groups and received vincristine (0.1 mg/kg) and gabapentin (60 mg/kg) to induce and relieve neuropathic pain or CSL extracts (D and B). The mRNA and protein expression of the cannabinoid receptors type 1 and 2 (CB1R, CB2R) were evaluated in the cerebral cortex, hippocampus, and lymphocytes. Behavioural tests (Tail-Flick and von Frey) were performed on all animals. RESULTS: VK-induced neuropathic pain was accompanied by decreased CB1R protein level and CB2R mRNA expression in the cortex. Gabapentin relieved pain and increased CB1R protein levels in the hippocampus compared to the vincristine group. Hippocampus CB1R protein expression increased with the administration of extract D (10 mg/kg, 40 mg/kg) and extract B (7.5 mg/kg, 10 mg/kg) compared to VK group. In the cerebral cortex CSL decreased CB1R protein expression (10 mg/kg, 20 mg/kg, 40 mg/kg of extract B) and mRNA level (5 mg/kg, 7.5 mg/kg of extract B; 20 mg/kg of extract D) compared to the VK-group.CB2R protein expression increased in the hippocampus after treatment with extract B (7.5 mg/kg) compared to the VK-group. In the cerebral cortex extract B (10 mg/kg, 20 mg/kg) increased CB2R protein expression compared to VK-group. CONCLUSION: Alterations in cannabinoid receptor expression do not fully account for the observed behavioural changes in rats. Therefore, additional signalling pathways may contribute to the initiation and transmission of neuropathic pain. The Cannabis extracts tested demonstrated antinociceptive effects comparable to gabapentin, highlighting the antinociceptive properties of Cannabis extracts for human use.


Asunto(s)
Cannabis , Neuralgia , Extractos Vegetales , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2 , Animales , Masculino , Ratas , Analgésicos/farmacología , Cannabis/química , Corteza Cerebral/metabolismo , Corteza Cerebral/efectos de los fármacos , Gabapentina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ratas Wistar , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB2/metabolismo , Receptor Cannabinoide CB2/genética , Vincristina/farmacología
9.
Pharmacol Res Perspect ; 12(5): e70009, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39292202

RESUMEN

The endocannabinoid system (ECS) is a complex cell-signaling system that is responsible for maintaining homeostasis by modulating various regulatory reactions in response to internal and environmental changes. The influence of ECS on appetite regulation has been a subject of much recent research, however, the full extent of its impact remains unknown. Current evidence links human obesity to ECS activation, increased endocannabinoid levels in both central and peripheral tissues, along with cannabinoid receptor type 1 (CBR1) up-regulation. These findings imply the potential pharmacological use of the ECS in the treatment of obesity. Here, we present various pathophysiological processes in obesity involving the ECS, highlighting different pharmacological options for modulating endocannabinoid activity to treat obesity. However, the potential of those pharmacological possibilities remains under investigation and requires further research.


Asunto(s)
Regulación del Apetito , Endocannabinoides , Obesidad , Humanos , Endocannabinoides/metabolismo , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Regulación del Apetito/efectos de los fármacos , Animales , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/antagonistas & inhibidores , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/uso terapéutico , Transducción de Señal/efectos de los fármacos
10.
JAMA Netw Open ; 7(9): e2432387, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39250156

RESUMEN

This case-control study assesses associations of amygdala cannabinoid 1 receptor availability with amygdala response to shock-induced pain and severity of emotional numbing symptoms of veterans with posttraumatic stress disorder.


Asunto(s)
Amígdala del Cerebelo , Receptor Cannabinoide CB1 , Humanos , Masculino , Femenino , Amígdala del Cerebelo/fisiopatología , Adulto , Dolor/psicología , Trastornos por Estrés Postraumático/psicología , Emociones/fisiología , Adulto Joven , Imagen por Resonancia Magnética
11.
Biosens Bioelectron ; 264: 116686, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39173339

RESUMEN

Cannabinoids are involved in physiological and neuromodulatory processes through their interactions with the human cannabinoid receptor-based endocannabinoid system. Their association with neurodegenerative diseases and brain reward pathways underscores the importance of evaluating and modulating cannabinoid activity for both understanding physiological mechanisms and developing therapeutic drugs. The use of agonists and antagonists could be strategic approaches for modulation. In this study, we introduce a bioelectronic sensor designed to monitor cannabinoid binding to receptors and assess their agonistic and antagonistic properties. We produced human cannabinoid receptor 1 (hCB1R) via an Escherichia coli expression system and incorporated it into nanodiscs (NDs). These hCB1R-NDs were then immobilized on a single-walled carbon nanotube field-effect transistor (swCNT-FET) to construct a bioelectronic sensing platform. This novel system can sensitively detect the cannabinoid ligand anandamide (AEA) at concentrations as low as 1 fM, demonstrating high selectivity and real-time response. It also successfully identified the hCB1R agonist Δ9-tetrahydrocannabinol and observed that the hCB1R antagonist rimonabant diminished the sensor signal upon AEA binding, indicating the antagonism-based modulation of ligand interaction. Consequently, our bioelectronic sensing platform holds potential for ligand detection and analysis of agonism and antagonism.


Asunto(s)
Técnicas Biosensibles , Endocannabinoides , Nanotubos de Carbono , Receptor Cannabinoide CB1 , Humanos , Endocannabinoides/metabolismo , Nanotubos de Carbono/química , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/antagonistas & inhibidores , Transistores Electrónicos , Alcamidas Poliinsaturadas/química , Alcamidas Poliinsaturadas/farmacología , Ácidos Araquidónicos/química , Ácidos Araquidónicos/farmacología , Cannabinoides/metabolismo , Cannabinoides/farmacología , Cannabinoides/química , Agonistas de Receptores de Cannabinoides/farmacología , Agonistas de Receptores de Cannabinoides/química , Dronabinol/farmacología , Dronabinol/química , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo
12.
Arch Toxicol ; 98(10): 3337-3350, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39115690

RESUMEN

Synthetic cannabinoid receptor agonists (SCRAs) are a class of synthetic drugs that mimic and greatly surpass the effect of recreational cannabis. Acute SCRA intoxications are in general difficult to assess due to the large number of compounds involved, differing widely in both chemical structure and pharmacological properties. The rapid pace of emergence of unknown SCRAs hampers on one hand the timely availability of methods for identification and quantification to confirm and estimate the extent of the SCRA intoxication. On the other hand, lack of knowledge about the harm potential of emerging SCRAs hampers adequate interpretation of serum concentrations in intoxication cases. In the present study, a novel comparative measure for SCRA intoxications was evaluated, focusing on the cannabinoid activity (versus serum concentrations), which can be measured in serum extracts with an untargeted bioassay assessing ex vivo CB1 activity. Application of this principle to a series of SCRA intoxication cases (n = 48) allowed for the determination of activity equivalents, practically entailing a conversion from different SCRA serum concentrations to a JWH-018 equivalent. This allowed for the interpretation of both mono- (n = 34) and poly-SCRA (n = 14) intoxications, based on the intrinsic potential of the present serum levels to exert cannabinoid activity (cf. pharmacological/toxicological properties). A non-distinctive toxidrome was confirmed, showing no relation to CB1 activity. The JWH-018 equivalent was partly related to the poison severity score (PSS) and causality of the clinical intoxication elicited by the SCRA. Altogether, this equivalent concept allows to comparatively and timely interpret (poly-)SCRA intoxications based on CB1 activity.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Indoles , Naftalenos , Humanos , Indoles/sangre , Indoles/toxicidad , Naftalenos/toxicidad , Naftalenos/sangre , Agonistas de Receptores de Cannabinoides/toxicidad , Agonistas de Receptores de Cannabinoides/sangre , Adulto , Masculino , Femenino , Receptor Cannabinoide CB1/agonistas , Cannabinoides/toxicidad , Cannabinoides/sangre , Adulto Joven , Drogas Ilícitas/sangre , Drogas Ilícitas/toxicidad , Bioensayo , Persona de Mediana Edad
13.
Pharmacol Res Perspect ; 12(5): e1251, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39155548

RESUMEN

In parallel to the legalization of cannabis for both medicinal and recreational purposes, cannabinoid use has steadily increased over the last decade in the United States. Cannabinoids, such as tetrahydrocannabinol and anandamide, bind to the central cannabinoid-1 (CB1) receptor to impact several physiological processes relevant for body weight regulation, including appetite and energy expenditure. The hypothalamus integrates peripheral signals related to energy balance, houses several nuclei that orchestrate eating, and expresses the CB1 receptor. Herein we review literature to date concerning cannabinergic action in the hypothalamus with a specific focus on eating behaviors. We highlight hypothalamic areas wherein researchers have focused their attention, including the lateral, arcuate, paraventricular, and ventromedial hypothalamic nuclei, and interactions with the hormone leptin. This review serves as a comprehensive analysis of what is known about cannabinoid signaling in the hypothalamus, highlights gaps in the literature, and suggests future directions.


Asunto(s)
Cannabinoides , Conducta Alimentaria , Hipotálamo , Receptor Cannabinoide CB1 , Transducción de Señal , Humanos , Animales , Hipotálamo/metabolismo , Conducta Alimentaria/fisiología , Receptor Cannabinoide CB1/metabolismo , Leptina/metabolismo , Metabolismo Energético
14.
J Phys Chem B ; 128(35): 8437-8447, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39169808

RESUMEN

Cannabinoid receptor 1 (CB1) is a G protein-coupled receptor that regulates critical physiological processes including pain, appetite, and cognition. Understanding the conformational dynamics of CB1 associated with transitions between inactive and active signaling states is imperative for developing targeted modulators. Using microsecond-level all-atom molecular dynamics simulations, we identified marked differences in the conformational ensembles of inactive and active CB1 in apo. The inactive state exhibited substantially increased structural heterogeneity and plasticity compared to the more rigidified active state in the absence of stabilizing ligands. Transmembrane helices TM3 and TM7 were identified as distinguishing factors modulating the state-dependent dynamics. TM7 displayed amplified fluctuations selectively in the inactive state simulations attributed to disruption of conserved electrostatic contacts anchoring it to surrounding helices in the active state. Additionally, we identified significant reorganizations in key salt bridge and hydrogen bond networks contributing to the CB1 activation/inactivation. For instance, D213-Y224 hydrogen bond and D184-K192 salt bridge showed marked rearrangements between the states. Collectively, these findings reveal the specialized role of TM7 in directing state-dependent CB1 dynamics through electrostatic switch mechanisms. By elucidating the intrinsic enhanced flexibility of inactive CB1, this study provides valuable insights into the conformational landscape enabling functional transitions. Our perspective advances understanding of CB1 activation mechanisms and offers opportunities for structure-based drug discovery targeting the state-specific conformational dynamics of this receptor.


Asunto(s)
Simulación de Dinámica Molecular , Conformación Proteica , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB1/química , Receptor Cannabinoide CB1/metabolismo , Humanos , Enlace de Hidrógeno , Electricidad Estática
15.
Toxicol Appl Pharmacol ; 491: 117081, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39216835

RESUMEN

The endocannabinoid system plays an important role in the regulation of metabolism, growth and regeneration of peripheral tissues, including liver, adipose and muscle tissue. Studies in cells, rodents and humans showed that cannabinoid receptor 1 (CB1) antagonist treatment is an effective strategy to improve features of metabolic health such as substrate metabolism, at least in models of metabolic dysregulation. However, acute signaling events that might induce these metabolic adaptations are not understood. It is not clear whether, and to which extent, a single treatment with a CB1 antagonist induces acute effects in peripheral, metabolic tissues. Therefore, the present study compared the phosphorylation status of signaling pathways and metabolic markers in liver, adipose and muscle tissue of mice treated with the peripherally restricted CB1 antagonist AM6545 and vehicle-treated mice. Protein kinase A phosphorylation was downregulated in white and brown adipose tissue, whereas the mitogen-activated protein kinase, phospho-extracellular signal-regulated kinase, was higher in liver, white adipose and muscle tissue of AM6545-treated mice. Additionally, Akt-mammalian target of rapamycin activation was higher in all tissues of AM6545-treated mice, whereas the phosphorylation status of metabolic markers remained unaffected. These data indicate that acute CB1 antagonism is effective to induce phosphorylation events of signaling cascades and metabolic markers in metabolic tissues of healthy, lean mice within a 90-min time window. The observed adaptations to AM6545 treatment do not fully align with earlier in vitro and in vivo findings, which could be ascribed to differences in cell type, exposure intensity (dose and time), health status and species.


Asunto(s)
Tejido Adiposo , Hígado , Ratones Endogámicos C57BL , Receptor Cannabinoide CB1 , Animales , Hígado/metabolismo , Hígado/efectos de los fármacos , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo , Ratones , Masculino , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Fosforilación/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Transducción de Señal/efectos de los fármacos , Pirazoles/farmacología
16.
Addict Biol ; 29(8): e13429, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39109814

RESUMEN

The endocannabinoid system interacts with the reward system to modulate responsiveness to natural reinforcers, as well as drugs of abuse. Previous preclinical studies suggested that direct blockade of CB1 cannabinoid receptors (CB1R) could be leveraged as a potential pharmacological approach to treat substance use disorder, but this strategy failed during clinical trials due to severe psychiatric side effects. Alternative strategies have emerged to circumvent the side effects of direct CB1 binding through the development of allosteric modulators. We hypothesized that negative allosteric modulation of CB1R signalling would reduce the reinforcing properties of morphine and decrease behaviours associated with opioid misuse. By employing intravenous self-administration in mice, we studied the effects of GAT358, a functionally-biased CB1R negative allosteric modulator (NAM), on morphine intake, relapse-like behaviour and motivation to work for morphine infusions. GAT358 reduced morphine infusion intake during the maintenance phase of morphine self-administration under a fixed ratio 1 schedule of reinforcement. GAT358 also decreased morphine-seeking behaviour after forced abstinence. Moreover, GAT358 dose dependently decreased the motivation to obtain morphine infusions under a progressive ratio schedule of reinforcement. Strikingly, GAT358 did not affect the motivation to work for food rewards in an identical progressive ratio task, suggesting that the effect of GAT358 in decreasing opioid self-administration was reward specific. Furthermore, GAT58 did not produce motor ataxia in the rotarod test. Our results suggest that CB1R NAMs reduced the reinforcing properties of morphine and could represent a viable therapeutic route to safely decrease misuse of opioids.


Asunto(s)
Morfina , Receptor Cannabinoide CB1 , Autoadministración , Animales , Morfina/farmacología , Morfina/administración & dosificación , Receptor Cannabinoide CB1/efectos de los fármacos , Ratones , Regulación Alostérica/efectos de los fármacos , Masculino , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Recurrencia , Refuerzo en Psicología , Motivación/efectos de los fármacos , Analgésicos Opioides/farmacología , Analgésicos Opioides/administración & dosificación , Administración Intravenosa , Condicionamiento Operante/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
17.
Sci Rep ; 14(1): 18314, 2024 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112591

RESUMEN

The type 1 cannabinoid receptor (CB1R) mediates neurotransmitter release and synaptic plasticity in the central nervous system. Endogenous, plant-derived, synthetic cannabinoids bind to CB1R, initiating the inhibitory G-protein (Gi) and the ß-arrestin signaling pathways. Within the Gi signaling pathway, CB1R activates G protein-gated, inwardly-rectifying potassium (GIRK) channels. The ß-arrestin pathway reduces CB1R expression on the cell surface through receptor internalization. Because of their association with analgesia and drug tolerance, GIRK channels and receptor internalization are of interest to the development of pharmaceuticals. This research used immortalized mouse pituitary gland cells transduced with a pH-sensitive, fluorescently-tagged human CB1R (AtT20-SEPCB1) to measure GIRK channel activity and CB1R internalization. Cannabinoid-induced GIRK channel activity is measured by using a fluorescent membrane-potential sensitive dye. We developed a kinetic imaging assay that visualizes and measures CB1R internalization. All cannabinoids stimulated a GIRK channel response with a rank order potency of WIN55,212-2 > (±)CP55,940 > Δ9-THC > AEA. Efficacy was expressed relative to (±)CP55,940 with a rank order efficacy of (±)CP55,940 > WIN55, 212-2 > AEA > Δ9-THC. All cannabinoids stimulated CB1R internalization with a rank order potency of (±)CP55,940 > WIN55, 212-2 > AEA > Δ9-THC. Internalization efficacy was normalized to (±)CP55,940 with a rank order efficacy of WIN55,212-2 > AEA > (±)CP55,940 > Δ9-THC. (±)CP55,940 was significantly more potent and efficacious than AEA and Δ9-THC at stimulating a GIRK channel response; no significant differences between potency and efficacy were observed with CB1R internalization. No significant differences were found when comparing a cannabinoid's GIRK channel and CB1R internalization response. In conclusion, AtT20-SEPCB1 cells can be used to assess cannabinoid-induced CB1R internalization. While cannabinoids display differential Gi signaling when compared to each other, this did not extend to CB1R internalization.


Asunto(s)
Benzoxazinas , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Naftalenos , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Animales , Ratones , Humanos , Cinética , Naftalenos/farmacología , Benzoxazinas/farmacología , Cannabinoides/metabolismo , Cannabinoides/farmacología , Morfolinas/farmacología , Transducción de Señal/efectos de los fármacos , Línea Celular , Ciclohexanoles
18.
Elife ; 132024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120997

RESUMEN

Endometriosis (EM), characterized by the presence of endometrial-like tissue outside the uterus, is the leading cause of chronic pelvic pain and infertility in females of reproductive age. Despite its high prevalence, the molecular mechanisms underlying EM pathogenesis remain poorly understood. The endocannabinoid system (ECS) is known to influence several cardinal features of this complex disease including pain, vascularization, and overall lesion survival, but the exact mechanisms are not known. Utilizing CNR1 knockout (k/o), CNR2 k/o, and wild-type (WT) mouse models of EM, we reveal contributions of ECS and these receptors in disease initiation, progression, and immune modulation. Particularly, we identified EM-specific T cell dysfunction in the CNR2 k/o mouse model of EM. We also demonstrate the impact of decidualization-induced changes on ECS components, and the unique disease-associated transcriptional landscape of ECS components in EM. Imaging mass cytometry (IMC) analysis revealed distinct features of the microenvironment between CNR1, CNR2, and WT genotypes in the presence or absence of decidualization. This study, for the first time, provides an in-depth analysis of the involvement of the ECS in EM pathogenesis and lays the foundation for the development of novel therapeutic interventions to alleviate the burden of this debilitating condition.


Asunto(s)
Endocannabinoides , Endometriosis , Ratones Noqueados , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2 , Endometriosis/genética , Endometriosis/metabolismo , Endometriosis/patología , Femenino , Animales , Endocannabinoides/metabolismo , Ratones , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/metabolismo , Modelos Animales de Enfermedad
19.
Neuropsychopharmacology ; 49(13): 2060-2068, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39155312

RESUMEN

Deficits in impulse control are observed in several neurocognitive disorders, including attention deficit hyperactivity (ADHD), substance use disorders (SUDs), and those following traumatic brain injury (TBI). Understanding brain circuits and mechanisms contributing to impulsive behavior may aid in identifying therapeutic interventions. We previously reported that intact lateral habenula (LHb) function is necessary to limit impulsivity defined by impaired response inhibition in rats. Here, we examine the involvement of a synaptic input to the LHb on response inhibition using cellular, circuit, and behavioral approaches. Retrograde fluorogold tracing identified basal forebrain (BF) inputs to LHb, primarily arising from ventral pallidum and nucleus accumbens shell (VP/NAcs). Glutamic acid decarboxylase and cannabinoid CB1 receptor (CB1R) mRNAs colocalized with fluorogold, suggesting a cannabinoid modulated GABAergic pathway. Optogenetic activation of these axons strongly inhibited LHb neuron action potentials and GABA release was tonically suppressed by an endogenous cannabinoid in vitro. Behavioral experiments showed that response inhibition during signaled reward omission was impaired when VP/NAcs inputs to LHb were optogenetically stimulated, whereas inhibition of this pathway did not alter LHb control of impulsivity. Systemic injection with the psychotropic phytocannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC), also increased impulsivity in male, and not female rats, and this was blocked by LHb CB1R antagonism. However, as optogenetic VP/NAcs pathway inhibition did not alter impulse control, we conclude that the pro-impulsive effects of Δ9-THC likely do not occur via inhibition of this afferent. These results identify an inhibitory LHb afferent that is controlled by CB1Rs that can regulate impulsive behavior.


Asunto(s)
Prosencéfalo Basal , Habénula , Conducta Impulsiva , Vías Nerviosas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1 , Animales , Habénula/efectos de los fármacos , Habénula/metabolismo , Habénula/fisiología , Conducta Impulsiva/fisiología , Conducta Impulsiva/efectos de los fármacos , Masculino , Prosencéfalo Basal/efectos de los fármacos , Prosencéfalo Basal/fisiología , Receptor Cannabinoide CB1/metabolismo , Femenino , Ratas , Vías Nerviosas/fisiología , Vías Nerviosas/efectos de los fármacos , Optogenética , Ácido gamma-Aminobutírico/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/fisiología , Glutamato Descarboxilasa/metabolismo , Glutamato Descarboxilasa/genética , Recompensa , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología
20.
Behav Brain Res ; 474: 115175, 2024 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-39098399

RESUMEN

Stress-related disorders are becoming increasingly common and are often associated with cognitive impairments. Within this context, the endocannabinoid (ECB) system, particularly the type 1 cannabinoid (CB1) receptor, seems to play a decisive role in restoring body homeostasis. There is consistent evidence in the literature that disrupted CB1-mediated neurotransmission can ultimately contribute to stress-related diseases. Therefore, the present study aimed to evaluate the participation of CB1 receptors in the integrity of stress-induced peripheral and behavioral responses. For this purpose, male adult Wistar rats underwent physical restraint (1 h/day, for 7 days), followed by a single administration of rimonabant (CB1 receptor antagonist, 3 mg/Kg, intraperitonial) at the end of stress protocol. Animals were then subjected to evaluation of neuroendocrine responses, behavioral tests and quantification of Iba-1 (microglial) immunoreactivity in the parvocellular subdivisions of the paraventricular nucleus of the hypothalamus (PVN). No effects of restraint stress or rimonabant administration were detected on body mass variation. However, stress significantly increased adrenal relative mass and corticosterone secretion, and reduced thymus relative size. The stress effects on adrenal size and corticosterone plasma levels were absent in rimonabant-treated rats, but the thymus size was further reduced in the restraint-rimonabant group. Restraint stress also induced anhedonia, a depression-like behavior, and reduced object recognition index, indicating memory recovery impairment. Treatment with the CB1 antagonist significantly reversed stress-induced anhedonia and memory deficit. In the PVN, restraint stress reduced the number of Iba-1 positive cells in the medial parvocellular region of vehicle- but not rimonabant-treated animals. Taken together, these results indicate that the acute inhibition of the CB1-mediated endogenous pathway restores stress-induced depression-like behaviors and memory loss, suggesting a role for endocannabinoids in the neuro-immune-endocrine interplay at both peripheral and hypothalamic levels.


Asunto(s)
Anhedonia , Antagonistas de Receptores de Cannabinoides , Corticosterona , Trastornos de la Memoria , Ratas Wistar , Receptor Cannabinoide CB1 , Restricción Física , Rimonabant , Estrés Psicológico , Animales , Rimonabant/farmacología , Masculino , Estrés Psicológico/metabolismo , Anhedonia/efectos de los fármacos , Anhedonia/fisiología , Ratas , Trastornos de la Memoria/tratamiento farmacológico , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/antagonistas & inhibidores , Corticosterona/sangre , Antagonistas de Receptores de Cannabinoides/farmacología , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Modelos Animales de Enfermedad , Conducta Animal/efectos de los fármacos , Piperidinas/farmacología , Pirazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...