Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.051
Filtrar
1.
Tunis Med ; 102(4): 241-244, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38746965

RESUMEN

INTRODUCTION: Toll-like- receptors (TLR) control important aspects of innate and adaptive immune responses. Renal cells are among the non-immune cells that express (TLR). Therefore, their activation might be implicated in renal tubulo-interstitial injury. AIM: The study aimed to compare TLR9 expression in patients with primary membranous nephropathy (MN) to patients with lupus membranous nephropathy. METHODS: Kidney sections from 10 Lupus nephritis (LN) patients and ten patients with primary MN were analyzed by immunohistochemistry using anti-human TLR9 antibody. RESULTS: Results showed that TLR9 expression was weak and exclusively tubular in primary MN patients' biopsies. There was a significant difference between LN patients' biopsies and primary MN patients' biopsies. TLR9 expression was more diffused in LN patients' specimen than in those with primary MN. CONCLUSION: This study focuses on molecular level pathogenesis of MN. The data suggest that the receptors TLR9 may play role in tubulointerstitial injury in the pathogenesis of LN but not primary membranous nephropathy.


Asunto(s)
Glomerulonefritis Membranosa , Nefritis Lúpica , Receptor Toll-Like 9 , Humanos , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/biosíntesis , Glomerulonefritis Membranosa/metabolismo , Glomerulonefritis Membranosa/patología , Glomerulonefritis Membranosa/inmunología , Nefritis Lúpica/metabolismo , Nefritis Lúpica/patología , Nefritis Lúpica/inmunología , Femenino , Adulto , Masculino , Persona de Mediana Edad , Túbulos Renales/patología , Túbulos Renales/metabolismo , Biopsia , Inmunohistoquímica , Adulto Joven
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731877

RESUMEN

Epstein-Barr virus (EBV) DNA is known to be shed upon reactivation of latent EBV. Based on our previous findings linking Toll-like receptor-9 (TLR9) to an EBV DNA-driven surge in IL-17A production, we aimed to examine the therapeutic potential of TLR9 inhibition in EBV DNA-exacerbated arthritis in a collagen-induced arthritis (CIA) mouse model. C57BL/6J mice were administered either collagen, EBV DNA + collagen, EBV DNA + collagen + TLR9 inhibitor, or only the TLR9 inhibitor. After 70 days, paw thicknesses, clinical scores, and gripping strength were recorded. Moreover, affected joints, footpads, and colons were histologically scored. Furthermore, the number of cells co-expressing IL-17A, IFN-γ, and FOXP3 in joint sections was determined by immunofluorescence assays. Significantly decreased paw thicknesses, clinical scores, and histological scores with a significantly increased gripping strength were observed in the group receiving EBV DNA + collagen + TLR9 inhibitor, compared to those receiving EBV DNA + collagen. Similarly, this group showed decreased IL-17A+ IFN-γ+, IL-17A+ FOXP3+, and IL-17A+ IFN-γ+ FOXP3+ foci counts in joints. We show that inhibiting TLR9 limits the exacerbation of arthritis induced by EBV DNA in a CIA mouse model, suggesting that TLR9 could be a potential therapeutic target for rheumatoid arthritis management in EBV-infected individuals.


Asunto(s)
Artritis Experimental , ADN Viral , Modelos Animales de Enfermedad , Herpesvirus Humano 4 , Ratones Endogámicos C57BL , Receptor Toll-Like 9 , Animales , Receptor Toll-Like 9/metabolismo , Ratones , Herpesvirus Humano 4/fisiología , Artritis Experimental/virología , Artritis Experimental/patología , Artritis Experimental/metabolismo , ADN Viral/genética , Interleucina-17/metabolismo , Masculino , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/patología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Artritis Reumatoide/virología
3.
Sci Rep ; 14(1): 11540, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773176

RESUMEN

Antisense oligonucleotides (ASOs) are synthetic single-stranded oligonucleotides that bind to RNAs through Watson-Crick base pairings. They are actively being developed as therapeutics for various human diseases. ASOs containing unmethylated deoxycytidylyl-deoxyguanosine dinucleotide (CpG) motifs are known to trigger innate immune responses via interaction with toll-like receptor 9 (TLR9). However, the TLR9-stimulatory properties of ASOs, specifically those with lengths equal to or less than 20 nucleotides, phosphorothioate linkages, and the presence and arrangement of sugar-modified nucleotides-crucial elements for ASO therapeutics under development-have not been thoroughly investigated. In this study, we first established SY-ODN18, an 18-nucleotide phosphorothioate oligodeoxynucleotide with sufficient TLR9-stimulatory activity. We demonstrated that an unmethylated CpG motif near its 5'-end was indispensable for TLR9 activation. Moreover, by utilizing various sugar-modified nucleotides, we systematically generated model ASOs, including gapmer, mixmer, and fully modified designs, in accordance with the structures of ASO therapeutics. Our results illustrated that introducing sugar-modified nucleotides in such designs significantly reduces TLR9-stimulatory activity, even without methylation of CpG motifs. These findings would be useful for drug designs on several types of ASOs.


Asunto(s)
Oligonucleótidos Antisentido , Receptor Toll-Like 9 , Receptor Toll-Like 9/metabolismo , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/química , Humanos , Islas de CpG , Animales , Ratones , Nucleótidos/metabolismo , Nucleótidos/química , Azúcares/metabolismo , Azúcares/química , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/farmacología
5.
Nat Commun ; 15(1): 4232, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762479

RESUMEN

Toll-like receptor 9 (TLR9) recognizes bacterial, viral and self DNA and play an important role in immunity and inflammation. However, the role of TLR9 in obesity is less well-studied. Here, we generate B-cell-specific Tlr9-deficient (Tlr9fl/fl/Cd19Cre+/-, KO) B6 mice and model obesity using a high-fat diet. Compared with control mice, B-cell-specific-Tlr9-deficient mice exhibited increased fat tissue inflammation, weight gain, and impaired glucose and insulin tolerance. Furthermore, the frequencies of IL-10-producing-B cells and marginal zone B cells were reduced, and those of follicular and germinal center B cells were increased. This was associated with increased frequencies of IFNγ-producing-T cells and increased follicular helper cells. In addition, gut microbiota from the KO mice induced a pro-inflammatory state leading to immunological and metabolic dysregulation when transferred to germ-free mice. Using 16 S rRNA gene sequencing, we identify altered gut microbial communities including reduced Lachnospiraceae, which may play a role in altered metabolism in KO mice. We identify an important network involving Tlr9, Irf4 and Il-10 interconnecting metabolic homeostasis, with the function of B and T cells, and gut microbiota in obesity.


Asunto(s)
Linfocitos B , Dieta Alta en Grasa , Disbiosis , Microbioma Gastrointestinal , Inflamación , Interleucina-10 , Ratones Noqueados , Obesidad , Receptor Toll-Like 9 , Animales , Obesidad/inmunología , Obesidad/microbiología , Obesidad/metabolismo , Disbiosis/inmunología , Disbiosis/microbiología , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/genética , Linfocitos B/inmunología , Linfocitos B/metabolismo , Inflamación/metabolismo , Ratones , Dieta Alta en Grasa/efectos adversos , Interleucina-10/metabolismo , Masculino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Factores Reguladores del Interferón
6.
Vet Microbiol ; 293: 110096, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636174

RESUMEN

IgA plays a vital role in defending against the infectious pathogens. However, the specific regulatory pathways involved in IgA secretion in the context of PEDV infection have remained elusive. Therefore, in this study, we explore the molecular mechanisms underlying IgA secretion in response to infection, with a particular focus on PEDV, a devastating enteric virus affecting global swine production. Our investigation begins by examining changes in IgA concentrations in both serum and small intestinal contents following PEDV infection in 2- and 4-week-old pigs. Remarkably, a significant increase in IgA levels in these older pigs post-infection were observed. To delve deeper into the regulatory mechanisms governing IgA secretion in response to PEDV infection, isolated porcine intestinal B cells were co-cultured with monocytes derived DCs (Mo-DCs) in vitro. In the intestinal DC-B cell co-cultures, IgA secretion was found to increase significantly after PEDV infection, as well as upregulating the expression of AID, GLTα and PSTα reflecting isotype switching to IgA. In addition, the expression of TLR9 was upregulated in these cultures, as determined by RT-qPCR and western blotting. Moreover, our findings extend to in vivo observations, where we detected higher levels of TLR9 expression in the ileum of pig post PEDV infection. Collectively, our results highlight the ability of PEDV to stimulate the generation of IgA, particularly in elder pigs, and identify TLR9 as a critical mediator of IgA production within the porcine intestinal microenvironment during PEDV infection.


Asunto(s)
Infecciones por Coronavirus , Inmunoglobulina A , Intestino Delgado , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Receptor Toll-Like 9 , Animales , Porcinos , Virus de la Diarrea Epidémica Porcina/inmunología , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Intestino Delgado/inmunología , Inmunoglobulina A/inmunología , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/genética , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Linfocitos B/inmunología , Técnicas de Cocultivo , Células Dendríticas/inmunología
7.
Mitochondrion ; 76: 101886, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38663836

RESUMEN

Aging probably is the most complexed process in biology. It is manifested by a variety of hallmarks. These hallmarks weave a network of aging; however, each hallmark is not uniformly strong for the network. It is the weakest link determining the strengthening of the network of aging, or the maximum lifespan of an organism. Therefore, only improvement of the weakest link has the chance to increase the maximum lifespan but not others. We hypothesize that mitochondrial dysfunction is the weakest link of the network of aging. It may origin from the innate intramitochondrial immunity related to the activities of pathogen DNA recognition receptors. These receptors recognize mtDNA as the PAMP or DAMP to initiate the immune or inflammatory reactions. Evidence has shown that several of these receptors including TLR9, cGAS and IFI16 can be translocated into mitochondria. The potentially intramitochondrial presented pathogen DNA recognition receptors have the capacity to attack the exposed second structures of the mtDNA during its transcriptional or especially the replicational processes, leading to the mtDNA mutation, deletion, heteroplasmy colonization, mitochondrial dysfunction, and alterations of other hallmarks, as well as aging. Pre-consumption of the intramitochondrial presented pathogen DNA recognition receptors by medical interventions including development of mitochondrial targeted small molecule which can neutralize these receptors may retard or even reverse the aging to significantly improve the maximum lifespan of the organisms.


Asunto(s)
Envejecimiento , ADN Mitocondrial , Inmunidad Innata , Mitocondrias , Humanos , Mitocondrias/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/genética , Animales , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética
8.
J Immunol Res ; 2024: 9399524, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660059

RESUMEN

Toll-like receptors (TLRs) have a critical role in recognizing pathogenic patterns and initiating immune responses against TB and HIV. Previously, studies described the gene expression of TLRs in patients with TB and HIV. Here, we demonstrated TLRs protein expressions and their association with clinical status and plasma markers in TB, HIV, and TB/HIV coinfection. The phenotyping of TLR2, TLR4, and TLR9 on CD14+ monocytes and their subsets were determined by multicolor flow cytometry. Host plasma biomarkers and microbial indices were measured using Luminex Multiplex assay and standard of care tools, respectively. TLR2 expression significantly enhanced in TB, slightly increased in HIV but slightly reduced in TB/HIV coinfection compared to apparently health controls (HC). On the other hand, TLR4 expression was significantly increased in TB, HIV, and TB/HIV compared to HC. Expression of TLR4 was equally enhanced on classical and intermediate monocytes while higher TLR2 expression on intermediate than classical monocytes. TLR4 had a positive correlation pattern with plasma biomarkers while TLR2 had an inverse correlation pattern. TLR4 is associated with disease severity while TLR2 is with the immune-competent status of patients. Our findings demonstrated that the pattern of TLR expression is disease as well as monocyte subset specific and distinct factors drive these differences.


Asunto(s)
Biomarcadores , Coinfección , Infecciones por VIH , Monocitos , Receptor Toll-Like 2 , Receptor Toll-Like 4 , Receptor Toll-Like 9 , Tuberculosis , Femenino , Humanos , Masculino , Coinfección/inmunología , Infecciones por VIH/sangre , Infecciones por VIH/inmunología , Monocitos/inmunología , Monocitos/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 9/metabolismo , Tuberculosis/inmunología , Tuberculosis/sangre
9.
J Ethnopharmacol ; 330: 118208, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38636581

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Zhilong Huoxue Tongyu Capsule (ZL) is clinically prescribed for acute ischemic stroke (AIS). However, only a few studies have addressed the mechanisms of ZL in treating AIS. AIM OF THE STUDY: To explore the underlying mechanism of macrophage polarization and inflammation mediated by ZL, and to provide a reference for AIS treatment. MATERIALS AND METHODS: Sixteen SD rats were fed with different dose of ZL (0, 0.4, 0.8, and 1.6 g/kg/d) for 4 days to prepare ZL serum. After 500 ng/mL lipopolysaccharide (LPS) stimulation, RAW264.7 cells were administrated with ZL serum. Then, experiments including ELISA, flow cytometry, real-time quantitative PCR and Western blot were performed to verify the effects of ZL on macrophage polarization and inflammation. Next, let-7i inhibitor was transfected in RAW264.7 cells when treated with LPS and ZL serum to verify the regulation of ZL on the let-7i/TLR9/MyD88 signaling pathway. Moreover, the interaction between let-7i and TLR9 was confirmed by the dual-luciferase assay. RESULTS: ZL serum significantly decreased the expression of interleukin (IL)-6 and tumor necrosis factor-α (TNF-α), and increased the expression of IL-10 and transforming growth factor ß1 (TGF-ß1) of LPS stimulated-macrophages. Furthermore, ZL serum polarized macrophages toward M2, decreased the expressions of TLR9, MyD88, and iNOS, as well as increased the expressions of let-7i, CHIL3, and Arginase-1. It is worth mentioning that the effect of ZL serum is dose-dependent. However, let-7i inhibitor restored all the above effects in LPS stimulated-macrophages. In addition, TLR9 was the target of let-7i. CONCLUSIONS: ZL targeted let-7i to inhibit TLR9 expression, thereby inhibiting the activation of the TLR9/MyD88 pathway, promoting the M2 polarization, and inhibiting the development of inflammation in AIS.


Asunto(s)
Medicamentos Herbarios Chinos , Macrófagos , MicroARNs , Factor 88 de Diferenciación Mieloide , Ratas Sprague-Dawley , Transducción de Señal , Receptor Toll-Like 9 , Animales , Factor 88 de Diferenciación Mieloide/metabolismo , Ratones , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Receptor Toll-Like 9/metabolismo , Medicamentos Herbarios Chinos/farmacología , MicroARNs/metabolismo , Ratas , Masculino , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos , Antiinflamatorios/farmacología
10.
J Immunol ; 212(11): 1680-1692, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38607278

RESUMEN

Plasmacytoid dendritic cells (pDCs) are strongly implicated as a major source of IFN-I in systemic lupus erythematosus (SLE), triggered through TLR-mediated recognition of nucleic acids released from dying cells. However, relatively little is known about how TLR signaling and IFN-I production are regulated in pDCs. In this article, we describe a role for integrin αvß3 in regulating TLR responses and IFN-I production by pDCs in mouse models. We show that αv and ß3-knockout pDCs produce more IFN-I and inflammatory cytokines than controls when stimulated through TLR7 and TLR9 in vitro and in vivo. Increased cytokine production was associated with delayed acidification of endosomes containing TLR ligands, reduced LC3 conjugation, and increased TLR signaling. This dysregulated TLR signaling results in activation of B cells and promotes germinal center (GC) B cell and plasma cell expansion. Furthermore, in a mouse model of TLR7-driven lupus-like disease, deletion of αvß3 from pDCs causes accelerated autoantibody production and pathology. We therefore identify a pDC-intrinsic role for αvß3 in regulating TLR signaling and preventing activation of autoreactive B cells. Because αvß3 serves as a receptor for apoptotic cells and cell debris, we hypothesize that this regulatory mechanism provides important contextual cues to pDCs and functions to limit responses to self-derived nucleic acids.


Asunto(s)
Autoinmunidad , Células Dendríticas , Integrina alfaVbeta3 , Lupus Eritematoso Sistémico , Ratones Noqueados , Transducción de Señal , Receptor Toll-Like 7 , Animales , Ratones , Células Dendríticas/inmunología , Integrina alfaVbeta3/inmunología , Integrina alfaVbeta3/metabolismo , Autoinmunidad/inmunología , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 7/genética , Lupus Eritematoso Sistémico/inmunología , Transducción de Señal/inmunología , Ratones Endogámicos C57BL , Citocinas/metabolismo , Citocinas/inmunología , Receptor Toll-Like 9/inmunología , Receptor Toll-Like 9/metabolismo , Linfocitos B/inmunología , Autoanticuerpos/inmunología , Glicoproteínas de Membrana/inmunología , Glicoproteínas de Membrana/metabolismo , Activación de Linfocitos/inmunología , Modelos Animales de Enfermedad
12.
Biotechnol J ; 19(4): e2300308, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38651249

RESUMEN

It was previously demonstrated that polypod-like nanostructured DNA (polypodna) comprising three or more oligodeoxynucleotides (ODNs) were useful for the delivery of ODNs containing cytosine-phosphate-guanine (CpG) motifs, or CpG ODNs, to immune cells. Although the immunostimulatory activity of single-stranded CpG ODNs is highly dependent on CpG motif sequence and position, little is known about how the position of the motif affects the immunostimulatory activity of CpG motif-containing nanostructured DNAs. In the present study, four series of polypodna were designed, each comprising a CpG ODN with one potent CpG motif at varying positions and 2-5 CpG-free ODNs, and investigated their immunostimulatory activity using Toll-like receptor-9 (TLR9)-positive murine macrophage-like RAW264.7 cells. Polypodnas with the CpG motif in the 5'-overhang induced more tumor necrosis factor-α release than those with the motif in the double-stranded region, even though their cellular uptake were similar. Importantly, the rank order of the immunostimulatory activity of single-stranded CpG ODNs changed after their incorporation into polypodna. These results indicate that the CpG ODN sequence as well as the motif location in nanostructured DNAs should be considered for designing the CpG motif-containing nanostructured DNAs for immune stimulation.


Asunto(s)
ADN , Nanoestructuras , Oligodesoxirribonucleótidos , Receptor Toll-Like 9 , Ratones , Nanoestructuras/química , Animales , Células RAW 264.7 , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/farmacología , ADN/química , ADN/inmunología , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacología , Islas de CpG , Factor de Necrosis Tumoral alfa/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos
13.
Ecotoxicol Environ Saf ; 276: 116317, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615641

RESUMEN

We have previously shown that excessive activation of macrophage proinflammatory activity plays a key role in TCE-induced immune liver injury, but the mechanism of polarization is unclear. Recent studies have shown that TLR9 activation plays an important regulatory role in macrophage polarization. In the present study, we demonstrated that elevated levels of oxidative stress in hepatocytes mediate the release of mtDNA into the bloodstream, leading to the activation of TLR9 in macrophages to regulate macrophage polarization. In vivo experiments revealed that pretreatment with SS-31, a mitochondria-targeting antioxidant peptide, reduced the level of oxidative stress in hepatocytes, leading to a decrease in mtDNA release. Importantly, SS-31 pretreatment inhibited TLR9 activation in macrophages, suggesting that hepatocyte mtDNA may activate TLR9 in macrophages. Further studies revealed that pharmacological inhibition of TLR9 by ODN2088 partially blocked macrophage activation, suggesting that the level of macrophage activation is dependent on TLR9 activation. In vitro experiments involving the extraction of mtDNA from TCE-sensitized mice treated with RAW264.7 cells further confirmed that hepatocyte mtDNA can activate TLR9 in mouse peritoneal macrophages, leading to macrophage polarization. In summary, our study comprehensively confirmed that TLR9 activation in macrophages is dependent on mtDNA released by elevated levels of oxidative stress in hepatocytes and that TLR9 activation in macrophages plays a key role in regulating macrophage polarization. These findings reveal the mechanism of macrophage activation in TCE-induced immune liver injury and provide new perspectives and therapeutic targets for the treatment of OMDT-induced immune liver injury.


Asunto(s)
ADN Mitocondrial , Hepatocitos , Estrés Oxidativo , Receptor Toll-Like 9 , Tricloroetileno , Animales , Ratones , Hepatocitos/efectos de los fármacos , Tricloroetileno/toxicidad , Receptor Toll-Like 9/metabolismo , Estrés Oxidativo/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Células RAW 264.7 , Enfermedad Hepática Inducida por Sustancias y Drogas , Activación de Macrófagos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL
14.
J Immunother Cancer ; 12(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38580334

RESUMEN

BACKGROUND: Checkpoint inhibitor-induced hepatitis (CPI-hepatitis) is an emerging problem with the widening use of CPIs in cancer immunotherapy. Here, we developed a mouse model to characterize the mechanism of CPI-hepatitis and to therapeutically target key pathways driving this pathology. METHODS: C57BL/6 wild-type (WT) mice were dosed with toll-like receptor (TLR)9 agonist (TLR9-L) for hepatic priming combined with anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) plus anti-programmed cell death 1 (PD-1) ("CPI") or phosphate buffered saline (PBS) control for up to 7 days. Flow cytometry, histology/immunofluorescence and messenger RNA sequencing were used to characterize liver myeloid/lymphoid subsets and inflammation. Hepatocyte damage was assessed by plasma alanine transaminase (ALT) and cytokeratin-18 (CK-18) measurements. In vivo investigations of CPI-hepatitis were carried out in Rag2-/- and Ccr2rfp/rfp transgenic mice, as well as following anti-CD4, anti-CD8 or cenicriviroc (CVC; CCR2/CCR5 antagonist) treatment. RESULTS: Co-administration of combination CPIs with TLR9-L induced liver pathology closely resembling human disease, with increased infiltration and clustering of granzyme B+perforin+CD8+ T cells and CCR2+ monocytes, 7 days post treatment. This was accompanied by apoptotic hepatocytes surrounding these clusters and elevated ALT and CK-18 plasma levels. Liver RNA sequencing identified key signaling pathways (JAK-STAT, NF-ΚB) and cytokine/chemokine networks (Ifnγ, Cxcl9, Ccl2/Ccr2) as drivers of CPI-hepatitis. Using this model, we show that CD8+ T cells mediate hepatocyte damage in experimental CPI-hepatitis. However, their liver recruitment, clustering, and cytotoxic activity is dependent on the presence of CCR2+ monocytes. The absence of hepatic monocyte recruitment in Ccr2rfp/rfp mice and CCR2 inhibition by CVC treatment in WT mice was able to prevent the development and reverse established experimental CPI-hepatitis. CONCLUSION: This newly established mouse model provides a platform for in vivo mechanistic studies of CPI-hepatitis. Using this model, we demonstrate the central role of liver infiltrating CCR2+ monocyte interaction with tissue-destructive CD8+ T cells in the pathogenesis of CPI-hepatitis and highlight CCR2 inhibition as a novel therapeutic target.


Asunto(s)
Hepatitis , Monocitos , Humanos , Ratones , Animales , Linfocitos T CD8-positivos , Receptor Toll-Like 9 , Ratones Endogámicos C57BL , Hepatitis/tratamiento farmacológico , Hepatitis/etiología
15.
Sci Rep ; 14(1): 9618, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671084

RESUMEN

Toll-like receptor 9 (TLR-9) is a protein that helps our immune system identify specific DNA types. Upon detection, CpG oligodeoxynucleotides signal the immune system to generate cytokines, essential proteins that contribute to the body's defence against infectious diseases. Native phosphodiester type B CpG ODNs induce only Interleukin-6 with no effect on interferon-α. We prepared silicon quantum dots containing different surface charges, such as positive, negative, and neutral, using amine, acrylate-modified Plouronic F-127, and Plouronic F-127. Then, class B CpG ODNs are loaded on the surface of the prepared SiQDs. The uptake of ODNs varies based on the surface charge; positively charged SiQDs demonstrate higher adsorption compared to SiQDs with negative and neutral surface charges. The level of cytokine production in peripheral blood mononuclear cells was found to be associated with the surface charge of SiQDs prior to the binding of the CpG ODNs. Significantly higher levels of IL-6 and IFN-α induction were observed compared to neutral and negatively charged SiQDs loaded with CpG ODNs. This observation strongly supports the notion that the surface charge of SiQDs effectively regulates cytokine induction.


Asunto(s)
Citocinas , Puntos Cuánticos , Silicio , Puntos Cuánticos/química , Silicio/química , Humanos , Citocinas/metabolismo , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/inmunología , Oligodesoxirribonucleótidos/química , Interleucina-6/metabolismo , Propiedades de Superficie , Interferón-alfa/metabolismo , Interferón-alfa/química , Receptor Toll-Like 9/metabolismo
16.
Viruses ; 16(4)2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38675965

RESUMEN

Epstein-Barr virus (EBV), a Herpesviridae family member, is associated with an increased risk of autoimmune disease development in the host. We previously demonstrated that EBV DNA elevates levels of the pro-inflammatory cytokine IL-17A and that inhibiting Toll-like receptor (TLR) 3, 7, or 9 reduces its levels. Moreover, this DNA exacerbated colitis in a mouse model of inflammatory bowel disease (IBD). In the study at hand, we examined whether inhibition of TLR3, 7, or 9 alleviates this exacerbation. Mice were fed 1.5% dextran sulfate sodium (DSS) water and administered EBV DNA. Then, they were treated with a TLR3, 7, or 9 inhibitor or left untreated. We also assessed the additive impact of combined inhibition of all three receptors. Mice that received DSS, EBV DNA, and each inhibitor alone, or a combination of inhibitors, showed significant improvement. They also had a decrease in the numbers of the pathogenic colonic IL-17A+IFN-γ+ foci. Inhibition of all three endosomal TLR receptors offered no additive benefit over administering a single inhibitor. Therefore, inhibition of endosomal TLRs reduces EBV DNA exacerbation of mouse colitis, offering a potential approach for managing IBD patients infected with EBV.


Asunto(s)
ADN Viral , Herpesvirus Humano 4 , Enfermedades Inflamatorias del Intestino , Receptores Toll-Like , Animales , Femenino , Ratones , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/virología , Sulfato de Dextran , Modelos Animales de Enfermedad , ADN Viral/efectos adversos , ADN Viral/farmacología , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/virología , Interleucina-17/metabolismo , Ratones Endogámicos C57BL , Receptor Toll-Like 3/antagonistas & inhibidores , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 7/antagonistas & inhibidores , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 9/antagonistas & inhibidores , Receptor Toll-Like 9/metabolismo , Receptores Toll-Like/antagonistas & inhibidores , Receptores Toll-Like/metabolismo
17.
Arch Med Res ; 55(3): 102985, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520880

RESUMEN

BACKGROUND: Toll-like receptors (TLRs) play a critical role in initiating the innate immune response to infection or injury. Recent studies have uncovered their intriguing functions as moonlighting proteins involved in various biological processes, including development, learning, and memory. However, the specific functions of individual TLRs are still largely unknown. AIMS: We investigated the effects of TLR3 and TLR9 receptor deficiency on motor, cognitive, and behavioral functions during development using genetically modified male mice of different ages. METHODS: We evaluated the motor coordination, anxiety-like behavior, spatial learning, and working memory of male mice lacking the TLR3 and TLR9 genes at different ages (two, four, six, and eight months) using the rotarod, open field, water maze, and T-maze tests. RESULTS: We observed that the deletion of either TLR3 or TLR9 resulted in impaired motor performance. Furthermore, young TLR3-deficient mice exhibited reduced anxiety-like behavior and spatial learning deficits; however, their working memory was unaffected. In contrast, young TLR9-knockout mice showed hyperactivity and a tendency toward decreased working memory. CONCLUSIONS: These findings provide valuable insights into the broader roles of the TLR system beyond the innate immune response, revealing its involvement in pathways associated with the central nervous system. Importantly, our results establish a strong association between the endosomal receptors TLR3 and TLR9 and the performance of motor, cognitive, and behavioral tasks that change over time. This study contributes to the growing body of research on the multifaceted functions of TLRs and enhances our understanding of their participation in non-immune-related processes.


Asunto(s)
Receptor Toll-Like 3 , Receptor Toll-Like 9 , Animales , Masculino , Ratones , Cognición , Ratones Noqueados , Receptor Toll-Like 3/genética , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 9/genética , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
18.
Cell Immunol ; 399-400: 104823, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38520831

RESUMEN

AAV-mediated gene transfer is a promising platform still plagued by potential host-derived, antagonistic immune responses to therapeutic components. CpG-mediated TLR9 stimulation activates innate immune cells and leads to cognate T cell activation and suppression of transgene expression. Here, we demonstrate that CpG depletion increased expression of an antibody transgene product by 2-3-fold as early as 24 h post-vector administration in mice. No significant differences were noted in anti-transgene product/ anti-AAV capsid antibody production or cytotoxic gene induction. Instead, CpG depletion significantly reduced the presence of a pDC-like myeloid cell population, which was able to directly bind the antibody transgene product via Fc-FcγR interactions. Thus, we extend the mechanisms of TLR9-mediated antagonism of transgene expression in AAV gene therapy to include the actions of a previously unreported pDC-like cell population.


Asunto(s)
Células Dendríticas , Dependovirus , Terapia Genética , Vectores Genéticos , Ratones Endogámicos C57BL , Receptor Toll-Like 9 , Transgenes , Animales , Células Dendríticas/inmunología , Dependovirus/genética , Ratones , Terapia Genética/métodos , Receptor Toll-Like 9/inmunología , Islas de CpG/genética , Islas de CpG/inmunología , Receptores de IgG/inmunología , Receptores de IgG/genética , Receptores de IgG/metabolismo
19.
Nature ; 628(8006): 145-153, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538785

RESUMEN

As hippocampal neurons respond to diverse types of information1, a subset assembles into microcircuits representing a memory2. Those neurons typically undergo energy-intensive molecular adaptations, occasionally resulting in transient DNA damage3-5. Here we found discrete clusters of excitatory hippocampal CA1 neurons with persistent double-stranded DNA (dsDNA) breaks, nuclear envelope ruptures and perinuclear release of histone and dsDNA fragments hours after learning. Following these early events, some neurons acquired an inflammatory phenotype involving activation of TLR9 signalling and accumulation of centrosomal DNA damage repair complexes6. Neuron-specific knockdown of Tlr9 impaired memory while blunting contextual fear conditioning-induced changes of gene expression in specific clusters of excitatory CA1 neurons. Notably, TLR9 had an essential role in centrosome function, including DNA damage repair, ciliogenesis and build-up of perineuronal nets. We demonstrate a novel cascade of learning-induced molecular events in discrete neuronal clusters undergoing dsDNA damage and TLR9-mediated repair, resulting in their recruitment to memory circuits. With compromised TLR9 function, this fundamental memory mechanism becomes a gateway to genomic instability and cognitive impairments implicated in accelerated senescence, psychiatric disorders and neurodegenerative disorders. Maintaining the integrity of TLR9 inflammatory signalling thus emerges as a promising preventive strategy for neurocognitive deficits.


Asunto(s)
Región CA1 Hipocampal , Roturas del ADN de Doble Cadena , Reparación del ADN , Inflamación , Memoria , Receptor Toll-Like 9 , Animales , Femenino , Masculino , Ratones , Envejecimiento/genética , Envejecimiento/patología , Región CA1 Hipocampal/fisiología , Centrosoma/metabolismo , Disfunción Cognitiva/genética , Condicionamiento Clásico , Matriz Extracelular/metabolismo , Miedo , Inestabilidad Genómica/genética , Histonas/metabolismo , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Memoria/fisiología , Trastornos Mentales/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neuroinflamatorias/genética , Neuronas/metabolismo , Neuronas/patología , Membrana Nuclear/patología , Receptor Toll-Like 9/deficiencia , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/inmunología , Receptor Toll-Like 9/metabolismo
20.
Immunogenetics ; 76(3): 203-211, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38441635

RESUMEN

The transmembrane pattern recognition receptor, Toll-like receptor (TLR), are best known for their roles in innate immunity via recognition of pathogen and initiation of signaling response. Mammalian TLRs recognize molecular patterns associated with pathogens and initiate innate immune response. We have studied the evolutionary diversity of mammalian TLR genes for differences in immunological response. Reconstruction of ancestral sequences is a key aspect of the molecular evolution of TLR to track changes across the TLR genes. The comprehensive analysis of mammalian TLRs revealed a distinct pattern of evolution of TLR9. Various sequence-based features such as amino acid usage, hydrophobicity, GC content, and evolutionary constraints are found to influence the divergence of TLR9 from other TLRs. Ancestral sequence reconstruction analysis also revealed that the gradual evolution of TLR genes in several ancestral lineages leads to the distinct pattern of TLR9. It demonstrates evolutionary divergence with the progressive accumulation of mutations results in the distinct pattern of TLR9.


Asunto(s)
Evolución Molecular , Filogenia , Receptor Toll-Like 9 , Receptor Toll-Like 9/genética , Animales , Humanos , Variación Genética , Secuencia de Aminoácidos , Composición de Base
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA