Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 371
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38674000

RESUMEN

Stimulation of the alpha 7 nicotinic acetylcholine receptor (α7nAChR) has shown beneficial effects in several acute inflammatory disease models. This study aims to examine whether treatment with the selective α7nAChR agonist PHA 568487 can dampen inflammation and thereby improve cardiac function after myocardial infarction in mice. The possible anti-inflammatory properties of α7nAChR agonist PHA 568487 were tested in vivo using the air pouch model and in a permanent occlusion model of acute myocardial infarction in mice. Hematologic parameters and cytokine levels were determined. Infarct size and cardiac function were assessed via echocardiography 24 h and one week after the infarction. Treatment with α7nAChR agonist PHA 568487 decreased 12 (CCL27, CXCL5, IL6, CXCL10, CXCL11, CXCL1, CCL2, MIP1a, MIP2, CXCL16, CXCL12 and CCL25) out of 33 cytokines in the air pouch model of acute inflammation. However, α7nAChR agonist PHA 568487 did not alter infarct size, ejection fraction, cardiac output or stroke volume at 24 h or at 7 days after the myocardial infarction compared with control mice. In conclusion, despite promising immunomodulatory effects in the acute inflammatory air pouch model, α7nAChR agonist PHA 568487 did not affect infarct size or cardiac function after a permanent occlusion model of acute myocardial infarction in mice. Consequently, this study does not strengthen the hypothesis that stimulation of the α7nAChR is a future treatment strategy for acute myocardial infarction when reperfusion is lacking. However, whether other agonists of the α7nAChR can have different effects remains to be investigated.


Asunto(s)
Modelos Animales de Enfermedad , Inflamación , Infarto del Miocardio , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Ratones , Inflamación/tratamiento farmacológico , Inflamación/patología , Inflamación/metabolismo , Masculino , Citocinas/metabolismo , Agonistas Nicotínicos/farmacología , Agonistas Nicotínicos/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Ratones Endogámicos C57BL , Quinuclidinas/farmacología , Quinuclidinas/uso terapéutico , Bencilaminas/farmacología , Bencilaminas/uso terapéutico , Compuestos de Bencilideno/farmacología
2.
J Med Chem ; 67(8): 6344-6364, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38393821

RESUMEN

Enhancing α7 nAChR function serves as a therapeutic strategy for cognitive disorders. Here, we report the synthesis and evaluation of 2-arylamino-thiazole-5-carboxylic acid amide derivatives 6-9 that as positive allosteric modulators (PAMs) activate human α7 nAChR current expressed in Xenopus ooctyes. Among the 4-amino derivatives, a representative atypical type I PAM 6p exhibits potent activation of α7 current with an EC50 of 1.3 µM and the maximum activation effect on the current over 48-fold in the presence of acetylcholine (100 µM). The structure-activity relationship (SAR) analysis reveals that the 4-amino group is crucial for the allosteric activation of α7 currents by compound 6p as the substitution of 4-methyl group results in its conversion to compound 7b (EC50 = 2.1 µM; max effect: 58-fold) characterized as a typical type I PAM. Furthermore, both 6p and 7b are able to rescue auditory gating deficits in mouse schizophrenia-like model of acoustic startle prepulse inhibition.


Asunto(s)
Tiazoles , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Regulación Alostérica/efectos de los fármacos , Relación Estructura-Actividad , Humanos , Tiazoles/farmacología , Tiazoles/química , Tiazoles/síntesis química , Tiazoles/uso terapéutico , Ratones , Xenopus laevis , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacología , Ácidos Carboxílicos/síntesis química , Amidas/química , Amidas/farmacología , Amidas/síntesis química , Masculino , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo
3.
Cell Rep Med ; 4(12): 101338, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38118411

RESUMEN

In this study, Perez-Sanchez et al.1 developed a chemogenetic method aimed at alleviating pain in mouse models while dampening excitability in human sensory neurons. This analgesic effect was attained through the introduction of human α7 nicotinic acetylcholine receptor and glycine receptor pore domain via virus-mediated expression in sensory neurons, forming a chloride channel. The activation of this channel was made possible by specific agonists. This study highlights the potential for treating clinical pain by gene therapy.


Asunto(s)
Manejo del Dolor , Células Receptoras Sensoriales , Ratones , Animales , Humanos , Dolor/tratamiento farmacológico , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/fisiología
4.
Commun Biol ; 6(1): 666, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353597

RESUMEN

Activation of the cholinergic anti-inflammatory pathway (CAP) via vagus nerve stimulation has been shown to improve acute kidney injury in rodent models. While alpha 7 nicotinic acetylcholine receptor (α7nAChR) positive macrophages are thought to play a crucial role in this pathway, their in vivo significance has not been fully understood. In this study, we used macrophage-specific α7nAChR-deficient mice to confirm the direct activation of α7nAChRs in macrophages. Our findings indicate that the administration of GTS-21, an α7nAChR-specific agonist, protects injured kidneys in wild-type mice but not in macrophage-specific α7nAChR-deficient mice. To investigate the signal changes or cell reconstructions induced by α7nAChR activation in splenocytes, we conducted single-cell RNA-sequencing of the spleen. Ligand-receptor analysis revealed an increase in macrophage-macrophage interactions. Using macrophage-derived cell lines, we demonstrated that GTS-21 increases cell contact, and that the contact between macrophages receiving α7nAChR signals leads to a reduction in TNF-α. Our results suggest that α7nAChR signaling increases macrophage-macrophage interactions in the spleen and has a protective effect on the kidneys.


Asunto(s)
Receptores Nicotínicos , Animales , Ratones , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/genética , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Macrófagos/metabolismo , Antiinflamatorios/metabolismo , Comunicación Celular
5.
Pharmacol Res ; 191: 106759, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37023990

RESUMEN

Considerable progress has been made in recent years towards the identification and characterisation of novel subtype-selective modulators of nicotinic acetylcholine receptors (nAChRs). In particular, this has focussed on modulators of α7 nAChRs, a nAChR subtype that has been identified as a target for drug discovery in connection with a range of potential therapeutic applications. This review focusses upon α7-selective modulators that bind to receptor sites other than the extracellular 'orthosteric' agonist binding site for the endogenous agonist acetylcholine (ACh). Such compounds include those that are able to potentiate responses evoked by orthosteric agonists such as ACh (positive allosteric modulators; PAMs) and those that are able to activate α7 nAChRs by direct allosteric activation in the absence of an orthosteric agonist (allosteric agonists or 'ago-PAMs'). There has been considerable debate about the mechanism of action of α7-selective PAMs and allosteric agonists, much of which has centred around identifying the location of their binding sites on α7 nAChRs. Based on a variety of experimental evidence, including recent structural data, there is now clear evidence indicating that at least some α7-selective PAMs bind to an inter-subunit site located in the transmembrane domain. In contrast, there are differing hypotheses about the site or sites at which allosteric agonists bind to α7 nAChRs. It will be argued that the available evidence supports the conclusion that direct allosteric activation by allosteric agonists/ago-PAMs occurs via the same inter-subunit transmembrane site that has been identified for several α7-selective PAMs.


Asunto(s)
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa 7 , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Regulación Alostérica , Sitios de Unión , Receptores Nicotínicos/metabolismo , Acetilcolina/farmacología
6.
Exp Gerontol ; 175: 112139, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36898594

RESUMEN

Aging is an important risk factor for neurodegenerative diseases. The activation of α7 nicotinic acetylcholine receptor (α7nAChR) is involved in inflammation and cognition, but the specific role it plays in aging remains unknown. This study aimed to investigate the anti-aging effect of the activation of α7nAChR on aging rats and BV2 cells induced by D-galactose, as well as its potential mechanism. D-galactose induced an increase in the SA-ß-Gal positive cells, expression of p16 and p21 in vivo and in vitro. α7nAChR selective agonist PNU282987 decreased levels of pro-inflammatory factors, MDA, and Aß, enhanced SOD activity and levels of anti-inflammatory factor (IL10) in vivo. PNU282987 enhanced the expression of Arg1, decreased the expression of iNOS, IL1ß and TNFα in vitro. PNU282987 upregulated the levels of α7nAChR, Nrf2 and HO-1 in vivo and in vitro. The results of Morris water maze and novel object recognition tests showed that PNU282987 improved cognitive impairment in aging rats. Furthermore, α7nAChR selective inhibitor methyllycaconitine (MLA) results were opposite with PNU282987. PNU282987 improves cognitive impairment through inhibiting oxidative stress and neuroinflammation in D-galactose induced aging via regulating the α7nAChR/Nrf2/HO-1 signaling pathway. Therefore, targeting the α7nAChR may be a viable therapeutic approach for anti-inflammaging and neurodegenerative diseases.


Asunto(s)
Disfunción Cognitiva , Receptor Nicotínico de Acetilcolina alfa 7 , Ratas , Animales , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Galactosa/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedades Neuroinflamatorias , Estrés Oxidativo , Envejecimiento , Transducción de Señal , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/inducido químicamente
7.
Pharmacol Res ; 190: 106736, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36940890

RESUMEN

We discuss models for the activation and desensitization of α7 nicotinic acetylcholine receptors (nAChRs) and the effects of efficacious type II positive allosteric modulators (PAMs) that destabilize α7 desensitized states. Type II PAMs such as PNU-120596 can be used to distinguish inactive compounds from silent agonists, compounds that produce little or no channel activation but stabilize the non-conducting conformations associated with desensitization. We discuss the effects of α7 nAChRs in cells of the immune system and their roles in modulating inflammation and pain through what has come to be known as the cholinergic anti-inflammatory system (CAS). Cells controlling CAS do not generate ion channel currents but rather respond to α7 drugs by modulating intracellular signaling pathways analogous to the effects of metabotropic receptors. Metabotropic signaling by α7 receptors appears to be mediated by receptors in nonconducting conformations and can be accomplished by silent agonists. We discuss electrophysiological structure-activity relationships for α7 silent agonists and their use in cell-based and in vivo assays for CAS regulation. We discuss the strongly desensitizing partial agonist GTS-21 and its effectiveness in modulation of CAS. We also review the properties of the silent agonist NS6740, which is remarkably effective at maintaining α7 receptors in PAM-sensitive desensitized states. Most silent agonists bind to sites overlapping those for orthosteric agonists, but some appear to bind to allosteric sites. Finally, we discuss α9* nAChRs and their potential role in CAS, and ligands that will be useful in defining and distinguishing the specific roles of α7 and α9 in CAS.


Asunto(s)
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa 7 , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Regulación Alostérica , Receptores Nicotínicos/metabolismo , Relación Estructura-Actividad , Antiinflamatorios
8.
J Psychopharmacol ; 37(4): 381-395, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36927273

RESUMEN

BACKGROUND: Cognitive operations including pre-attentive sensory processing are markedly impaired in patients with schizophrenia (SCZ) but evidence significant interindividual heterogeneity, which moderates treatment response with nicotinic acetylcholine receptor (nAChR) agonists. Previous studies in healthy volunteers have shown baseline-dependency effects of the α7 nAChR agonist cytidine 5'-diphosphocholine (CDP-choline) administered alone and in combination with a nicotinic allosteric modulator (galantamine) on auditory deviance detection measured with the mismatch negativity (MMN) event-related potential (ERP). AIM: The objective of this pilot study was to assess the acute effect of this combined α7 nAChR-targeted treatment (CDP-choline/galantamine) on speech MMN in patients with SCZ (N = 24) stratified by baseline MMN responses into low, medium, and high baseline auditory deviance detection subgroups. METHODS: Patients with a stable diagnosis of SCZ attended two randomized, double-blind, placebo-controlled and counter-balanced testing sessions where they received a placebo or a CDP-choline (500 mg) and galantamine (16 mg) treatment. MMN ERPs were recorded during the presentation of a fast multi-feature speech MMN paradigm including five speech deviants. Clinical measures were acquired before and after treatment administration. RESULTS: While no main treatment effect was observed, CDP-choline/galantamine significantly increased MMN amplitudes to frequency, duration, and vowel speech deviants in low group individuals. Individuals with higher positive and negative symptom scale negative, general, and total scores expressed the greatest MMN amplitude improvement following CDP-choline/galantamine. CONCLUSIONS: These baseline-dependent nicotinic effects on early auditory information processing warrant different dosage and repeated administration assessments in patients with low baseline deviance detection levels.


Asunto(s)
Nootrópicos , Esquizofrenia , Humanos , Galantamina/uso terapéutico , Citidina Difosfato Colina/farmacología , Esquizofrenia/tratamiento farmacológico , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Proyectos Piloto , Nootrópicos/farmacología , Agonistas Nicotínicos/farmacología
9.
Metab Brain Dis ; 38(4): 1249-1259, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36662413

RESUMEN

Vagus nerve stimulation through the action of acetylcholine can modulate inflammatory responses and metabolism. α7 Nicotinic Acetylcholine Receptor (α7nAChR) is a key component in the biological functions of acetylcholine. To further explore the health benefits of vagus nerve stimulation, this study aimed to investigate whether α7nAChR agonists offer beneficial effects against poststroke inflammatory and metabolic changes and to identify the underlying mechanisms in a rat model of stroke established by permanent cerebral ischemia. We found evidence showing that pretreatment with α7nAChR agonist, GTS-21, improved poststroke brain infarction size, impaired motor coordination, brain apoptotic caspase 3 activation, dysregulated glucose metabolism, and glutathione reduction. In ischemic cortical tissues and gastrocnemius muscles with GTS-21 pretreatment, macrophages/microglia M1 polarization-associated Tumor Necrosis Factor-α (TNF-α) mRNA, Cluster of Differentiation 68 (CD68) protein, and Inducible Nitric Oxide Synthase (iNOS) protein expression were reduced, while expression of anti-inflammatory cytokine IL-4 mRNA, and levels of M2 polarization-associated CD163 mRNA and protein were increased. In the gastrocnemius muscles, stroke rats showed a reduction in both glutathione content and Akt Serine 473 phosphorylation, as well as an elevation in Insulin Receptor Substrate-1 Serine 307 phosphorylation and Dynamin-Related Protein 1 Serine 616 phosphorylation. GTS-21 reversed poststroke changes in the gastrocnemius muscles. Overall, our findings, provide further evidence supporting the neuroprotective benefits of α7nAChR agonists, and indicate that they may potentially exert anti-inflammatory and metabolic effects peripherally in the skeletal muscle in an acute ischemic stroke animal model.


Asunto(s)
Lesiones Encefálicas , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratas , Animales , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Acetilcolina , Glucosa
10.
Exp Neurol ; 359: 114271, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370840

RESUMEN

Cholinergic system dysfunction has been considered as a critical feature of neurodegenerative progression in Alzheimer's disease (AD). The α7 nicotinic acetylcholine receptors (α7-nAChRs) are widely expressed in the hippocampus cortex and play an important role in memory formation, considered as potential therapeutic agents targets. However, underlying mechanisms have not been fully elucidated. Here, we combine behavioral, molecular biological methods with in vitro slice and in vivo multichannel electrophysiological recording techniques to investigate the molecular, cellular synaptic and neuronal mechanisms of activating α7-nAChR by PHA-543613 (a selective α7-nAChR agonist), which influences the impaired cognitive function using presenilin 1 (PS1) and presenilin 2 (PS2) conditional double knockout (cDKO) mice. Our results demonstrated that PHA-543613 treatment significantly improved the impaired hippocampus-related memory via recovering the reduced the hippocampal synaptic protein levels of α7-nAChR, NMADAR and AMPAR, thereby restoring the impaired post-tetanic potentiation (PTP), long-term potentiation (LTP), activation of molecular signaling pathway for neuronal protection, theta power and strength of theta-gamma phase-amplitude coupling (PAC) at hippocampus in 6-month-old cDKO mice. For the first time, we systematically reveal the mechanisms by which PHA-543613 improves memory deficits at different levels. Therefore, our findings may be significant for the development of therapeutic strategies for AD.


Asunto(s)
Enfermedad de Alzheimer , Receptor Nicotínico de Acetilcolina alfa 7 , Ratones , Animales , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-2/genética , Presenilina-2/metabolismo , Ratones Noqueados , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Hipocampo/metabolismo , Enfermedad de Alzheimer/metabolismo
11.
J Pharmacol Exp Ther ; 383(2): 157-171, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36279397

RESUMEN

A series of dipicolyl amine pyrimidines (DPPs) were previously identified as potential α7 agonists by means of a calcium influx assay in the presence of the positive allosteric modulator (PAM) 1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxazol-3-yl)-urea (PNU-120596). The compounds lack the quaternary or strongly basic nitrogens of typical nicotinic agonists. Although differing in structure from typical nicotinic agonists, based on crystallographic data with the acetylcholine binding protein, they appeared to engage the site shared by such typical orthosteric agonists. Using oocytes expressing human α7 receptors, we found that the DPPs were efficacious activators of the receptor, with currents showing rapid desensitization characteristic of α7 receptors. However, we note that the rate of recovery from this desensitization depends strongly on structural features within the DPP family. Although the activation of receptors by DPP was blocked by the competitive antagonist methyllycaconitine (MLA), MLA had no effect on the DPP-induced desensitization, suggesting multiple modes of DPP binding. As expected, the desensitized conformational states could be reactivated by PAMs. Mutants made insensitive to acetylcholine by the C190A mutation in the agonist binding site were weakly activated by DPPs. The observation that activation of C190A mutants by the DPP compounds was resistant to the allosteric antagonist (-)cis-trans-4-(2,3,5,6-tetramethylphenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide supports the hypothesis that the activity of these noncanonical agonists in the orthosteric binding sites was not entirely dependent on the classic epitopes controlling activation by typical agonists and that perhaps they may access alternative modes for promoting the conformational changes associated with activation and desensitization. SIGNIFICANCE STATEMENT: This study reports a family of nicotinic acetylcholine receptor agonists that break the rules about what the structure of a nicotinic acetylcholine receptor agonist should be. It shows that the activity of these noncanonical agonists in the orthosteric binding sites is not dependent on the classical epitopes controlling activation by typical agonists and that through different binding poses, they promote unique conformational changes associated with receptor activation and desensitization.


Asunto(s)
Quinolinas , Receptores Nicotínicos , Animales , Humanos , Agonistas Nicotínicos/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Acetilcolina/farmacología , Regulación Alostérica , Calcio/metabolismo , Xenopus laevis , Quinolinas/farmacología , Sulfonamidas/farmacología , Pirimidinas , Epítopos , Receptores Nicotínicos/metabolismo
12.
BMC Pulm Med ; 22(1): 367, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36167538

RESUMEN

BACKGROUND: The study aimed to determine whether or notα7 nicotinic acetylcholine receptors (α7nAChR) induce anti-inflammatory effects directly in the lung or through the spleen pathway in a sterile model of lung injury by saline lavage. METHODS: Male Sprague Dawley rats were divided into seven groups; Sham, splenectomy (SPX), saline lavage (LAV), LAV treated with α7nAChR agonist nicotine (LAV + NIC), and LAV treated with NIC and a selective α7nAChR antagonist MLA (LAV+MLA+NIC), LAV and splenectomy (LAV+SPX), and LAV+SPX treated with nicotine (LAV+SPX+NIC). Tracheostomy and catheterization of the femoral artery were performed under deep anesthesia. Animals were subjected to volume-controlled ventilation and lung injury by 10 repeated saline lavages. Splenectomy was achieved one week before the induction of lung injury. The recovery phase lasted for 3 h, and drugs were injected 1 h after the last lavage. RESULTS: Mean arterial blood pressure (MBP), heart rate (HR), PaO2, PaO2/FiO2 ratio, and pH decreased, whereas, maximal inspiratory (MIP) and expiratory (MEP) pressures, and PaCO2 increased 1 h after the saline lavage. Nicotine corrected entirely all the above parameters in the LAV + NIC group. MLA or SPX prevented the effects of nicotine on the above parameters, except that MLA had no extra effect on MIP or MEP. In addition, nicotine improved lung compliance in the LAV + NIC and LAV + SPX + NIC groups, though it was inhibited by MLA in the LAV + MLA + NIC group. The increases of plasma and lung tissue malondialdehyde (MDA) in the LAV group were diminished by nicotine, whereas, MLA and SPX prevented these reductions. Besides, nicotine could reduce plasma MDA in the LAV + SPX + NIC group. Total BAL cell count, protein BAL/protein plasma ratio, and lung histological scores were attenuated by nicotine in the LAV + NIC group, whereas, MLA reversed the mentioned alterations in the LAV + MLA + NIC group. However, splenectomy could not stop the decreasing effect of nicotine on the total BAL cell in the LAV + SPX + NIC group. CONCLUSIONS: In this study, we indicated that α7nAChR and spleen play roles in cholinergic anti-inflammatory pathways in saline lavage-induced lung injury. However, our results are in favor of at least some direct effects of α 7nAChR in the lung.


Asunto(s)
Lesión Pulmonar , Receptores Nicotínicos , Animales , Antiinflamatorios , Masculino , Malondialdehído , Nicotina/farmacología , Ratas , Ratas Sprague-Dawley , Bazo , Irrigación Terapéutica , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
13.
Pharmacol Biochem Behav ; 219: 173444, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35944617

RESUMEN

Obesity is a prevalent disease, but effective treatments remain limited. Agonists of the alpha-7 nicotinic acetylcholine receptor (α7nAChR) promote negative energy balance in mice, but these effects are not well-studied in rats. We tested the hypothesis that the α7nAChR agonist GTS-21 would decrease food intake and body weight in adult male Sprague Dawley rats. Contrary to our hypothesis, acute systemic administration of GTS-21 produced no significant effects on chow or high-fat diet (HFD) intake. Acute intracerebroventricular (ICV) GTS-21 also had no impact on chow intake, and actually increased body weight at the highest dose tested. Previous studies suggest that GTS-21 engages the food intake-suppressive glucagon-like peptide-1 (GLP-1) system in mice. As there are known species differences in GLP-1 physiology between mice and rats, we tested the ability of GTS-21 to elicit GLP-1 secretion in rats. Our results showed that plasma levels of total GLP-1 in rats were not significantly altered by peripheral GTS-21 injection. These results represent an advance in understanding how α7nAChR activation impacts energy balance control in rodents and suggest that there may be important differences between rats and mice in the ability of GTS-21/α7nAChR activation to increase secretion of GLP-1.


Asunto(s)
Péptido 1 Similar al Glucagón , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Compuestos de Bencilideno , Peso Corporal , Ingestión de Alimentos , Masculino , Ratones , Piridinas , Ratas , Ratas Sprague-Dawley , Receptor Nicotínico de Acetilcolina alfa 7/agonistas
14.
Mol Med ; 28(1): 59, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35659178

RESUMEN

BACKGROUND AND AIMS: Cholinergic output, which could modulate innate immune responses through stimulation of α7 nicotinic acetylcholine receptor (α7nAChR), might be a target to minimize tissue damage in autoimmune disease. GTS-21, a selective α7nAChR agonist, has previously demonstrated to inhibit synovium inflammation in rheumatoid arthritis. In this study, we investigated the effect of GTS-21 on dextran sulfate sodium (DSS)-induced colitis model and its potential mechanism. METHODS: Male BABL/c mice (n = 32) were randomly divided into four groups: normal control group, DSS-induced colitis group, GTS-21 treatment with or without α7nAChR antagonist α-BGT treatment group. Disease activity index (DAI), histological activity index (HAI) and colonic macroscopic damage were evaluated. Fluorescein isothiocyanate (FITC)-dextran assay was applied to measure intestinal permeability. The expressions of tight junction (TJ) proteins and NF-κB associated proteins were detected by Western blot. RESULTS: GTS-21 could decrease DAI scores, HAI scores, intestinal permeability and reduce the intestinal bacterial translocation in DSS-induced colitis group, whereas α7nAChR antagonist α-BGT could impair this protective influence. The expressions of TJ proteins were increased with administration of GTS-21 both in vivo and in vitro. Furthermore, GTS-21 also inhibited the NF-қB activation in intestinal epithelial cells and colitis model, while α-BGT reversed the inhibitory effect. CONCLUSION: The α7nAChR agonist GTS-21 attenuated DSS-induced colitis through increasing expressions of TJ proteins in colon tissues and improved intestinal barrier function, which might be due to  modulating NF-қB activation in intestinal epithelial cells.


Asunto(s)
Colitis , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Compuestos de Bencilideno/farmacología , Compuestos de Bencilideno/uso terapéutico , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colon , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Piridinas , Proteínas de Uniones Estrechas , Receptor Nicotínico de Acetilcolina alfa 7/agonistas
15.
Bosn J Basic Med Sci ; 22(6): 882-893, 2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-35535600

RESUMEN

The ameliorative effects of α7 nicotinic acetylcholine receptor (α7nAChR) agonists have been demonstrated in acute kidney injury (AKI) caused by multiple stimulations. However, the ameliorative effect of α7nAChR on sepsis-induced acute kidney injury (SAKI) in the cecal ligation and puncture (CLP) model is unclear. Previous studies have demonstrated that α7nAChR is highly expressed on the surface of CD4+CD25+ regulatory T cells (Tregs). However, the role of Tregs in SAKI is unclear. We hypothesized that Tregs might play a role in the ameliorative effect of α7nAChR on SAKI. Hence, in this study, we determined the effects of PNU-282987 (a selective α7nAchR agonist) on SAKI and evaluated whether PNU-282987 would attenuate SAKI via regulating Tregs. Our study showed that immediate administration of PNU-282987 after CLP surgery in rats improved renal function, reduced levels of systemic inflammatory factors (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), etc.), inflammatory cell infiltration and tubular apoptosis in renal tissues, and increased forkhead/winged helix transcription factor p3 (Foxp3) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) expression indicating activated Tregs. Moreover, in in vitro experiments, isolated Tregs co-cultured with PNU-282987 also displayed enhanced expression of CTLA-4 and Foxp3. Furthermore, Tregs were co-cultured with PNU-282987 for 24 hours and then reinfused into rats through the tail vein immediately after CLP surgery, and a significant renal protective effect was observed 24 hours postoperatively. These results demonstrate that PNU-282987 exerts its renal protective effects on SAKI through activation of Tregs.


Asunto(s)
Lesión Renal Aguda , Sepsis , Ratas , Animales , Linfocitos T Reguladores/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Antígeno CTLA-4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/etiología , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Winged-Helix/metabolismo
16.
Pharmacol Biochem Behav ; 217: 173402, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35533773

RESUMEN

Central insulin resistance is considered as one of the pathological hallmarks of Alzheimer's disease (AD), similar to formation of amyloid plaques and neurofibrillary tangles (NFT). Activation of α7nAChR by GTS-21 has been indicated to reverse peripheral insulin resistance and exert neuroprotection. Therefore, the aim of the present study was to determine the effect of α7nAChR agonist (GTS-21) on intracerebroventricular administration of streptozotocin (ICV-STZ)-induced oxidative stress, neuroinflammation, cholinergic dysfunction, central insulin resistance and cognitive deficits. GTS-21 (1, 4 and 8 mg/kg; i.p.) was administered for 21 days following bilateral ICV-STZ administration (3 mg/kg) in C57BL/6 mice. Neurobehavioral assessments were performed using Morris water maze (MWM) and novel object recognition (NOR). Inflammatory markers (TNF-α, IL-6 and IL-1ß) were determined using ELISA. Oxido-nitrosative stress (GSH, MDA and nitrite) and cholinergic activity (acetylcholine esterase and choline acetyltransferase) were estimated in the cortex and hippocampus through biochemical methods. Gene expression of insulin receptor (IR), IRS1, IRS2, BACE1, APP, PI3-K, AKT and GSK3ß were determined by q-RT-PCR. ICV-STZ administration induced memory impairment, increased oxidative stress and neuroinflammation, and caused cholinergic dysfunction. Our results demonstrated that activation of α7nAChR by GTS-21 treatment improved memory in MWM and NOR test. Moreover, GTS-21 treatment significantly decreased oxido-nitrosative stress, inflammatory markers and cholinergic dysfunction in cortex and hippocampus. Finally, GTS-21 treatment restored ICV-STZ induced downregulation of IR, IRS1, IRS2, PI3-k, Akt and attenuated GSK3ß, APP and BACE-1 indicating improved insulin signalling. Therefore, activation of α7nAChR through GTS-21 might be the potential target for the amelioration of central insulin resistance induced AD.


Asunto(s)
Enfermedad de Alzheimer , Resistencia a la Insulina , Receptor Nicotínico de Acetilcolina alfa 7 , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/prevención & control , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas , Compuestos de Bencilideno/farmacología , Colinérgicos/farmacología , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piridinas/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
17.
Biochem Biophys Res Commun ; 613: 174-179, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35597124

RESUMEN

The spleen is required for the vagal cholinergic anti-inflammatory activity to maintain systemic immune homeostasis, but the underlying mechanism of this function is not fully understood yet. We hypothesized that vagus nerve mediates alpha 7 nicotinic acetylcholine receptor (α7nAChR) expression in monocytes, an essential regulator of cholinergic anti-inflammatory activity, and the spleen is essential site for this process. To verify this hypothesis, mice were subjected to splenectomy or celiac vagotomy. The level of α7nAChR expression in circulating monocytes was analyzed by real-time PCR. Impact of α7nAChR agonist PNU282987 on LPS-evoked release of TNF-α and IL-1ß from circulating monocytes was assessed by ELISA. The effect of norepinephrine (NE), acetylcholine (ACh) and neuregulin-1 (NRG-1) on α7nAChR expression was detected by real-time PCR. We found that splenectomy or celiac vagotomy abrogated α7nAChR expression in circulating monocytes. LPS-induced release of TNF-α and IL-1ß from these monocytes was not alleviated significantly by PNU282987 as compared with that of sham mice. NE and ACh addition fails to stimulate α7nAChR expression, but, NRG-1 treatment can significantly induce α7nAChR expression in these monocytes compared with untreated cells in vitro. Overall, our results reveal that celiac vagus nerve mediates α7nAChR expression in monocytes, and the spleen is indispensable site for this process.


Asunto(s)
Monocitos , Bazo , Nervio Vago , Receptor Nicotínico de Acetilcolina alfa 7 , Acetilcolina/metabolismo , Animales , Lipopolisacáridos/farmacología , Ratones , Monocitos/metabolismo , Receptores Colinérgicos/metabolismo , Bazo/citología , Bazo/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Nervio Vago/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/biosíntesis , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
18.
Mar Drugs ; 20(3)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35323499

RESUMEN

The α7 nicotinic acetylcholine receptor (nAChR) is widely distributed in the central and peripheral nervous systems and is closely related to a variety of nervous system diseases and inflammatory responses. The α7 nAChR subtype plays a vital role in the cholinergic anti-inflammatory pathway. In vivo, ACh released from nerve endings stimulates α7 nAChR on macrophages to regulate the NF-κB and JAK2/STAT3 signaling pathways, thereby inhibiting the production and release of downstream proinflammatory cytokines and chemokines. Despite a considerable level of recent research on α7 nAChR-mediated immune responses, much is still unknown. In this study, we used an agonist (PNU282987) and antagonists (MLA and α-conotoxin [A10L]PnIA) of α7 nAChR as pharmacological tools to identify the molecular mechanism of the α7 nAChR-mediated cholinergic anti-inflammatory pathway in RAW264.7 mouse macrophages. The results of quantitative PCR, ELISAs, and transcriptome analysis were combined to clarify the function of α7 nAChR regulation in the inflammatory response. Our findings indicate that the agonist PNU282987 significantly reduced the expression of the IL-6 gene and protein in inflammatory macrophages to attenuate the inflammatory response, but the antagonists MLA and α-conotoxin [A10L]PnIA had the opposite effects. Neither the agonist nor antagonists of α7 nAChR changed the expression level of the α7 nAChR subunit gene; they only regulated receptor function. This study provides a reference and scientific basis for the discovery of novel α7 nAChR agonists and their anti-inflammatory applications in the future.


Asunto(s)
Aconitina/análogos & derivados , Antiinflamatorios/farmacología , Benzamidas/farmacología , Compuestos Bicíclicos con Puentes/farmacología , Conotoxinas/farmacología , Agonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/antagonistas & inhibidores , Aconitina/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Ratones , Células RAW 264.7 , Receptor Nicotínico de Acetilcolina alfa 7/genética
19.
Diabetes Obes Metab ; 24(7): 1255-1266, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35293666

RESUMEN

AIM: To establish if alpha-7 nicotinic acetylcholine receptor (α7nAChR) agonist GTS-21 exerts a blood glucose-lowering action in db/db mice, and to test if this action requires coordinate α7nAChR and GLP-1 receptor (GLP-1R) stimulation by GTS-21 and endogenous GLP-1, respectively. MATERIALS AND METHODS: Blood glucose levels were measured during an oral glucose tolerance test (OGTT) using db/db mice administered intraperitoneal GTS-21. Plasma GLP-1, peptide tyrosine tyrosine 1-36 (PYY1-36), glucose-dependent insulinotropic peptide (GIP), glucagon, and insulin levels were measured by ELISA. A GLP-1R-mediated action of GTS-21 that is secondary to α7nAChR stimulation was evaluated using α7nAChR and GLP-1R knockout (KO) mice, or by co-administration of GTS-21 with the dipeptidyl peptidase-4 inhibitor, sitagliptin, or the GLP-1R antagonist, exendin (9-39). Insulin sensitivity was assessed in an insulin tolerance test. RESULTS: Single or multiple dose GTS-21 (0.5-8.0 mg/kg) acted in a dose-dependent manner to lower levels of blood glucose in the OGTT using 10-14 week-old male and female db/db mice. This action of GTS-21 was reproduced by the α7nAChR agonist, PNU-282987, was enhanced by sitagliptin, was counteracted by exendin (9-39), and was absent in α7nAChR and GLP-1R KO mice. Plasma GLP-1, PYY1-36, GIP, glucagon, and insulin levels increased in response to GTS-21, but insulin sensitivity, body weight, and food intake were unchanged. CONCLUSIONS: α7nAChR agonists improve oral glucose tolerance in db/db mice. This action is contingent to coordinate α7nAChR and GLP-1R stimulation. Thus α7nAChR agonists administered in combination with sitagliptin might serve as a new treatment for type 2 diabetes.


Asunto(s)
Compuestos de Bencilideno , Glucemia , Resistencia a la Insulina , Agonistas Nicotínicos , Piridinas , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Compuestos de Bencilideno/farmacología , Glucemia/análisis , Glucemia/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Femenino , Polipéptido Inhibidor Gástrico/metabolismo , Glucagón/metabolismo , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Prueba de Tolerancia a la Glucosa , Humanos , Incretinas/uso terapéutico , Insulina/uso terapéutico , Masculino , Ratones , Ratones Noqueados , Agonistas Nicotínicos/farmacología , Piridinas/farmacología , Fosfato de Sitagliptina/uso terapéutico , Tirosina/uso terapéutico , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
20.
Biochem Genet ; 60(4): 1333-1345, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34988776

RESUMEN

Activation of α-7 nicotinic acetylcholine receptor (α7nAChR) receptor might induce cardiac inflammation, cardiac remodeling, and dysfunction. In this regard, this study aims to clarify the role and mechanism of α7nAChR in the process of cardiac inflammation and damage. Normal male C57BL/6J and NLRP3-knockout mice were used to evaluate the effect of PHA-543613, a selective agonist of α7nAChR, on cardiac inflammation and possible involvement of NLRP3/Caspase-1/IL-18 using western blotting and ELISA. Activation of α7nAChR using PHA-543613 (NE), at the doses of 0.5 mg/kg and 1 mg/kg, induced cardiac inflammation. In addition, both in vivo and in vitro studies showed higher expression of NLRP3 and higher activation of Caspase-1 and IL-18 after treating animals with NE. On the other hand, we did not observe any significant changes in inflammatory cytokines and cardiac inflammation after administration of NE in NLRP3-knockout mice. It could be concluded that blocking the NLRP3/Caspase-1/IL-18 pathway can simultaneously inhibit the inflammatory response mediated by α7nAChR and it would a novel target for inhibiting cardiac inflammation and remodeling.


Asunto(s)
Caspasa 1 , Corazón , Interleucina-18 , Proteína con Dominio Pirina 3 de la Familia NLR , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Caspasa 1/genética , Caspasa 1/metabolismo , Corazón/fisiopatología , Inflamación/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA