Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.264
Filtrar
1.
J Radiat Res ; 65(4): 474-481, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38950346

RESUMEN

Laryngeal squamous cell carcinoma (LSCC) is one of the most aggressive cancers that affect the head and neck region. Recent researches have confirmed that long non-coding RNAs (lncRNAs) present an emerging role in diversiform diseases including cancers. Prostate cancer-associated ncRNA transcript 6 (PCAT6) is an oncogene in lung cancer, cervical cancer, colon cancer and gastric cancer, but its role in LSCC is still unknown. In the current study, we attempted to figure out the role of PCAT6 in LSCC. RT-qPCR was to analyze PCAT6 expression in LSCC cells. Functional assays were to uncover the role of PCAT6 in LSCC. Mechanism assays were to explore the regulatory mechanism behind PCAT6 in LSCC. PCAT6 exhibited higher expression in LSCC cells and PCAT6 strengthened cell proliferation and inhibited cell apoptosis. Furthermore, lncRNA PCAT6 modulated notch receptor 3 expression and activated NOTCH signaling pathway via serving as a sponge for miR-4731-5p. Taken together, lncRNA PCAT6 was identified as an oncogene in LSCC, which revealed that PCAT6 might be used as potential therapeutic target for LSCC.


Asunto(s)
Apoptosis , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Laríngeas , MicroARNs , ARN Largo no Codificante , Receptor Notch3 , Transducción de Señal , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/patología , Neoplasias Laríngeas/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Línea Celular Tumoral , Receptor Notch3/metabolismo , Receptor Notch3/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Secuencia de Bases
2.
J Am Heart Assoc ; 13(14): e033232, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38958128

RESUMEN

BACKGROUND: Thoracic aortic aneurysm (TAA) is associated with significant morbidity and mortality. Although individuals with family histories of TAA often undergo clinical molecular genetic testing, adults with nonsyndromic TAA are not typically evaluated for genetic causes. We sought to understand the genetic contribution of both germline and somatic mosaic variants in a cohort of adult individuals with nonsyndromic TAA at a single center. METHODS AND RESULTS: One hundred eighty-one consecutive patients <60 years who presented with nonsyndromic TAA at the Massachusetts General Hospital underwent deep (>500×) targeted sequencing across 114 candidate genes associated with TAA and its related functional pathways. Samples from 354 age- and sex-matched individuals without TAA were also sequenced, with a 2:1 matching. We found significant enrichments for germline (odds ratio [OR], 2.44, P=4.6×10-6 [95% CI, 1.67-3.58]) and also somatic mosaic variants (OR, 4.71, P=0.026 [95% CI, 1.20-18.43]) between individuals with and without TAA. Likely genetic causes were present in 24% with nonsyndromic TAA, of which 21% arose from germline variants and 3% from somatic mosaic alleles. The 3 most frequently mutated genes in our cohort were FLNA (encoding Filamin A), NOTCH3 (encoding Notch receptor 3), and FBN1 (encoding Fibrillin-1). There was increased frequency of both missense and loss of function variants in TAA individuals. CONCLUSIONS: Likely contributory dominant acting genetic variants were found in almost one quarter of nonsyndromic adults with TAA. Our findings suggest a more extensive genetic architecture to TAA than expected and that genetic testing may improve the care and clinical management of adults with nonsyndromic TAA.


Asunto(s)
Aneurisma de la Aorta Torácica , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Mosaicismo , Humanos , Masculino , Femenino , Aneurisma de la Aorta Torácica/genética , Aneurisma de la Aorta Torácica/diagnóstico , Adulto , Persona de Mediana Edad , Receptor Notch3/genética , Fibrilina-1/genética , Estudios de Casos y Controles , Fenotipo , Filaminas/genética , Factores de Riesgo , Secuenciación de Nucleótidos de Alto Rendimiento , Adipoquinas
3.
J Alzheimers Dis ; 100(4): 1299-1314, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39031358

RESUMEN

Background: Cerebral autosomal-dominant arteriopathy with subcortical infarction and leukoencephalopathy (CADASIL) is an inherited small-vessel disease that affects the white matter of the brain. Recent studies have confirmed that the deposition of NOTCH3ECD is the main pathological basis of CADASIL; however, whether different mutations present the same pathological characteristics remains to be further studied. Some studies have found that mitochondrial dysfunction is related to CADASIL; however, the specific effects of NOTCH3ECD on mitochondrial remain to be determined. Objective: We aimed to explore the role of mitochondrial dysfunction in CADASIL. Methods: We established transgenic human embryonic kidney-293T cell models (involving alterations in cysteine and non-cysteine residues) via lentiviral transfection. Mitochondrial function and structure were assessed using flow cytometry and transmission electron microscopy, respectively. Mitophagy was assessed using western blotting and immunofluorescence. Results: We demonstrated that NOTCH3ECD deposition affects mitochondrial morphology and function, and that its protein levels are significantly correlated with mitochondrial quality and can directly bind to mitochondria. Moreover, NOTCH3ECD deposition promoted the induction of autophagy and mitophagy. However, these processes were impaired, leading to abnormal mitochondrial accumulation. Conclusions: This study revealed a common pathological feature of NOTCH3ECD deposition caused by different NOTCH3 mutations and provided new insights into the role of NOTCH3ECD in mitochondrial dysfunction and mitophagy.


Asunto(s)
CADASIL , Mitocondrias , Mitofagia , Receptor Notch3 , Humanos , CADASIL/genética , CADASIL/patología , CADASIL/metabolismo , Receptor Notch3/genética , Receptor Notch3/metabolismo , Mitofagia/fisiología , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/ultraestructura , Células HEK293 , Mutación , Autofagia/fisiología
4.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892440

RESUMEN

NOTCH3 receptor signaling has been linked to the regulation of smooth muscle cell proliferation and the maintenance of smooth muscle cells in an undifferentiated state. Pulmonary arterial hypertension (World Health Organization Group 1 idiopathic disease: PAH) is a fatal disease characterized clinically by elevated pulmonary vascular resistance caused by extensive vascular smooth muscle cell proliferation, perivascular inflammation, and asymmetric neointimal hyperplasia in precapillary pulmonary arteries. In this review, a detailed overview of the specific role of NOTCH3 signaling in PAH, including its mechanisms of activation by a select ligand, downstream signaling effectors, and physiologic effects within the pulmonary vascular tree, is provided. Animal models showing the importance of the NOTCH3 pathway in clinical PAH will be discussed. New drugs and biologics that inhibit NOTCH3 signaling and reverse this deadly disease are highlighted.


Asunto(s)
Hipertensión Arterial Pulmonar , Receptor Notch3 , Transducción de Señal , Humanos , Receptor Notch3/metabolismo , Receptor Notch3/genética , Animales , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología
5.
Mol Biol Rep ; 51(1): 714, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824264

RESUMEN

BACKGROUND: NOTCH3 variants are known to be linked to cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). However, some null NOTCH3 variants with homozygous inheritance cause neurological symptoms distinct from CADASIL. The aim of this study was to expand the clinical spectrum of this distinct condition and provide further evidence of its autosomal recessive inheritance. METHODS AND RESULTS: Whole exome sequencing (WES) was performed on a proband who exhibited livedo racemosa, ataxia, cognitive decline, seizures, and MRI white matter abnormalities without anterior temporal pole lesions. Segregation analysis was conducted with Sanger sequencing. WES of the proband identified a novel homozygous NOTCH3 null variant (c.2984delC). The consanguineous parents were confirmed as heterozygous variant carriers. In addition, three heterozygous NOTCH3 null variants were reported as incidental findings in three unrelated cases analyzed in our center. CONCLUSION: The findings of this study suggest an autosomal recessive inheritance pattern in this early-onset leukoencephalopathy, in contrast to CADASIL's dominant gain-of-function mechanism; which is a clear example of genotype-phenotype correlation. Comprehensive genetic analysis provides valuable insights into disease mechanisms and facilitates diagnosis and family planning for NOTCH3-associated neurological disorders.


Asunto(s)
Secuenciación del Exoma , Genes Recesivos , Linaje , Fenotipo , Receptor Notch3 , Humanos , Receptor Notch3/genética , Masculino , Femenino , Secuenciación del Exoma/métodos , Genes Recesivos/genética , Adulto , Estudios de Asociación Genética , CADASIL/genética , Imagen por Resonancia Magnética/métodos , Alelos , Homocigoto , Consanguinidad , Mutación con Pérdida de Función/genética , Mutación/genética , Heterocigoto
6.
Sci Rep ; 14(1): 14327, 2024 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-38906903

RESUMEN

NOTCH receptor 3 (NOTCH3) is known to regulate the transcription of oncogenes or tumor suppressor genes, thereby playing a crucial role in tumor development, invasion, maintenance, and chemotherapy resistance. However, the specific mechanism of how NOTCH3 drives immune infiltration in gastrointestinal cancer remains uncertain. The expression of NOTCH3 was analyzed through Western blot, PCR, Oncomine database, and the Tumor Immune Estimation Resource (TIMER) site. Kaplan-Meier plotter, PrognoScan database, and gene expression profile interactive analysis (GEPIA) were used to assess the impact of NOTCH3 on clinical prognosis. The correlation between NOTCH3 expression and immune infiltration gene markers was investigated using TIMER and GEPIA. NOTCH3 was found to be commonly overexpressed in various types of gastrointestinal tumors and was significantly associated with poor prognosis. Furthermore, the expression level of NOTCH3 showed a significant correlation with the tumor purity of gastrointestinal tumors and the extent of immune infiltration by different immune cells. Our findings suggest that NOTCH3 may act as a crucial regulator of tumor immune cell infiltration and can serve as a valuable prognostic biomarker in gastrointestinal cancers.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Gastrointestinales , Regulación Neoplásica de la Expresión Génica , Receptor Notch3 , Receptor Notch3/genética , Receptor Notch3/metabolismo , Humanos , Neoplasias Gastrointestinales/inmunología , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/patología , Neoplasias Gastrointestinales/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Pronóstico , Estimación de Kaplan-Meier , Femenino , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Masculino
7.
J Neurol Sci ; 462: 123109, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38941707

RESUMEN

BACKGROUND: Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a hereditary disease caused by NOTCH3 mutation. Nailfold capillaroscopy is a non-invasive technique typically used for rheumatic diseases. It has potential in other conditions linked to vascular pathology. However, capillaroscopy in CADASIL has not been explored. This study aims to investigate whether capillaroscopy measurements can correlate with brain vascular changes in preclinical CADASIL patients, specifically those with NOTCH3 mutation. METHODS: This study included 69 participants from the Taiwan Precision Medicine Initiative (TPMI) dataset who visited Taichung Veterans General Hospital from January to December 2022. All individuals underwent genetic studies, brain imaging and nailfold capillaroscopy. The Mann-Whitney U test was used to compare results of brain imaging between carriers and controls. It was also used to compare measurements in nailfold capillaroscopy within each group. Spearman Rank Correlation Analysis was used to explore the relationship between capillary measurements and brain MRI results. RESULTS: White matter hyperintensities (WMH) expression was positively correlated with capillary dimension and negatively correlated with density. Our results presented that R544C carriers exhibited a diffuse increase in WMH (p < 0.001) and a global reduction in gray matter volume but preserved in specific areas. The white matter lesion scores in all brain regions were higher in the mutation carriers than the controls. (p < 0.001). CONCLUSION: This research highlights the association of nailfold capillaroscopy findings with white matter lesions in preclinical CADASIL patients. Capillaroscopy guides an effective screening strategy in individuals with NOTCH3 mutations.


Asunto(s)
CADASIL , Capilares , Angioscopía Microscópica , Mutación , Receptor Notch3 , Humanos , CADASIL/genética , CADASIL/diagnóstico por imagen , Receptor Notch3/genética , Masculino , Femenino , Persona de Mediana Edad , Adulto , Capilares/patología , Capilares/diagnóstico por imagen , Angioscopía Microscópica/métodos , Imagen por Resonancia Magnética , Uñas/irrigación sanguínea , Uñas/diagnóstico por imagen , Anciano , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
8.
Oncogene ; 43(34): 2535-2547, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38907003

RESUMEN

Malignant transformation of T-cell progenitors causes T-cell acute lymphoblastic leukemia (T-ALL), an aggressive childhood lymphoproliferative disorder. Activating mutations of Notch, Notch1 and Notch3, have been detected in T-ALL patients. In this study, we aimed to deeply characterize hyperactive Notch3-related pathways involved in T-cell dynamics within the thymus and bone marrow to propose these processes as an important step in facilitating the progression of T-ALL. We previously generated a transgenic T-ALL mouse model (N3-ICtg) demonstrating that aberrant Notch3 signaling affects early thymocyte maturation programs and leads to bone marrow infiltration by CD4+CD8+ (DP) T cells that are notably, Notch3highCXCR4high. Newly, our in vivo results suggest that an anomalous immature thymocyte subpopulation, such as CD4-CD8- (DN) over-expressing CD3ɛ, but with low CXCR4 expression, dominates N3-ICtg thymus-resident DN subset in T-ALL progression. MicroRNAs might be of significance in T-ALL pathobiology, however, whether required for leukemia maintenance is not fully understood. The selection of specific DN subsets demonstrates the inverse correlation between CXCR4 expression and a panel of Notch3-deregulated miRNAs. Interestingly, we found that within DN thymocyte subset hyperactive Notch3 inhibits CXCR4 expression through the cooperative effects of miR-139-5p and miR-150-5p, thus impinging on thymocyte differentiation with accumulation of DNCD3ɛ+CXCR4- cells. These data point out that deregulation of Notch3 in T-ALL, besides its role in sustaining dissemination of abnormal DP T cells, as we previously demonstrated, could play a role in selecting specific DN immature T cells within the thymus, thus impeding T cell development, to facilitate T-ALL progression inside the bone marrow.


Asunto(s)
Progresión de la Enfermedad , MicroARNs , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptor Notch3 , Receptores CXCR4 , Timocitos , MicroARNs/genética , MicroARNs/metabolismo , Animales , Receptor Notch3/genética , Receptor Notch3/metabolismo , Timocitos/metabolismo , Timocitos/citología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Ratones , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Humanos , Ratones Transgénicos , Transducción de Señal , Diferenciación Celular/genética
9.
Laeknabladid ; 110(7): 360-364, 2024 Jul.
Artículo en Islandés | MEDLINE | ID: mdl-38934718

RESUMEN

Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a hereditary small vessel disease of the brain characterized by progressive white matter lesions, subcortical infarcts, and cognitive decline. This autosomal dominant disorder is caused by mutations in the NOTCH3 gene located on chromosome 19, resulting in the accumulation of granular osmiophilic material within the walls of small arteries and arterioles. Clinically, CADASIL typically manifests in mid-adulthood with recurrent ischemic events, migraine with aura, mood disturbances, and cognitive impairment. Neuroimaging plays a crucial role in the diagnosis of CADASIL, with characteristic findings including white matter hyperintensities particularly in the anterior temporal lobe and external capsule.


Asunto(s)
CADASIL , Predisposición Genética a la Enfermedad , Mutación , Fenotipo , Receptor Notch3 , Humanos , CADASIL/genética , CADASIL/diagnóstico , Receptor Notch3/genética , Valor Predictivo de las Pruebas , Factores de Riesgo , Pronóstico , Herencia , Imagen por Resonancia Magnética , Cognición , Encéfalo/patología , Encéfalo/diagnóstico por imagen
10.
J Clin Invest ; 134(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747292

RESUMEN

Cerebral small vessel disease (cSVD) encompasses a heterogeneous group of age-related small vessel pathologies that affect multiple regions. Disease manifestations range from lesions incidentally detected on neuroimaging (white matter hyperintensities, small deep infarcts, microbleeds, or enlarged perivascular spaces) to severe disability and cognitive impairment. cSVD accounts for approximately 25% of ischemic strokes and the vast majority of spontaneous intracerebral hemorrhage and is also the most important vascular contributor to dementia. Despite its high prevalence and potentially long therapeutic window, there are still no mechanism-based treatments. Here, we provide an overview of the recent advances in this field. We summarize recent data highlighting the remarkable continuum between monogenic and multifactorial cSVDs involving NOTCH3, HTRA1, and COL4A1/A2 genes. Taking a vessel-centric view, we discuss possible cause-and-effect relationships between risk factors, structural and functional vessel changes, and disease manifestations, underscoring some major knowledge gaps. Although endothelial dysfunction is rightly considered a central feature of cSVD, the contributions of smooth muscle cells, pericytes, and other perivascular cells warrant continued investigation.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Colágeno Tipo IV , Receptor Notch3 , Humanos , Enfermedades de los Pequeños Vasos Cerebrales/genética , Enfermedades de los Pequeños Vasos Cerebrales/fisiopatología , Enfermedades de los Pequeños Vasos Cerebrales/patología , Receptor Notch3/genética , Receptor Notch3/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Animales
11.
Neurology ; 102(10): e209310, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38713890

RESUMEN

BACKGROUND AND OBJECTIVES: Pathogenic variants in NOTCH3 are the main cause of hereditary cerebral small vessel disease (SVD). SVD-associated NOTCH3 variants have recently been categorized into high risk (HR), moderate risk (MR), or low risk (LR) for developing early-onset severe SVD. The most severe NOTCH3-associated SVD phenotype is also known as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). We aimed to investigate whether NOTCH3 variant risk category is associated with 2-year progression rate of SVD clinical and neuroimaging outcomes in CADASIL. METHODS: A single-center prospective 2-year follow-up study was performed of patients with CADASIL. Clinical outcomes were incident stroke, disability (modified Rankin Scale), and executive function (Trail Making Test B given A t-scores). Neuroimaging outcomes were mean skeletonized mean diffusivity (MSMD), normalized white matter hyperintensity volume (nWMHv), normalized lacune volume (nLV), and brain parenchymal fraction (BPF). Cox regression and mixed-effect models, adjusted for age, sex, and cardiovascular risk factors, were used to study 2-year changes in outcomes and differences in disease progression between patients with HR-NOTCH3 and MR-NOTCH3 variants. RESULTS: One hundred sixty-two patients with HR (n = 90), MR (n = 67), and LR (n = 5) NOTCH3 variants were included. For the entire cohort, there was 2-year mean progression for MSMD (ß = 0.20, 95% CI 0.17-0.23, p = 7.0 × 10-24), nLV (ß = 0.13, 95% CI 0.080-0.19, p = 2.1 × 10-6), nWMHv (ß = 0.092, 95% CI 0.075-0.11, p = 8.8 × 10-20), and BPF (ß = -0.22, 95% CI -0.26 to -0.19, p = 3.2 × 10-22), as well as an increase in disability (p = 0.002) and decline of executive function (ß = -0.15, 95% CI -0.30 to -3.4 × 10-5, p = 0.05). The HR-NOTCH3 group had a higher probability of 2-year incident stroke (hazard ratio 4.3, 95% CI 1.4-13.5, p = 0.011), and a higher increase in MSMD (ß = 0.074, 95% CI 0.013-0.14, p = 0.017) and nLV (ß = 0.14, 95% CI 0.034-0.24, p = 0.0089) than the MR-NOTCH3 group. Subgroup analyses showed significant 2-year progression of MSMD in young (n = 17, ß = 0.014, 95% CI 0.0093-0.019, p = 1.4 × 10-5) and premanifest (n = 24, ß = 0.012, 95% CI 0.0082-0.016, p = 1.1 × 10-6) individuals. DISCUSSION: In a trial-sensitive time span of 2 years, we found that patients with HR-NOTCH3 variants have a significantly faster progression of major clinical and neuroimaging outcomes, compared with patients with MR-NOTCH3 variants. This has important implications for clinical trial design and disease prediction and monitoring in the clinic. Moreover, we show that MSMD is a promising outcome measure for trials enrolling premanifest individuals.


Asunto(s)
CADASIL , Enfermedades de los Pequeños Vasos Cerebrales , Progresión de la Enfermedad , Receptor Notch3 , Femenino , Humanos , Masculino , CADASIL/genética , CADASIL/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/genética , Función Ejecutiva/fisiología , Estudios de Seguimiento , Imagen por Resonancia Magnética , Estudios Prospectivos , Receptor Notch3/genética , Factores de Riesgo
12.
Cell Commun Signal ; 22(1): 256, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38705997

RESUMEN

BACKGROUND: Melanoma is a highly heterogeneous cancer, in which frequent changes in activation of signaling pathways lead to a high adaptability to ever changing tumor microenvironments. The elucidation of cancer specific signaling pathways is of great importance, as demonstrated by the inhibitor of the common BrafV600E mutation PLX4032 in melanoma treatment. We therefore investigated signaling pathways that were influenced by neurotrophin NRN1, which has been shown to be upregulated in melanoma. METHODS: Using a cell culture model system with an NRN1 overexpression, we investigated the influence of NRN1 on melanoma cells' functionality and signaling. We employed real time cell analysis and spheroid formation assays, while for investigation of molecular mechanisms we used a kinase phosphorylation kit as well as promotor activity analysis followed by mRNA and protein analysis. RESULTS: We revealed that NRN1 interacts directly with the cleaved intracellular domain (NICD) of Notch1 and Notch3, causing a potential retention of NICD in the cytoplasm and thereby reducing the expression of its direct downstream target Hes1. This leads to decreased sequestration of JAK and STAT3 in a Hes1-driven phosphorylation complex. Consequently, our data shows less phosphorylation of STAT3 while presenting an accumulation of total protein levels of STAT3 in association with NRN1 overexpression. The potential of the STAT3 signaling pathway to act in both a tumor suppressive and oncogenic manner led us to investigate specific downstream targets - namely Vegf A, Mdr1, cMet - which were found to be upregulated under oncogenic levels of NRN1. CONCLUSIONS: In summary, we were able to show that NRN1 links oncogenic signaling events between Notch and STAT3 in melanoma. We also suggest that in future research more attention should be payed to cellular regulation of signaling molecules outside of the classically known phosphorylation events.


Asunto(s)
Melanoma , Neuropéptidos , Factor de Transcripción STAT3 , Transducción de Señal , Humanos , Carcinogénesis/genética , Carcinogénesis/metabolismo , Línea Celular Tumoral , Melanoma/metabolismo , Melanoma/genética , Melanoma/patología , Fosforilación , Unión Proteica , Receptor Notch1/metabolismo , Receptor Notch1/genética , Receptor Notch3/metabolismo , Receptor Notch3/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética
14.
Genes (Basel) ; 15(5)2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38790158

RESUMEN

The evolutionary conserved Notch signaling pathway functions as a mediator of direct cell-cell communication between neighboring cells during development. Notch plays a crucial role in various fundamental biological processes in a wide range of tissues. Accordingly, the aberrant signaling of this pathway underlies multiple genetic pathologies such as developmental syndromes, congenital disorders, neurodegenerative diseases, and cancer. Over the last two decades, significant data have shown that the Notch signaling pathway displays a significant function in the mature brains of vertebrates and invertebrates beyond neuronal development and specification during embryonic development. Neuronal connection, synaptic plasticity, learning, and memory appear to be regulated by this pathway. Specific mutations in human Notch family proteins have been linked to several neurodegenerative diseases including Alzheimer's disease, CADASIL, and ischemic injury. Neurodegenerative diseases are incurable disorders of the central nervous system that cause the progressive degeneration and/or death of brain nerve cells, affecting both mental function and movement (ataxia). There is currently a lot of study being conducted to better understand the molecular mechanisms by which Notch plays an essential role in the mature brain. In this study, an in silico analysis of polymorphisms and mutations in human Notch family members that lead to neurodegenerative diseases was performed in order to investigate the correlations among Notch family proteins and neurodegenerative diseases. Particular emphasis was placed on the study of mutations in the Notch3 protein and the structure analysis of the mutant Notch3 protein that leads to the manifestation of the CADASIL syndrome in order to spot possible conserved mutations and interpret the effect of these mutations in the Notch3 protein structure. Conserved mutations of cysteine residues may be candidate pharmacological targets for the potential therapy of CADASIL syndrome.


Asunto(s)
CADASIL , Enfermedades Neurodegenerativas , Polimorfismo de Nucleótido Simple , Receptores Notch , Humanos , CADASIL/genética , CADASIL/metabolismo , CADASIL/patología , Receptores Notch/metabolismo , Receptores Notch/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Mutación , Transducción de Señal , Receptor Notch3/genética , Receptor Notch3/metabolismo
16.
Biochem Pharmacol ; 224: 116200, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38604258

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is a common monogenic kidney disease. Emerging research indicates that the Notch signaling pathway plays an indispensable role in the pathogenesis of numerous kidney diseases, including ADPKD. Herein, we identified that Notch3 but not other Notch receptors was overexpressed in renal tissues from mice with ADPKD and ADPKD patients. Inhibiting Notch3 with γ-secretase inhibitors, which block a proteolytic cleavage required for Notch3 activation, or shRNA knockdown of Notch3 significantly delayed renal cyst growth in vitro and in vivo. Subsequent mechanistic study elucidated that the cleaved intracellular domain of Notch3 (N3ICD) and Hes1 could bind to the PTEN promoter, leading to transcriptional inhibition of PTEN. This further activated the downstream PI3K-AKT-mTOR pathway and promoted renal epithelial cell proliferation. Overall, Notch3 was identified as a novel contributor to renal epithelial cell proliferation and cystogenesis in ADPKD. We envision that Notch3 represents a promising target for ADPKD treatment.


Asunto(s)
Proliferación Celular , Riñón Poliquístico Autosómico Dominante , Receptor Notch3 , Animales , Receptor Notch3/metabolismo , Receptor Notch3/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Riñón Poliquístico Autosómico Dominante/patología , Riñón Poliquístico Autosómico Dominante/genética , Ratones , Humanos , Ratones Endogámicos C57BL , Masculino , Riñón/metabolismo , Riñón/patología , Riñón/efectos de los fármacos
17.
Histochem Cell Biol ; 161(6): 461-476, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38597939

RESUMEN

Emerging evidence indicates the presence of vascular abnormalities and ischemia in biliary atresia (BA), although specific mechanisms remain undefined. This study examined both human and experimental BA. Structural and hemodynamic features of hepatic arteries were investigated by Doppler ultrasound, indocyanine green angiography, microscopic histology, and invasive arterial pressure measurement. Opal multiplex immunohistochemistry, western blot, and RT-PCR were applied to assess Notch3 expression and the phenotype of hepatic arterial smooth muscle cells (HASMCs). We established animal models of Notch3 inhibition, overexpression, and knockout to evaluate the differences in overall survival, hepatic artery morphology, peribiliary hypoxia, and HASMC phenotype. Hypertrophic hepatic arteriopathy was evidenced by an increased wall-to-lumen ratio and clinically manifested as hepatic arterial hypertension, decreased hepatic artery perfusion, and formation of hepatic subcapsular vascular plexuses (HSVPs). We observed a correlation between overactivation of Notch3 and phenotypic disruption of HASMCs with the exacerbation of peribiliary hypoxia. Notch3 signaling mediated the phenotype alteration of HASMCs, resulting in arterial wall thickening and impaired oxygen supply in the portal microenvironment. Inhibition of Notch3/Hey1 ameliorates portal hypoxia by restoring the balance of contractile/synthetic HASMCs, thereby preventing hypertrophic arteriopathy in BA.


Asunto(s)
Atresia Biliar , Receptor Notch3 , Receptor Notch3/metabolismo , Receptor Notch3/antagonistas & inhibidores , Animales , Atresia Biliar/patología , Atresia Biliar/metabolismo , Ratones , Humanos , Masculino , Hipoxia/metabolismo , Femenino , Arteria Hepática/patología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Ratones Endogámicos C57BL , Ratones Noqueados
18.
J Transl Med ; 22(1): 351, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615020

RESUMEN

BACKGROUND: Cartilage oligomeric matrix protein (COMP), an extracellular matrix glycoprotein, is vital in preserving cartilage integrity. Further, its overexpression is associated with the aggressiveness of several types of solid cancers. This study investigated COMP's role in ovarian cancer, exploring clinicopathological links and mechanistic insights. METHODS: To study the association of COMP expression in cancer cells and stroma with clinicopathological features of ovarian tumor patients, we analyzed an epithelial ovarian tumor cohort by immunohistochemical analysis. Subsequently, to study the functional mechanisms played by COMP, an in vivo xenograft mouse model and several molecular biology techniques such as transwell migration and invasion assay, tumorsphere formation assay, proximity ligation assay, and RT-qPCR array were performed. RESULTS: Based on immunohistochemical analysis of epithelial ovarian tumor tissues, COMP expression in the stroma, but not in cancer cells, was linked to worse overall survival (OS) of ovarian cancer patients. A xenograft mouse model showed that carcinoma-associated fibroblasts (CAFs) expressing COMP stimulate the growth and metastasis of ovarian tumors through the secretion of COMP. The expression of COMP was upregulated in CAFs stimulated with TGF-ß. Functionally, secreted COMP by CAFs enhanced the migratory capacity of ovarian cancer cells. Mechanistically, COMP activated the Notch3 receptor by enhancing the Notch3-Jagged1 interaction. The dependency of the COMP effect on Notch was confirmed when the migration and tumorsphere formation of COMP-treated ovarian cancer cells were inhibited upon incubation with Notch inhibitors. Moreover, COMP treatment induced epithelial-to-mesenchymal transition and upregulation of active ß-catenin in ovarian cancer cells. CONCLUSION: This study suggests that COMP secretion by CAFs drives ovarian cancer progression through the induction of the Notch pathway and epithelial-to-mesenchymal transition.


Asunto(s)
Neoplasias Ováricas , Humanos , Animales , Ratones , Femenino , Proteína de la Matriz Oligomérica del Cartílago , Receptor Notch3 , Carcinogénesis , Transducción de Señal
19.
Cancer Lett ; 593: 216841, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614385

RESUMEN

Aerobic glycolysis accelerates tumor proliferation and progression, and inhibitors or drugs targeting abnormal cancer metabolism have been developing. Cancer stem-like cells (CSCs) significantly contribute to tumor initiation, metastasis, therapy resistance, and recurrence. Formyl peptide receptor 3 (FPR3), a member of FPR family, involves in inflammation, tissue repair, and angiogenesis. However, studies in exploring the regulatory mechanisms of aerobic glycolysis and CSCs by FPR3 in gastric cancer (GC) remain unknown. Here, we demonstrated that overexpressed FPR3 suppressed glycolytic capacity and stemness of tumor cells, then inhibited GC cells proliferation. Mechanistically, FPR3 impeded cytoplasmic calcium ion flux and hindered nuclear factor of activated T cells 1 (NFATc1) nuclear translocation, leading to the transcriptional inactivation of NFATc1-binding neurogenic locus notch homolog protein 3 (NOTCH3) promoter, subsequently obstructing NOTCH3 expression and the AKT/mTORC1 signaling pathway, and ultimately downregulating glycolysis. Additionally, NFATc1 directly binds to the sex determining region Y-box 2 (SOX2) promoter and modifies stemness in GC. In conclusion, our work illustrated that FPR3 played a negative role in GC progression by modulating NFATc1-mediated glycolysis and stemness in a calcium-dependent manner, providing potential insights into cancer therapy.


Asunto(s)
Proliferación Celular , Glucólisis , Células Madre Neoplásicas , Transducción de Señal , Neoplasias Gástricas , Animales , Humanos , Masculino , Ratones , Calcio/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Factores de Transcripción NFATC/metabolismo , Factores de Transcripción NFATC/genética , Receptor Notch3/metabolismo , Receptor Notch3/genética , Receptores de Formil Péptido/metabolismo , Receptores de Formil Péptido/genética , Receptores de Lipoxina/metabolismo , Receptores de Lipoxina/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción SOXB1/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética
20.
Cancer Res Commun ; 4(5): 1268-1281, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38619287

RESUMEN

The MUC1-C protein is aberrantly expressed in adenocarcinomas of epithelial barrier tissues and contributes to their progression. Less is known about involvement of MUC1-C in the pathogenesis of squamous cell carcinomas (SCC). Here, we report that the MUC1 gene is upregulated in advanced head and neck SCCs (HNSCC). Studies of HNSCC cell lines demonstrate that the MUC1-C subunit regulates expression of (i) RIG-I and MDA5 pattern recognition receptors, (ii) STAT1 and IFN regulatory factors, and (iii) downstream IFN-stimulated genes. MUC1-C integrates chronic activation of the STAT1 inflammatory pathway with induction of the ∆Np63 and SOX2 genes that are aberrantly expressed in HNSCCs. In extending those dependencies, we demonstrate that MUC1-C is necessary for NOTCH3 expression, self-renewal capacity, and tumorigenicity. The findings that MUC1 associates with ∆Np63, SOX2 and NOTCH3 expression by single-cell RNA sequencing analysis further indicate that MUC1-C drives the HNSCC stem cell state and is a target for suppressing HNSCC progression. SIGNIFICANCE: This work reports a previously unrecognized role for MUC1-C in driving STAT1-mediated chronic inflammation with the progression of HNSCC and identifies MUC1-C as a druggable target for advanced HNSCC treatment.


Asunto(s)
Progresión de la Enfermedad , Neoplasias de Cabeza y Cuello , Mucina-1 , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Mucina-1/genética , Mucina-1/metabolismo , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/metabolismo , Línea Celular Tumoral , Ratones , Animales , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Receptor Notch3/genética , Receptor Notch3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...