Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.986
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38732230

RESUMEN

Cannabinoid receptors CB1R and CB2R are G-protein coupled receptors acted upon by endocannabinoids (eCBs), namely 2-arachidonoylglycerol (2-AG) and N-arachidonoyl ethanolamine (AEA), with unique pharmacology and modulate disparate physiological processes. A genetically encoded GPCR activation-based sensor that was developed recently-GRABeCB2.0-has been shown to be capable of monitoring real-time changes in eCB levels in cultured cells and preclinical models. However, its responsiveness to exogenous synthetic cannabinoid agents, particularly antagonists and allosteric modulators, has not been extensively characterized. This current study expands upon the pharmacological characteristics of GRABeCB2.0 to enhance the understanding of fluorescent signal alterations in response to various functionally indiscriminate cannabinoid ligands. The results from this study could enhance the utility of the GRABeCB2.0 sensor for in vitro as well as in vivo studies of cannabinoid action and may aid in the development of novel ligands.


Asunto(s)
Endocannabinoides , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2 , Humanos , Receptor Cannabinoide CB2/metabolismo , Endocannabinoides/metabolismo , Receptor Cannabinoide CB1/metabolismo , Células HEK293 , Ligandos , Glicéridos/farmacología , Técnicas Biosensibles/métodos , Moduladores de Receptores de Cannabinoides/farmacología , Animales , Ácidos Araquidónicos/farmacología , Ácidos Araquidónicos/metabolismo
2.
J Pregnancy ; 2024: 6620156, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745869

RESUMEN

Background: The cannabinoid receptor (CBR) plays a significant role in oogenesis, pregnancy, and childbirth. It might also play a significant role in preterm birth (PTB). The aim of the study was to investigate the association between the expression of the CBR in the placenta and the incidence of PTB. Methods: This prospective, observational, multicentre preliminary study was conducted on placental samples obtained from 109 women. The study included 95 patients hospitalized due to the high risk of PTB. They were divided into two groups: Group 1, where the expression of the CBR1 and CBR1a was analyzed, and Group 2, in which we examined CBR2 expression. The control group, that is, Group 3, consisted of 14 women who delivered at term, and their placentas were tested for the presence of all three receptor types (CBR1, CBR1a, and CBR2). Results: The study used reverse transcription and real-time PCR methods to assess the expression of CBRs in the placental tissues. The expression of the CBR2, CBR1, and CBR1a receptors was significantly lower in the placentas of women after PTB compared to those after term births, p = 0.038, 0.033, and 0.034, respectively. Conclusions: The presence of CBR mRNA in the human placental tissue was confirmed. The decreased expression of CBRs could serve as an indicator in predicting PTB.


Asunto(s)
Placenta , Nacimiento Prematuro , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2 , Humanos , Femenino , Embarazo , Placenta/metabolismo , Nacimiento Prematuro/metabolismo , Estudios Prospectivos , Adulto , Receptor Cannabinoide CB2/metabolismo , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/genética , Estudios de Casos y Controles , ARN Mensajero/metabolismo , Receptores de Cannabinoides/metabolismo , Receptores de Cannabinoides/genética
3.
Eur J Pharmacol ; 971: 176549, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38561104

RESUMEN

Synthetic cannabinoid receptor agonists (SCRAs) remain one the largest classes of new psychoactive substances, and are increasingly associated with severe adverse effects and death compared to the phytocannabinoid Δ9-tetrahydrocannabinol (THC). In the attempt to circumvent the rapid emergence of novel SCRAs, several nations have implemented 'generic' legislations, or 'class-wide' bans based on common structural scaffolds. However, this has only encouraged the incorporation of new chemical entities, including distinct core and linker structures, for which there is a dearth of pharmacological data. The current study evaluated five emergent OXIZID SCRAs for affinity and functional activity at the cannabinoid CB1 receptor (CB1) in HEK 293 cells, as well as pharmacological equivalence with THC in drug discrimination in mice. All OXIZID compounds behaved as agonists in Gαi protein activation and ß-arrestin 2 translocation assays, possessing low micromolar affinity at CB1. All ligands also substituted for THC in drug discrimination, where potencies broadly correlated with in vitro activity, with the methylcyclohexane analogue BZO-CHMOXIZID being the most potent. Notably, MDA-19 (BZO-HEXOXIZID) exhibited partial efficacy in vitro, generating an activity profile most similar to that of THC, and partial substitution in vivo. Overall, the examined OXIZIDs were comparatively less potent and efficacious than previous generations of SCRAs. Further toxicological data will elucidate whether the moderate cannabimimetic activity for this series of SCRAs will translate to severe adverse health effects as seen with previous generations of SCRAs.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Procesamiento Proteico-Postraduccional , Humanos , Ratones , Animales , Agonistas de Receptores de Cannabinoides/farmacología , Células HEK293 , Receptores de Cannabinoides/metabolismo , Ligandos , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo
4.
Biomolecules ; 14(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38672480

RESUMEN

Early adversity, the loss of the inhibitory GABAergic interneuron parvalbumin, and elevated neuroinflammation are associated with depression. Individuals with a maltreatment history initiate medicinal cannabis use earlier in life than non-maltreated individuals, suggesting self-medication. Female rats underwent maternal separation (MS) between 2 and 20 days of age to model early adversity or served as colony controls. The prelimbic cortex and behavior were examined to determine whether MS alters the cannabinoid receptor 2 (CB2), which has anti-inflammatory properties. A reduction in the CB2-associated regulatory enzyme MARCH7 leading to increased NLRP3 was observed with Western immunoblots in MS females. Immunohistochemistry with stereology quantified numbers of parvalbumin-immunoreactive cells and CB2 at 25, 40, and 100 days of age, revealing that the CB2 receptor associated with PV neurons initially increases at P25 and subsequently decreases by P40 in MS animals, with no change in controls. Confocal and triple-label microscopy suggest colocalization of these CB2 receptors to microglia wrapped around the parvalbumin neuron. Depressive-like behavior in MS animals was elevated at P40 and reduced with the CB2 agonist HU-308 or a CB2-overexpressing lentivirus microinjected into the prelimbic cortex. These results suggest that increasing CB2 expression by P40 in the prelimbic cortex prevents depressive behavior in MS female rats.


Asunto(s)
Depresión , Privación Materna , Receptor Cannabinoide CB2 , Estrés Psicológico , Animales , Femenino , Receptor Cannabinoide CB2/metabolismo , Ratas , Depresión/metabolismo , Estrés Psicológico/metabolismo , Parvalbúminas/metabolismo , Conducta Animal , Ratas Sprague-Dawley , Cannabinoides/farmacología
5.
ACS Chem Biol ; 19(4): 866-874, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38598723

RESUMEN

The advent of ultra-large libraries of drug-like compounds has significantly broadened the possibilities in structure-based virtual screening, accelerating the discovery and optimization of high-quality lead chemotypes for diverse clinical targets. Compared to traditional high-throughput screening, which is constrained to libraries of approximately one million compounds, the ultra-large virtual screening approach offers substantial advantages in both cost and time efficiency. By expanding the chemical space with compounds synthesized from easily accessible and reproducible reactions and utilizing a large, diverse set of building blocks, we can enhance both the diversity and quality of the discovered lead chemotypes. In this study, we explore new chemical spaces using reactions of sulfur(VI) fluorides to create a combinatorial library consisting of several hundred million compounds. We screened this virtual library for cannabinoid type II receptor (CB2) antagonists using the high-resolution structure in conjunction with a rationally designed antagonist, AM10257. The top-predicted compounds were then synthesized and tested in vitro for CB2 binding and functional antagonism, achieving an experimentally validated hit rate of 55%. Our findings demonstrate the effectiveness of reliable reactions, such as sulfur fluoride exchange, in diversifying ultra-large chemical spaces and facilitate the discovery of new lead compounds for important biological targets.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Receptor Cannabinoide CB2 , Bibliotecas de Moléculas Pequeñas , Ligandos , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/efectos de los fármacos , Descubrimiento de Drogas/métodos , Receptor Cannabinoide CB2/antagonistas & inhibidores , Receptor Cannabinoide CB2/efectos de los fármacos
6.
ACS Chem Neurosci ; 15(9): 1787-1812, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38597712

RESUMEN

ADB-HEXINACA has been recently reported as a synthetic cannabinoid receptor agonist (SCRA), one of the largest classes of new psychoactive substances (NPSs). This compound marks the entry of the n-hexyl tail group into the SCRA landscape, which has continued in the market with recent, newly detected SCRAs. As such, a proactive characterization campaign was undertaken, including the synthesis, characterization, and pharmacological evaluation of ADB-HEXINACA and a library of 41 closely related analogues. Two in vitro functional assays were employed to assess activity at CB1 and CB2 cannabinoid receptors, measuring Gßγ-coupled agonism through a fluorescence-based membrane potential assay (MPA) and ß-arrestin 2 (ßarr2) recruitment via a live cell-based nanoluciferase complementation reporter assay. ADB-HEXINACA was a potent and efficacious CB1 agonist (CB1 MPA pEC50 = 7.87 ± 0.12 M; Emax = 124 ± 5%; ßarr2 pEC50 = 8.27 ± 0.14 M; Emax = 793 ± 42.5), as were most compounds assessed. Isolation of the heterocyclic core and alkyl tails allowed for the comprehensive characterization of structure-activity relationships in this compound class, which were rationalized in silico via induced fit docking experiments. Overall, most compounds assessed are possibly emerging NPSs.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2 , Agonistas de Receptores de Cannabinoides/farmacología , Agonistas de Receptores de Cannabinoides/síntesis química , Humanos , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/metabolismo , Células HEK293 , Relación Estructura-Actividad , Animales
7.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673761

RESUMEN

Multiple sclerosis (MS) is an autoimmune, inflammatory, and neurodegenerative disease of the central nervous system for which there is no cure, making it necessary to search for new treatments. The endocannabinoid system (ECS) plays a very important neuromodulatory role in the CNS. In recent years, the formation of heteromers containing cannabinoid receptors and their up/downregulation in some neurodegenerative diseases have been demonstrated. Despite the beneficial effects shown by some phytocannabinoids in MS, the role of the ECS in its pathophysiology is unknown. The main objective of this work was to identify heteromers of cell surface proteins receptive to cannabinoids, namely GPR55, CB1 and CB2 receptors, in brain samples from control subjects and MS patients, as well as determining their cellular localization, using In Situ Proximity Ligation Assays and immunohistochemical techniques. For the first time, CB1R-GPR55 and CB2R-GPR55 heteromers are identified in the prefrontal cortex of the human brain, more in the grey than in the white matter. Remarkably, the number of CB1R-GPR55 and CB2R-GPR55 complexes was found to be increased in MS patient samples. The results obtained open a promising avenue of research on the use of these receptor complexes as potential therapeutic targets for the disease.


Asunto(s)
Esclerosis Múltiple , Corteza Prefrontal , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2 , Receptores de Cannabinoides , Humanos , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Corteza Prefrontal/metabolismo , Receptores de Cannabinoides/metabolismo , Receptor Cannabinoide CB2/metabolismo , Receptor Cannabinoide CB1/metabolismo , Masculino , Adulto , Femenino , Receptores Acoplados a Proteínas G/metabolismo , Persona de Mediana Edad , Regulación hacia Arriba , Multimerización de Proteína
8.
Sci Rep ; 14(1): 5782, 2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461339

RESUMEN

To test the hypothesis that genetic and pharmacological modulation of the classical cannabinoid type 1 (CB1) and 2 (CB2) receptors attenuate cancer-induced bone pain, we searched Medline, Web of Science and Scopus for relevant skeletal and non-skeletal cancer studies from inception to July 28, 2022. We identified 29 animal and 35 human studies. In mice, a meta-analysis of pooled studies showed that treatment of osteolysis-bearing males with the endocannabinoids AEA and 2-AG (mean difference [MD] - 24.83, 95% confidence interval [95%CI] - 34.89, - 14.76, p < 0.00001) or the synthetic cannabinoid (CB) agonists ACPA, WIN55,212-2, CP55,940 (CB1/2-non-selective) and AM1241 (CB2-selective) (MD - 28.73, 95%CI - 45.43, - 12.02, p = 0.0008) are associated with significant reduction in paw withdrawal frequency. Consistently, the synthetic agonists AM1241 and JWH015 (CB2-selective) increased paw withdrawal threshold (MD 0.89, 95%CI 0.79, 0.99, p < 0.00001), and ACEA (CB1-selective), AM1241 and JWH015 (CB2-selective) reduced spontaneous flinches (MD - 4.85, 95%CI - 6.74, - 2.96, p < 0. 00001) in osteolysis-bearing male mice. In rats, significant increase in paw withdrawal threshold is associated with the administration of ACEA and WIN55,212-2 (CB1/2-non-selective), JWH015 and AM1241 (CB2-selective) in osteolysis-bearing females (MD 8.18, 95%CI 6.14, 10.21, p < 0.00001), and treatment with AM1241 (CB2-selective) increased paw withdrawal thermal latency in males (mean difference [MD]: 3.94, 95%CI 2.13, 5.75, p < 0.0001), confirming the analgesic capabilities of CB1/2 ligands in rodents. In human, treatment of cancer patients with medical cannabis (standardized MD - 0.19, 95%CI - 0.35, - 0.02, p = 0.03) and the plant-derived delta-9-THC (20 mg) (MD 3.29, CI 2.24, 4.33, p < 0.00001) or its synthetic derivative NIB (4 mg) (MD 2.55, 95%CI 1.58, 3.51, p < 0.00001) are associated with reduction in pain intensity. Bioinformatics validation of KEGG, GO and MPO pathway, function and process enrichment analysis of mouse, rat and human data revealed that CB1 and CB2 receptors are enriched in a cocktail of nociceptive and sensory perception, inflammatory, immune-modulatory, and cancer pathways. Thus, we cautiously conclude that pharmacological modulators of CB1/2 receptors show promise in the treatment of cancer-induced bone pain, however further assessment of their effects on bone pain in genetically engineered animal models and cancer patients is warranted.


Asunto(s)
Dolor en Cáncer , Cannabinoides , Neoplasias , Osteólisis , Masculino , Ratas , Humanos , Ratones , Animales , Receptores de Cannabinoides , Osteólisis/tratamiento farmacológico , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Agonistas de Receptores de Cannabinoides , Dolor en Cáncer/tratamiento farmacológico , Dolor en Cáncer/etiología , Neoplasias/tratamiento farmacológico , Receptor Cannabinoide CB2 , Receptor Cannabinoide CB1
9.
Eur J Med Chem ; 269: 116298, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38493727

RESUMEN

The cannabinoid system is one of the most investigated neuromodulatory systems because of its involvement in multiple pathologies such as cancer, inflammation, and psychiatric diseases. Recently, the CB2 receptor has gained increased attention considering its crucial role in modulating neuroinflammation in several pathological conditions like neurodegenerative diseases. Here we describe the rational design of pyrrole-based analogues, which led to a potent and pharmacokinetically suitable CB2 full agonist particularly effective in improving cognitive functions in a scopolamine-induced amnesia murine model. Therefore, we extended our study by investigating the interconnection between CB2 activation and neurotransmission in this experimental paradigm. To this purpose, we performed a MALDI imaging analysis on mice brains, observing that the administration of our lead compound was able to revert the effect of scopolamine on different neurotransmitter tones, such as acetylcholine, serotonin, and GABA, shedding light on important networks not fully explored, so far.


Asunto(s)
Cannabinoides , Receptor Cannabinoide CB2 , Ratones , Animales , Pirroles/farmacología , Cannabinoides/farmacología , Neurotransmisores/farmacología , Derivados de Escopolamina , Agonistas de Receptores de Cannabinoides/farmacología , Receptor Cannabinoide CB1
10.
Clin Sci (Lond) ; 138(6): 413-434, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38505994

RESUMEN

Drug-induced cardiotoxicity has become one of the most common and detrimental health concerns, which causes significant loss to public health and drug resources. Cannabinoid receptors (CBRs) have recently achieved great attention for their vital roles in the regulation of heart health and disease, with mounting evidence linking CBRs with the pathogenesis and progression of drug-induced cardiotoxicity. This review aims to summarize fundamental characteristics of two well-documented CBRs (CB1R and CB2R) from aspects of molecular structure, signaling and their functions in cardiovascular physiology and pathophysiology. Moreover, we describe the roles of CB1R and CB2R in the occurrence of cardiotoxicity induced by common drugs such as antipsychotics, anti-cancer drugs, marijuana, and some emerging synthetic cannabinoids. We highlight the 'yin-yang' relationship between CB1R and CB2R in drug-induced cardiotoxicity and propose future perspectives for CBR-based translational medicine toward cardiotoxicity curation and clinical monitoring.


Asunto(s)
Cannabinoides , Cardiotoxicidad , Humanos , Receptores de Cannabinoides/fisiología , Agonistas de Receptores de Cannabinoides/efectos adversos , Cannabinoides/efectos adversos , Receptor Cannabinoide CB2 , Receptor Cannabinoide CB1
11.
Biomolecules ; 14(3)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38540753

RESUMEN

BACKGROUND: Studies have shown that the chronic use of cannabis is associated with a decrease in blood pressure. Our previous studies prove that activating the cannabinoid type 2 (CB2) receptor in the brain can effectively reduce blood pressure in spontaneously hypertensive rats; however, the exact mechanism has not been clarified. The objective of this study is to demonstrate that activation of microglial CB2 receptors can effectively reduce the levels of TNF-α, IL-1ß, and IL-6 in the paraventricular nucleus (PVN) through inhibiting aerobic glycolysis, thereby relieving hypertension. METHODS: AngiotensinII (AngII) was administered to BV2 cells and C57 mice to induce hypertension and the release of proinflammatory cytokines. The mRNA and protein expression of the CB2 receptor, TNF-α, IL-1ß, IL-6, and the PFK and LDHa enzymes were detected using RT-qPCR and Western blotting. The Seahorse XF Energy Metabolism Analyzer was used to measure the oxidative phosphorylation and aerobic glycolysis metabolic pathways in BV2 cells. The long-term effects of injecting JWH133, a selective CB2 receptor agonist, intraperitoneally on blood pressure were ascertained. ELISA was used to measure norepinephrine and lactic acid levels while immunofluorescence labeling was used to locate the CB2 receptor and c-Fos. By injecting pAAV-F4/80-GFP-mir30shRNA (AAV2-r-CB2shRNA) into the lateral cerebral ventricle, the CB2 receptor in microglia was specifically knocked down. RESULTS: Activation of CB2 receptors by the agonist JWH133 suppressed TNF-α, IL-1ß, and IL-6 by inhibiting PFK and LDHa enzymes involved in glycolysis, as well as lactic acid accumulation, along with a reduction in glycoPER levels (marks of aerobic glycolysis) in AngII-treated BV2 cells. In AngII-treated mice, the administration of JWH133 specifically activated CB2 receptors on microglia, resulting in decreased expression levels of PFK, LDHa, TNF-α, IL-1ß, and IL-6, subsequently leading to a decrease in c-Fos protein expression within PVN neurons as well as reduced norepinephrine levels in plasma, ultimately contributing to blood pressure reduction. CONCLUSION: The results suggest that activation of the microglia CB2 receptor decreases the neuroinflammation to relieve hypertension; the underlying mechanism is related to inhibiting aerobic glycolysis of microglia.


Asunto(s)
Cannabinoides , Hipertensión , Ratas , Ratones , Animales , Enfermedades Neuroinflamatorias , Factor de Necrosis Tumoral alfa/metabolismo , Microglía/metabolismo , Interleucina-6/metabolismo , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/metabolismo , Cannabinoides/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Ratas Endogámicas SHR , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Glucólisis , Ácido Láctico/metabolismo , Norepinefrina/metabolismo
12.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38542177

RESUMEN

Mental disorders account for one of the most prevalent categories of the burden of disease worldwide, with depression expected to be the largest contributor by 2030, closely followed by anxiety. The COVID-19 pandemic possibly exacerbated these challenges, especially amongst adolescents, who experienced isolation, disrupted routines, and limited healthcare access. Notably, the pandemic has been associated with long-term neurological effects known as "long-COVID", characterized by both cognitive and psychopathological symptoms. In general, psychiatric disorders, including those related to long-COVID, are supposed to be due to widespread inflammation leading to neuroinflammation. Recently, the endocannabinoid system (ECS) emerged as a potential target for addressing depression and anxiety pathophysiology. Specifically, natural or synthetic cannabinoids, able to selectively interact with cannabinoid type-2 receptor (CB2R), recently revealed new therapeutic potential in neuropsychiatric disorders with limited or absent psychotropic activity. Among the most promising natural CB2R ligands, the bicyclic sesquiterpene ß-caryophyllene (BCP) has emerged as an excellent anti-inflammatory and antioxidant therapeutic agent. This review underscores BCP's immunomodulatory and anti-inflammatory properties, highlighting its therapeutic potential for the management of depression and anxiety.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Disfunción Cognitiva , Sesquiterpenos Policíclicos , Humanos , Adolescente , Agonistas de Receptores de Cannabinoides/farmacología , Agonistas de Receptores de Cannabinoides/uso terapéutico , Pandemias , Síndrome Post Agudo de COVID-19 , Receptores de Cannabinoides , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Receptor Cannabinoide CB2
13.
Biomed Pharmacother ; 174: 116473, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522237

RESUMEN

BACKGROUND: The elevation of endocannabinoid levels through inhibiting their degradation afforded neuroprotection in CaMKIIα-TDP-43 mice, a conditional transgenic model of frontotemporal dementia. However, which cannabinoid receptors are mediating these benefits is still pending to be elucidated. METHODS: We have investigated the involvement of the CB1 and the CB2 receptor using chronic treatments with selective ligands in CaMKIIα-TDP-43 mice, analysis of their cognitive deterioration with the Novel Object Recognition test, and immunostaining for neuronal and glial markers in two areas of interest in frontotemporal dementia. RESULTS: Our results confirmed the therapeutic value of activating either the CB1 or the CB2 receptor, with improvements in the animal performance in the Novel Object Recognition test, preservation of pyramidal neurons, in particular in the medial prefrontal cortex, and attenuation of glial reactivity, in particular in the hippocampus. In addition, the activation of both CB1 and CB2 receptors reduced the elevated levels of TDP-43 in the medial prefrontal cortex of CaMKIIα-TDP-43 mice, an effect exerted by mechanisms that are currently under investigation. CONCLUSIONS: These data reinforce the notion that the activation of CB1 and CB2 receptors may represent a promising therapy against TDP-43-induced neuropathology in frontotemporal dementia. Future studies will have to confirm these benefits, in particular with one of the selective CB2 agonists used here, which has been thoroughly characterized for clinical development.


Asunto(s)
Cannabinoides , Modelos Animales de Enfermedad , Demencia Frontotemporal , Ratones Transgénicos , Fármacos Neuroprotectores , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2 , Animales , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/metabolismo , Masculino , Fármacos Neuroprotectores/farmacología , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/agonistas , Demencia Frontotemporal/tratamiento farmacológico , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Ratones , Cannabinoides/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas de Unión al ADN/metabolismo , Ratones Endogámicos C57BL , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología
14.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38338960

RESUMEN

The lipid endocannabinoid system has recently emerged as a novel therapeutic target for several inflammatory and tissue-damaging diseases, including those affecting the cardiovascular system. The primary targets of cannabinoids are cannabinoid type 1 (CB1) and 2 (CB2) receptors. The CB2 receptor is expressed in the cardiomyocytes. While the pathological changes in the myocardium upregulate the CB2 receptor, genetic deletion of the receptor aggravates the changes. The CB2 receptor plays a crucial role in attenuating the advancement of myocardial infarction (MI)-associated pathological changes in the myocardium. Activation of CB2 receptors exerts cardioprotection in MI via numerous molecular pathways. For instance, delta-9-tetrahydrocannabinol attenuated the progression of MI via modulation of the CB2 receptor-dependent anti-inflammatory mechanisms, including suppression of pro-inflammatory cytokines like IL-6, TNF-α, and IL-1ß. Through similar mechanisms, natural and synthetic CB2 receptor ligands repair myocardial tissue damage. This review aims to offer an in-depth discussion on the ameliorative potential of CB2 receptors in myocardial injuries induced by a variety of pathogenic mechanisms. Further, the modulation of autophagy, TGF-ß/Smad3 signaling, MPTP opening, and ROS production are discussed. The molecular correlation of CB2 receptors with cardiac injury markers, such as troponin I, LDH1, and CK-MB, is explored. Special attention has been paid to novel insights into the potential therapeutic implications of CB2 receptor activation in MI.


Asunto(s)
Cannabinoides , Infarto del Miocardio , Receptor Cannabinoide CB1 , Humanos , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Cannabinoides/metabolismo , Endocannabinoides/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/metabolismo , Receptores de Cannabinoides/metabolismo , Dronabinol/farmacología
15.
Biochem Pharmacol ; 222: 116052, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354957

RESUMEN

The cannabinoid CB1 receptor (CB1) is a G protein-coupled receptor (GPCR) with widespread expression in the central nervous system. This canonically G⍺i/o-coupled receptor mediates the effects of Δ9-tetrahydrocannabinol (THC) and synthetic cannabinoid receptor agonists (SCRAs). Recreational use of SCRAs is associated with serious adverse health effects, making pharmacological research into these compounds a priority. Several studies have hypothesised that signalling bias may explain the different toxicological profiles between SCRAs and THC. Previous studies have focused on bias between G protein activation measured by cyclic adenosine monophosphate (cAMP) inhibition and ß-arrestin translocation. In contrast, the current study characterises bias between G⍺ subtypes of the G⍺i/o family and ß-arrestins; this method facilitates a more accurate assessment of ligand bias by assessing signals that have not undergone major amplification. We have characterised G protein dissociation and translocation of ß-arrestin 1 and 2 using real-time BRET reporters. The responses produced by each SCRA across the G protein subtypes tested were consistent with the responses produced by the reference ligand AMB-FUBINACA. Ligand bias was probed by applying the operational analysis to determine biases within the G⍺i/o family, and between G protein subtypes and ß-arrestins. Overall, these results confirm SCRAs to be balanced, high-efficacy ligands compared to the low efficacy ligand THC, with only one SCRA, 4CN-MPP-BUT7IACA, demonstrating statistically significant bias in one pathway comparison (towards ß-arrestin 1 when compared with G⍺oA/oB). This suggests that the adverse effects caused by SCRAs are due to high potency and efficacy at CB1, rather than biased agonism.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Cannabinoides , Agonistas de Receptores de Cannabinoides/farmacología , Agonistas de Receptores de Cannabinoides/metabolismo , beta-Arrestinas/metabolismo , Receptores de Cannabinoides/metabolismo , beta-Arrestina 1/metabolismo , Ligandos , Proteínas de Unión al GTP/metabolismo , Cannabinoides/farmacología , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo
16.
Mol Pharmacol ; 105(2): 75-83, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38195158

RESUMEN

The mechanisms of ß-caryophyllene (BCP)-induced analgesia are not well studied. Here, we tested the efficacy of BCP in an acute postsurgical pain model and evaluated its effect on the endocannabinoid system. Rats were treated with vehicle and 10, 25, 50, and 75 mg/kg BCP. Paw withdrawal responses to mechanical stimuli were evaluated using an electronic von Frey anesthesiometer. Endocannabinoids, including 2-arachidonoylglycerol (2-AG), were also evaluated in plasma and tissues using high-performance liquid chromatography-tandem mass spectrometry. Monoacylglycerol lipase (MAGL) activity was evaluated in vitro as well as ex vivo. We observed a dose-dependent and time-dependent alleviation of hyperalgesia in incised paws up to 85% of the baseline value at 30 minutes after administration of BCP. We also observed dose-dependent increases in the 2-AG levels of about threefold after administration of BCP as compared with vehicle controls. Incubations of spinal cord tissue homogenates from BCP-treated rats with isotope-labeled 2-arachidonoylglycerol-d8 revealed a reduced formation of the isotope-labeled MAGL product 2-AG-d8 as compared with vehicle controls, indicating MAGL enzyme inhibition. In vitro MAGL enzyme activity assessment using 2-AG as the substrate revealed an IC50 of 15.8 µM for MAGL inhibition using BCP. These data showed that BCP inhibits MAGL activity in vitro and in vivo, causing 2-AG levels to rise. Since the endocannabinoid 2-AG is a CB1 and CB2 receptor agonist, we propose that 2-AG-mediated cannabinoid receptor activation contributes to BCP's mechanism of analgesia. SIGNIFICANCE STATEMENT: ß-Caryophyllene (BCP) consumption is relatively safe and is approved by the Food and Drug Administration as a flavoring agent, which can be used in cosmetic and food additives. BCP is a potent anti-inflammatory agent that showed substantial antihyperalgesic properties in this study of acute pain suggesting that BCP might be an alternative to opioids. This study shows an additive mechanism (monoacylglycerol lipase inhibition) by which BCP might indirectly alter CB1 and CB2 receptor activity and exhibit its pharmacological properties.


Asunto(s)
Analgesia , Ácidos Araquidónicos , Endocannabinoides , Glicéridos , Sesquiterpenos Policíclicos , Animales , Ratas , Endocannabinoides/farmacología , Glicerol , Isótopos , Monoacilglicerol Lipasas , Receptor Cannabinoide CB2
17.
BMC Oral Health ; 24(1): 23, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178129

RESUMEN

BACKGROUND: The purpose of this study is to explore the effects of CB2 on bone regulation during orthodontic tooth movement. METHODS: Thirty male mice were allocated into 2 groups (n = 15 in each group): wild type (WT) group and CB2 knockout (CB2-/-) group. Orthodontic tooth movement (OTM) was induced by applying a nickel-titanium coil spring between the maxillary first molar and the central incisors. There are three subgroups within the WT groups (0, 7 and 14 days) and the CB2-/- groups (0, 7 and 14 days). 0-day groups without force application. Tooth displacement, alveolar bone mass and alveolar bone volume were assessed by micro-CT on 0, 7 and 14 days, and the number of osteoclasts was quantified by tartrate-resistant acid phosphatase (TRAP) staining. Moreover, the expression levels of RANKL and OPG in the compression area were measured histomorphometrically. RESULTS: The WT group exhibited the typical pattern of OTM, characterized by narrowed periodontal space and bone resorption on the compression area. In contrast, the accelerated tooth displacement, increased osteoclast number (P < 0.0001) and bone resorption on the compression area in CB2-/- group. Additionally, the expression of RANKL was significantly upregulated, while OPG showed low levels in the compression area of the CB2 - / - group (P < 0.0001). CONCLUSIONS: CB2 modulated OTM and bone remodeling through regulating osteoclast activity and RANKL/OPG balance.


Asunto(s)
Remodelación Ósea , Resorción Ósea , Receptor Cannabinoide CB2 , Técnicas de Movimiento Dental , Animales , Masculino , Ratones , Remodelación Ósea/fisiología , Osteoclastos , Receptor Cannabinoide CB2/genética
18.
J Chem Inf Model ; 64(3): 761-774, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38215394

RESUMEN

Metal complexes exhibit a diverse range of coordination geometries, representing novel privileged scaffolds with convenient click types of preparation inaccessible for typical carbon-centered organic compounds. Herein, we explored the opportunity to identify biologically active organometallic complexes by reverse docking of a rigid, minimum-size octahedral organoruthenium scaffold against thousands of protein-binding pockets. Interestingly, cannabinoid receptor type 1 (CB1) was identified based on the docking scores and the degree of overlap between the docked organoruthenium scaffold and the hydrophobic scaffold of the cocrystallized ligand. Further structure-based optimization led to the discovery of organoruthenium complexes with nanomolar binding affinities and high selectivity toward CB2. Our work indicates that octahedral organoruthenium scaffolds may be advantageous for targeting the large and hydrophobic binding pockets and that the reverse docking approach may facilitate the discovery of novel privileged scaffolds, such as organometallic complexes, for exploring chemical space in lead discovery.


Asunto(s)
Diseño de Fármacos , Receptor Cannabinoide CB2 , Receptores de Cannabinoides/química , Receptores de Cannabinoides/metabolismo , Unión Proteica , Ligandos , Receptor Cannabinoide CB2/metabolismo , Receptor Cannabinoide CB1/metabolismo
19.
Behav Pharmacol ; 35(1): 26-35, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38085651

RESUMEN

Chronic exposure to cocaine is known to have profound effects on the brain, leading to the dysregulation of inflammatory signalling pathways, the activation of microglia, and the manifestation of cognitive and motivational behavioural impairments. The endocannabinoid system has emerged as a potential mediator of cocaine's deleterious effects. In this study, we sought to investigate the therapeutic potential of the cannabinoid CB2 receptor agonist, JWH-133, in mitigating cocaine-induced inflammation and associated motivational behavioural alterations in an in vivo model. Our research uncovered compelling evidence that JWH-133, a selective CB2 receptor agonist, exerts a significant dampening effect on the reinstatement of cocaine-induced conditioned place preference. This effect was accompanied by notable changes in the neurobiological landscape. Specifically, JWH-133 administration was found to upregulate Δ-FOSB expression in the nucleus accumbens (Nac), elevate CX3CL1 levels in both the ventral tegmental area and prefrontal cortex (PFC), and concurrently reduce IL-1ß expression in the PFC and NAc among cocaine-treated animals. These findings highlight the modulatory role of CB2 cannabinoid receptor activation in altering the reward-seeking behaviour induced by cocaine. Moreover, they shed light on the intricate interplay between the endocannabinoid system and cocaine-induced neurobiological changes, paving the way for potential therapeutic interventions targeting CB2 receptors in the context of cocaine addiction and associated behavioural deficits.


Asunto(s)
Cannabinoides , Cocaína , Ratones , Animales , Endocannabinoides/metabolismo , Receptor Cannabinoide CB2 , Cocaína/farmacología , Cocaína/metabolismo , Cannabinoides/farmacología , Núcleo Accumbens/metabolismo , Agonistas de Receptores de Cannabinoides/farmacología
20.
J Allergy Clin Immunol ; 153(4): 998-1009.e9, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38061443

RESUMEN

BACKGROUND: Oleoylethanolamide (OEA), an endogenously generated cannabinoid-like compound, has been reported to be increased in patients with severe asthma and aspirin-exacerbated respiratory disease. Recruitment of activated eosinophils in the airways is a hallmark of bronchial asthma. OBJECTIVE: We explored the direct contribution of cannabinoid receptor 2 (CB2), a cognate receptor of OEA, which induces eosinophil activation in vitro and in vivo. METHODS: We investigated OEA signaling in the eosinophilic cell line dEol-1 in peripheral blood eosinophils from people with asthma. In order to confirm whether eosinophil activation by OEA is CB2 dependent or not, CB2 small interfering RNA and the CB2 antagonist SR144528 were used. The numbers of airway inflammatory cells and the levels of cytokines were measured in bronchoalveolar lavage fluid, and airway hyperresponsiveness was examined in the BALB/c mice. RESULTS: CB2 expression was increased after OEA treatment in both peripheral blood eosinophils and dEol-1 cells. It was also elevated after OEA-induced recruitment of eosinophils to the lungs in vivo. However, SR144528 treatment reduced the activation of peripheral blood eosinophils from asthmatic patients. Furthermore, CB2 knockdown decreased the activation of dEol-1 cells and the levels of inflammatory and type 2 cytokines. SR144528 treatment alleviated airway hyperresponsiveness and eosinophil recruitment to the lungs in vivo. CONCLUSION: CB2 may contribute to the pathogenesis of eosinophilic asthma. Our results provide new insight into the molecular mechanism of signal transduction by OEA in eosinophilic asthma.


Asunto(s)
Asma , Canfanos , Endocannabinoides , Ácidos Oléicos , Eosinofilia Pulmonar , Pirazoles , Receptor Cannabinoide CB2 , Animales , Humanos , Ratones , Asma/metabolismo , Citocinas , Inflamación/patología , Pulmón/patología , Ácidos Oléicos/metabolismo , Eosinofilia Pulmonar/metabolismo , Receptores de Cannabinoides , Receptor Cannabinoide CB2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA