Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 369
Filtrar
1.
Exp Dermatol ; 33(10): e15160, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39435723

RESUMEN

Vitamin D activates the vitamin D receptor (VDR), which dimerizes preferentially with the retinoid X receptor-α (RXRα). This heterodimer connects with genetic elements responsive to vitamin D, inhibiting or stimulating gene activity. We performed Nanostring® analysis of VDR/RXRα to compare the mRNA expression of this heterodimer and their correlated transcriptomes in non-melanoma skin cancer (basal cell carcinomas (BCC) and squamous cell carcinomas (SCC)) and melanocytic lesions (intradermal nevi (IN), and melanomas (MM)) with control skin. To evaluate VDR, RXRα and other 22 correlated genes in BCC, SCC, IN and MM, paraffin samples had their transcriptomes analysed using Nanostring®, a platform that allows multiple mRNA analyses. There were 46 samples, including 11 BCC, 10 SCC, 10 IN, 12 MM and 3 pools of control skins. Most mRNAs differed between the lesion groups and the control group. BCC and SCC NCOR2 were upregulated; in MM and IN, RXRγ was higher than in the control group. TP53, FOXO3 and MED1 showed a significant difference when we compared the BCC group to the SCC group. Melanoma and intradermal nevi differed only in AhR. VDR and RXRα were lower than the control in all groups. The panel shows a clear difference between the non-melanocytic cancers and, on the other hand, a slight difference between the melanocytic lesions. The study of vitamin D's influence through its receptor and RXRα is an exciting issue for understanding the importance of this pathway, and the present study can impact the prevention and treatment strategies, mainly in non-melanocytic tumours.


Asunto(s)
Carcinoma Basocelular , Carcinoma de Células Escamosas , Perfilación de la Expresión Génica , Melanoma , Receptores de Calcitriol , Receptor alfa X Retinoide , Transducción de Señal , Neoplasias Cutáneas , Humanos , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Carcinoma Basocelular/genética , Carcinoma Basocelular/metabolismo , Melanoma/genética , Melanoma/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Receptor alfa X Retinoide/genética , Receptor alfa X Retinoide/metabolismo , Transcriptoma , Persona de Mediana Edad , Masculino , Femenino , Anciano , ARN Mensajero/metabolismo , ARN Mensajero/genética , Nevo/genética , Nevo/metabolismo , Regulación Neoplásica de la Expresión Génica , Adulto
2.
Exp Cell Res ; 442(2): 114271, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39357639

RESUMEN

Metabolic reprogramming is a hallmark of cancer, and abnormal lipid metabolism is associated with drug resistance in bladder cancer cells. The long noncoding RNA (lncRNA) UCA1 is overexpressed in bladder cancer, but its functional contribution to lipid metabolism remains uncharacterized. In this study, we demonstrated that lncRNA UCA1 inhibits epirubicin-induced cell apoptosis by supporting abnormal lipid metabolism in bladder cancer cells. Mechanistically, lncRNA UCA1 promotes lipid accumulation in vitro and in vivo by upregulating PPARα mRNA and protein expression, which is mediated by miR-30a-3p. Knockdown of lncRNA UCA1 increased epirubicin-induced apoptosis via miR-30a-3p/PPARα and downstream p-AKT/p-GSK-3ß/ß-catenin signaling. Furthermore, mixed free fatty acids upregulated lncRNA UCA1 expression by promoting recruitment of the transcription factor RXRα to the lncRNA UCA1 promoter. These findings were verified in a mouse xenograft model and are consistent with the expression patterns in human bladder cancer patients. Overall, these findings establish the role of lncRNA UCA1 in lipid metabolism and bladder cancer cell resistance to epirubicin, suggesting that lncRNA UCA1 may serve as a candidate target for enhancing bladder cancer chemotherapy.


Asunto(s)
Apoptosis , Epirrubicina , Regulación Neoplásica de la Expresión Génica , Metabolismo de los Lípidos , PPAR alfa , ARN Largo no Codificante , Neoplasias de la Vejiga Urinaria , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Humanos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , PPAR alfa/genética , PPAR alfa/metabolismo , Animales , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismo , Ratones , Epirrubicina/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Línea Celular Tumoral , Ratones Desnudos , Receptor alfa X Retinoide/genética , Receptor alfa X Retinoide/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética
3.
Toxicol Appl Pharmacol ; 490: 117042, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39067772

RESUMEN

Hepatocellular carcinoma (HCC) is a primary malignant tumor of the liver. As the global obesity rate rises, non-alcoholic fatty liver disease (NAFLD) has emerged as the most rapidly increasing cause of HCC. Consequently, the regulation of lipid metabolism has become a crucial target for the prevention and treatment of HCC. Liquidambaric acid (LDA), a pentacyclic triterpenoid compound derived from various plants, exhibits diverse biological activities. We found that LDA could inhibit HCC cell proliferation by arresting cell cycle and prompting apoptosis. Additionally, LDA can augment the therapeutic efficacy of Regorafenib in HCC in vitro and vivo. Our study utilized transcriptome analysis, luciferase reporter assays, and co-immunocoprecipitation experiments to elucidate the anti-HCC mechanism of LDA. We discovered that LDA disrupts the formation of the PPARα-RXRα heterodimer, leading to the down-regulation of the ACSL4 gene and subsequently impacting the fatty acid metabolism of HCC cells, ultimately inhibiting HCC proliferation. Our research contributes to the identification of novel therapeutic agents and targets for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Proliferación Celular , Coenzima A Ligasas , Regulación hacia Abajo , Ácidos Grasos , Neoplasias Hepáticas , PPAR alfa , Receptor alfa X Retinoide , PPAR alfa/metabolismo , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Receptor alfa X Retinoide/metabolismo , Receptor alfa X Retinoide/genética , Animales , Ácidos Grasos/metabolismo , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , Células Hep G2 , Ratones Desnudos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Ratones , Compuestos de Fenilurea/farmacología , Masculino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones Endogámicos BALB C , Metabolismo de los Lípidos/efectos de los fármacos , Piridinas
4.
PLoS One ; 19(5): e0294003, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38781157

RESUMEN

Cofactors interacting with PPARγ can regulate adipogenesis and adipocyte metabolism by modulating the transcriptional activity and selectivity of PPARγ signaling. ZFP407 was previously demonstrated to regulate PPARγ target genes such as GLUT4, and its overexpression improved glucose homeostasis in mice. Here, using a series of molecular assays, including protein-interaction studies, mutagenesis, and ChIP-seq, ZFP407 was found to interact with the PPARγ/RXRα protein complex in the nucleus of adipocytes. Consistent with this observation, ZFP407 ChIP-seq peaks significantly overlapped with PPARγ ChIP-seq peaks, with more than half of ZFP407 peaks overlapping with PPARγ peaks. Transcription factor binding motifs enriched in these overlapping sites included CTCF, RARα/RXRγ, TP73, and ELK1, which regulate cellular development and function within adipocytes. Site-directed mutagenesis of frequent PPARγ phosphorylation or SUMOylation sites did not prevent its regulation by ZFP407, while mutagenesis of ZFP407 domains potentially necessary for RXR and PPARγ binding abrogated any impact of ZFP407 on PPARγ activity. These data suggest that ZFP407 controls the activity of PPARγ, but does so independently of post-translational modifications, likely by direct binding, establishing ZFP407 as a newly identified PPARγ cofactor. In addition, ZFP407 ChIP-seq analyses identified regions that did not overlap with PPARγ peaks. These non-overlapping peaks were significantly enriched for the transcription factor binding motifs of TBX19, PAX8, HSF4, and ZKSCAN3, which may contribute to the PPARγ-independent functions of ZFP407 in adipocytes and other cell types.


Asunto(s)
Adipocitos , PPAR gamma , Receptor alfa X Retinoide , Transducción de Señal , Animales , Humanos , Ratones , Células 3T3-L1 , Adipocitos/metabolismo , Sitios de Unión , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Fosforilación , PPAR gamma/metabolismo , PPAR gamma/genética , Unión Proteica , Receptor alfa X Retinoide/metabolismo , Receptor alfa X Retinoide/genética , Sumoilación , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
5.
Sci Rep ; 14(1): 12347, 2024 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811840

RESUMEN

Fascioliasis is a parasitic infection in animals and humans caused by the parasitic flatworm genus Fasciola, which has two major species, F. hepatica and F. gigantica. A major concern regarding this disease is drug resistance, which is increasingly reported worldwide. Hence, the discovery of a novel drug as well as drug targets is crucially required. Therefore, this study aims to characterize the novel drug target in the adult F. gigantica. In the beginning, we hypothesized that the parasite might interact with some host molecules when it lives inside the liver parenchyma or bile ducts, specifically hormones and hormone-like molecules, through the specific receptors, primarily nuclear receptors (NRs), which are recognized as a major drug target in various diseases. The retinoid X receptor (RXR) is a member of subfamily 2 NRs that plays multitudinous roles in organisms by forming homodimers or heterodimers with other NRs. We obtained the full-length amino acid sequences of F. gigantica retinoid X receptor-alpha (FgRXRα-A) from the transcriptome of F. gigantica that existed in the NCBI database. The FgRXRα-A were computationally predicted for the basic properties, multiple aligned, phylogeny analyzed, and generated of 2D and 3D models. Moreover, FgRXRα-A was molecular cloned and expressed as a recombinant protein (rFgRXRα-A), then used for immunization for specific polyclonal antibodies. The native FgRXRα-A was detected in the parasite extracts and tissues, and the function was investigated by in vitro binding assay. The results demonstrated the conservation of FgRXRα-A to the other RXRs, especially RXRs from the trematodes. Interestingly, the native FgRXRα-A could be detected in the testes of the parasite, where the sex hormones are accumulated. Moreover, the binding assay revealed the interaction of 9-cis retinoic acid and FgRXRα-A, suggesting the function of FgRXRα-A. Our findings suggested that FgRXRα-A will be involved with the sexual reproduction of the parasite by forming heterodimers with other NRs, and it could be the potential target for further drug development of fascioliasis.


Asunto(s)
Fasciola , Receptor alfa X Retinoide , Animales , Fasciola/metabolismo , Fasciola/genética , Receptor alfa X Retinoide/metabolismo , Receptor alfa X Retinoide/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Filogenia , Proteínas del Helminto/metabolismo , Proteínas del Helminto/genética , Proteínas del Helminto/química , Fascioliasis/parasitología , Secuencia de Aminoácidos
7.
BMC Endocr Disord ; 23(1): 167, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563580

RESUMEN

BACKGROUND AND PURPOSE: Primary hypothyroidism due to abnormality in the thyroid gland is the most common endocrine disease The recommended starting dose of levothyroxine replacement therapy is 1.6 µg/kg. This dose however is not optimal for every patient and dose adjustments are frequently done. Genetic polymorphisms in the absorption and metabolism pathway of levothyroxine are likely to influence its dose requirements. This study aimed to study the influence of genetic polymorphisms on levothyroxine replacement requirements. METHODS: This was a cross-sectional study. Participants were recruited through a private nutrition clinic and through announcements distributed in the University of Petra in Amman, Jordan between September 2020 and February 2021. Hypothyroid patients had already been on stable doses of levothyroxine for the previous 3 months. A questionnaire was distributed to collect demographic and clinical information and a blood sample was taken for DNA extraction and clinical biochemistry analysis. rs11249460, rs2235544, rs225014, rs225015, rs3806596, rs11185644, rs4588, rs602662 were analyzed using Applied Biosystems TaqMan™ SNP Genotyping Assays on Rotor-Gene® Q and rs3064744 by direct sequencing. SPSS and Excel were used to perform analysis. RESULTS: 76 patients were studied. The equation we calculated to find predicted daily dose of levothyroxine (mcg/kg) is 3.22+ (0.348 for CT genotype of rs11185644, 0 for other genotypes) + 0.027*disease duration (years) - 0.014*age (years) - 0.434*T3 (pmol/L) levels+ (0.296 for CC genotype of rs2235544, 0 for other genotypes). CONCLUSION: SNP rs11185644 in RXRA gene and SNP rs2235544 in DIO1 affect dose requirement in hypothyroid patients and if confirmed in larger trials they can be used to individualize thyroxine starting doses.


Asunto(s)
Hipotiroidismo , Yoduro Peroxidasa , Receptor alfa X Retinoide , Tiroxina , Humanos , Estudios Transversales , Genotipo , Hipotiroidismo/tratamiento farmacológico , Hipotiroidismo/genética , Tirotropina , Tiroxina/uso terapéutico , Yoduro Peroxidasa/genética , Receptor alfa X Retinoide/genética , Polimorfismo de Nucleótido Simple
8.
Am J Dermatopathol ; 45(9): 619-625, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37506276

RESUMEN

ABSTRACT: Vitamin D receptor (VDR) exerts its biological effects when it heterodimerizes to a nuclear receptor of the retinoid family called retinoid X receptor α (RXRα), stimulating or inhibiting DNA transcription. VDR stimulation by vitamin D analogs led to in vitro antiproliferative effects, and experimental RXRα knockout led to loss of proliferation control in melanoma cells. The aim of this study was to determine VDR and RXRα positivity in melanocytic lesions, compared with normal skin species. By immunohistochemistry assays, nuclear VDR, cytoplasmic VDR, and RXRα and RXRα in keratinocytes surrounding melanocytes were evaluated in 77 controls, 92 intradermal nevi, 54 dysplastic nevi, and 83 melanomas in this retrospective cross-sectional study. Nuclear VDR, cytoplasmic VDR, and RXRα were less expressed in exposed areas ( P < 0.001, P = 0.0006, and P < 0.001, respectively) than covered areas. All melanocytic lesions had loss of VDR and RXRα comparing with the control group. In the melanoma group, nuclear VDR tended to inversely correlate with the Breslow index (r = -0.11, P = 0.29) but directly correlated with histological regression ( P = 0.0293). RXRα inversely correlated with mitosis (r = -0.245; P = 0.0263). We can suggest that sun exposure affected VDR and RXRα immunopositivity. Nuclear VDR tendency of inverse correlation with the Breslow index showed that worse melanomas have a greater loss of VDR. RXRα inversely correlated with mitosis, indicating that RXRα can have a role in proliferation control. VDR and RXRα may participate in the development of melanocytic lesions and be a future target of new studies and directed therapies.


Asunto(s)
Melanoma , Receptores de Calcitriol , Humanos , Receptores de Calcitriol/genética , Receptor alfa X Retinoide/genética , Estudios Retrospectivos , Estudios Transversales , Melanoma/patología , Melanocitos/patología
9.
Neuron ; 111(9): 1453-1467.e7, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36889314

RESUMEN

The complex nature of the transcriptional networks underlying addictive behaviors suggests intricate cooperation between diverse gene regulation mechanisms that go beyond canonical activity-dependent pathways. Here, we implicate in this process a nuclear receptor transcription factor, retinoid X receptor alpha (RXRα), which we initially identified bioinformatically as associated with addiction-like behaviors. In the nucleus accumbens (NAc) of male and female mice, we show that although its own expression remains unaltered after cocaine exposure, RXRα controls plasticity- and addiction-relevant transcriptional programs in both dopamine receptor D1- and D2-expressing medium spiny neurons, which in turn modulate intrinsic excitability and synaptic activity of these NAc cell types. Behaviorally, bidirectional viral and pharmacological manipulation of RXRα regulates drug reward sensitivity in both non-operant and operant paradigms. Together, this study demonstrates a key role for NAc RXRα in promoting drug addiction and paves the way for future studies of rexinoid signaling in psychiatric disease states.


Asunto(s)
Cocaína , Trastornos Mentales , Ratones , Masculino , Femenino , Animales , Núcleo Accumbens/metabolismo , Receptor alfa X Retinoide/genética , Receptor alfa X Retinoide/metabolismo , Neuronas/fisiología , Cocaína/farmacología , Receptores de Dopamina D1/metabolismo , Trastornos Mentales/metabolismo , Recompensa , Ratones Endogámicos C57BL
10.
Biochem Biophys Res Commun ; 642: 50-56, 2023 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-36563628

RESUMEN

Retinoid X receptor (RXRα) is a nuclear receptor (NR) for retinoic acid (RA) and regulates various NR signaling pathways. Ligand-binding domain (LBD) of RXRα can bind with its ligand 9-cis-RA and cofactors, and mediate the forming of homodimer and homotetramer of RXRα and its heterodimer with other NRs, conferring RXRα the ability to play complicated roles in development and diseases. Due to the coexistence of monomer, dimer and tetramer, there are difficulties to study the structure and interaction of RXRα-LBD with its ligands and cofactors in solution and to distinguish the roles of different forms of RXRα in cell. Here, through analyzing available structures of RXRα-LBD, we selected two residues, D379 and L420, in the homodimer interface to design three mutants of RXRα-LBD. Recombinant proteins of the three mutants showed decreased proportions of dimer and tetramer but unchanged overall structure and binding affinities to 9-cis-RA, corepressor SMRT, and coactivator SRC2. Especially, the double-site mutant RXRα-LBDD379A-L420G existed as a uniform monomer. Furthermore, L420 was found to play a similar role in forming RXRα-LBD homodimer and its heterodimer with various NRs, while the role of D379 varies a lot, as it shows almost no interaction with RARα/ß, LXRα/ß, and THRα/ß. This study provides a new insight into the mechanism for forming RXRα-LBD homodimer and its heterodimer with other NRs, and will facilitate the studies on the structure and interaction of RXRα-LBD with ligands, cofactors and drugs in solution, and the broad physiological functions of RXRα cooperating with various NRs in cell.


Asunto(s)
Receptor alfa X Retinoide , Tretinoina , Tretinoina/metabolismo , Ligandos , Receptor alfa X Retinoide/genética , Receptor alfa X Retinoide/metabolismo , Alitretinoína , Mutación
11.
J Biomol Struct Dyn ; 41(19): 9828-9839, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36411737

RESUMEN

The Retinoid X receptor alpha-Thyroid hormone receptor beta (RXRα-THRß) heterodimer plays an important role in physiological function of humans specially in the growth and development. Extensive MD-simulation studies on the aquated complexes of modelled RXRα-THRß heterodimer with DNA-duplex have indicated the role of some conserved/semiconserved water molecules in the complexation process in presence or absence of Triiodothyronine (T3) and 9-cis retinoic acid (9CR) in the respective Ligand Binding Domain (LBD) domain. Among the seventeen conserved/semi-conserved water molecules, the W1-W4 water centers have been observed to mediate the interaction between the residues of A-chain (DBD of RXR) to consensus sequence (C-chain) of DNA. The W5-W8 water centers involve in recognition of the residues of B-chain (DBD of THR) to C-chain of DNA. The W9-W13 centers have connected the different residues of B-chain (THR) to D-chain of DNA through H-bonds, whereas W14-W17 water molecules were involved in the interaction of A-chain's (RXR) residues to D-chain of DNA. In our previous study with homodimeric THRß from Rattus norvegicus we have identified fifteen conserved water molecules at the DNA-DBD interface. Moreover, the conformational flexibility of Met313 (in the LBD of THR) from open to close form in presence or absence of T3 molecule in the holo and Apo-protein may provide a plausible rational on the possible role of that residue to acts as gate which could restrict the solvent molecules to enter into the hydrophobic T3-binding pocket of LBD during the absence of ligand molecule and thus could help the stabilization of that domain in THRß structure.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Receptor alfa X Retinoide , Receptores beta de Hormona Tiroidea , Humanos , Ratas , Animales , Receptor alfa X Retinoide/genética , Receptor alfa X Retinoide/metabolismo , Receptores beta de Hormona Tiroidea/genética , Ligandos , Agua , Receptores X Retinoide , ADN/metabolismo , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/química , Receptores de Hormona Tiroidea/metabolismo
12.
Urolithiasis ; 51(1): 13, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36484839

RESUMEN

Nephrolithiasis is one of the most common and frequent urologic diseases worldwide. The molecular mechanism of kidney stone formation is complex and remains to be illustrated. Transcript factors (TFs) that influenced the expression pattern of multiple genes, as well as microRNAs, important posttranscriptional modulators, play vital roles in this disease progression. Datasets of nephrolithiasis mice and kidney stone patients were acquired from Gene Expression Omnibus repository. TFs were predicted from differentially expressed genes by RcisTarget. The target genes of differential-expressed microRNAs were predicted by miRWalk. MicroRNA-mRNA network and PPI network were constructed. Functional enrichment analysis was performed via Metascape and Cytoscape identified hub genes. The assay of quantitative real-time PCR (q-PCR) and immunochemistry and the datasets of oxalate diet-induced nephrolithiasis mice kidneys and kidney stone patients' samples were utilized to validate the bioinformatic results. We identified three potential key TFs (Egr1, Rxra, Max), which can be modulated by miR-181a-5p, miR-7b-3p and miR-22-3p, respectively. The TFs and their regulated hub genes influenced the progression of nephrolithiasis via altering the expression of genes enriched in the functions of fibrosis, cell proliferation and molecular transportation and metabolism. The expression changes of transcription factors were consistent in q-PCR and immunochemistry results. For regulated hub genes, they showed consistent expression changes in oxalate diet-induced nephrolithiasis mice model and human kidneys with stones. The identified and verified three TFs, which may be modulated by microRNAs in nephrolithiasis disease progression, mainly influence biological processes responding to fibrosis, proliferation and molecular transportation and metabolism. The transcript influence showed consistency in multiple nephrolithiasis mice models and kidney stone patients.


Asunto(s)
Proteína 1 de la Respuesta de Crecimiento Precoz , Cálculos Renales , MicroARNs , Receptor alfa X Retinoide , Animales , Humanos , Ratones , Progresión de la Enfermedad , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Fibrosis , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Cálculos Renales/genética , Cálculos Renales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Oxalatos , Receptor alfa X Retinoide/genética , Receptor alfa X Retinoide/metabolismo , ARN Mensajero/genética
13.
Proc Natl Acad Sci U S A ; 119(49): e2206737119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442107

RESUMEN

Orphan nuclear receptor Nurr1 plays important roles in the progression of various diseases, including Parkinson's disease, neuroinflammation, Alzheimer's disease, and multiple sclerosis. It can recognize DNA as a monomer or heterodimer with retinoid X receptor α (RXRα). But the molecular mechanism of its transcriptional activity regulation is still largely unknown. Here we obtained a crystal structure of monomer Nurr1 (DNA- and ligand-binding domains, DBD and LBD) bound to NGFI-B response element. The structure exhibited two different forms with distinct DBD orientations, unveiling the conformational flexibility of nuclear receptor monomer. We then generated an integrative model of Nurr1-RXRα heterodimer. In the context of heterodimer, the structural flexibility of Nurr1 would contribute to its transcriptional activity modulation. We demonstrated that the DNA sequence may specifically modulate the transcriptional activity of Nurr1 in the absence of RXRα agonist, but the modulation can be superseded when the agonist binds to RXRα. Together, we propose a set of signaling pathways for the constitutive transcriptional activation of Nurr1 and provide molecular mechanisms for therapeutic discovery targeting Nurr1 and Nurr1-RXRα heterodimer.


Asunto(s)
Elementos de Respuesta , Receptor alfa X Retinoide , Activación Transcripcional , Receptor alfa X Retinoide/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Dominios Proteicos
14.
Proc Natl Acad Sci U S A ; 119(44): e2210434119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36282921

RESUMEN

The cJun NH2-terminal kinase (JNK) signaling pathway in the liver promotes systemic changes in metabolism by regulating peroxisome proliferator-activated receptor α (PPARα)-dependent expression of the hepatokine fibroblast growth factor 21 (FGF21). Hepatocyte-specific gene ablation studies demonstrated that the Mapk9 gene (encoding JNK2) plays a key mechanistic role. Mutually exclusive inclusion of exons 7a and 7b yields expression of the isoforms JNK2α and JNK2ß. Here we demonstrate that Fgf21 gene expression and metabolic regulation are primarily regulated by the JNK2α isoform. To identify relevant substrates of JNK2α, we performed a quantitative phosphoproteomic study of livers isolated from control mice, mice with JNK deficiency in hepatocytes, and mice that express only JNK2α or JNK2ß in hepatocytes. We identified the JNK substrate retinoid X receptor α (RXRα) as a protein that exhibited JNK2α-promoted phosphorylation in vivo. RXRα functions as a heterodimeric partner of PPARα and may therefore mediate the effects of JNK2α signaling on Fgf21 expression. To test this hypothesis, we established mice with hepatocyte-specific expression of wild-type or mutated RXRα proteins. We found that the RXRα phosphorylation site Ser260 was required for suppression of Fgf21 gene expression. Collectively, these data establish a JNK-mediated signaling pathway that regulates hepatic Fgf21 expression.


Asunto(s)
Síndrome Metabólico , PPAR alfa , Animales , Ratones , Proteínas Portadoras/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Síndrome Metabólico/metabolismo , Ratones Noqueados , Fosforilación , PPAR alfa/genética , PPAR alfa/metabolismo , Receptor alfa X Retinoide/genética , Receptor alfa X Retinoide/metabolismo , MAP Quinasa Quinasa 4/metabolismo
15.
Arch Gynecol Obstet ; 305(6): 1559-1572, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34870752

RESUMEN

OBJECTIVE: Ovarian cancer is the most lethal gynecologic cancer. Resveratrol (RSV) is known to alter metabolism in cancer. It affects the nuclear retinoid-X-receptor (RXR), which implies a modulating effect of RXR to gynaecologic cancers. Furthermore, RSV targets Sirtuin1 (Sirt1), a histone deacetylase. STUDY DESIGN: 123 tissue samples of patients with serous or mucinous ovarian cancer were examined for expression of Sirt1 and RXR. Ovarian cell lines were treated with RSV and consequences on viability and apoptosis were evaluated. The influence of RSV to Sirt1 and RXR expression was analyzed by western blotting RESULTS: A correlation of nuclear Sirt1 and RXRα expression could be detected (p = 0.006). Co-expression of nuclear RXRα and cytoplasmic (p = 0.026) or nuclear (p = 0.041) Sirt1 was associated with significantly increased overall survival in advanced tumour stages. Viability was decreased in all cell lines after stimulation with resveratrol, while cell apoptosis was increased. RSV treatment led to significant lower Sirt1 expression in A2780 cells (p = 0.025) and significant increased RXR expression in cisA2780 cells (p = 0.012) CONCLUSION: In order to use RSV as medical target, studies could be developed to improve the understanding of drug resistance mechanisms and consequently improve treatment outcome.


Asunto(s)
Neoplasias Ováricas , Resveratrol , Receptor alfa X Retinoide , Sirtuina 1 , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Pronóstico , Resveratrol/farmacología , Receptor alfa X Retinoide/genética , Sirtuina 1/genética
16.
Genomics ; 114(1): 72-83, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34861383

RESUMEN

Hepatocellular carcinoma expressing hepatobiliary progenitor markers, is considered of poor prognosis. By using a hepatocarcinogenesis model, laser capture microdissection, and RNA-Sequencing analysis, we identified an expression profile in GGT/KRT19-positive experimental tumors; 438 differentially expressed genes were found in early and late nodules along with increased collagen deposition. Dysregulated genes were involved in Fatty Acid Metabolism, RXR function, and Hepatic Stellate Cells Activation. Downregulation of Slc27a5, Acsl1, and Cyp2e1, demonstrated that Retinoid X Receptor α (RXRα) function is compromised in GGT/KRT19-positive nodules. Since RXRα controls NRF2 pathway activation, we determined the expression of NRF2 targeted genes; Akr1b8, Akr7a3, Gstp1, Abcc3, Ptgr1, and Txnrd1 were upregulated, indicating NRF2 pathway activation. A comparative analysis in human HCC showed that SLC27A5, ACSL1, CYP2E1, and RXRα gene expression is mutually exclusive with KRT19 gene expression. Our results indicate that the downregulation of Slc27a5, Acsl1, Rxrα, and Cyp2e1 genes is an early event within GGT/KRT19-positive HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Ácidos Grasos , Humanos , Neoplasias Hepáticas/metabolismo , Receptor alfa X Retinoide/genética , Receptor alfa X Retinoide/metabolismo , Transcriptoma
17.
Haematologica ; 107(2): 417-426, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34134472

RESUMEN

RARA and RXRA contribute to myeloid maturation in both mice and humans, and deletion of Rxra and Rxrb augments leukemic growth in mice. While defining the domains of RXRA that are required for anti-leukemic effects in murine KMT2A-MLLT3 leukemia cells, we unexpectedly identified RXRA DT448/9PP as a constitutively active variant capable of inducing maturation and loss of their proliferative phenotype. RXRA DT448/9PP was associated with ligand-independent activity in reporter assays, with enhanced co-activator interactions, reduced engraftment in vivo, and activation of myeloid maturation transcriptional signatures that overlapped with those of cells treated with the potent RXRA agonist bexarotene, suggestive of constitutive activity that leads to leukemic maturation. Phenotypes of RXRA DT448/9PP appear to differ from those of two other RXRA mutations with forms of constitutive activity (F318A and S427F), in that DT448/9PP activity was resistant to mutations at critical ligand-interacting amino acids (R316A/L326A) and was resistant to pharmacological antagonists, suggesting it may be ligand-independent. These data provide further evidence that activated retinoid X receptors can regulate myeloid maturation and provide a novel constitutively active variant that may be germane for broader studies of retinoid X receptors in other settings.


Asunto(s)
Leucemia Mieloide Aguda , Leucemia Promielocítica Aguda , Receptor alfa X Retinoide , Animales , Proteínas de Unión al ADN , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Promielocítica Aguda/tratamiento farmacológico , Ratones , Receptor alfa X Retinoide/genética , Receptor alfa X Retinoide/metabolismo
18.
Carcinogenesis ; 43(3): 254-263, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-34668523

RESUMEN

Previous studies have shown that phosphorylation of the retinoid X receptor-α (RXRα) is associated with the development of hepatocellular carcinoma (HCC). However, these findings were revealed using HCC cell lines that express phosphorylated-RXRα (p-RXRα) proteins; therefore, it remains unclear whether p-RXRα affects hepatocarcinogenesis in vivo. Therefore, to investigate the biological function of p-RXRα in vivo, we developed a doxycycline-inducible ES cell line and transgenic mouse, both of which overexpress the phosphomimetic mutant form of RXRα, T82D/S260D, in a doxycycline-dependent manner. We found that the development of liver tumors, especially high-grade adenoma and HCC, was enhanced in diethylnitrosamine (DEN)-treated T82D/S260D-inducible mice. Moreover, the increased incidence of liver tumors in the transgenic mice was attributable to the promotion of cell cycle progression. Interestingly, the expression of ß-catenin protein and its target gene cyclin D1 was elevated in the liver tumors of DEN-treated T82D/S260D-inducible mice, concurrent with increased cytoplasmic and nuclear ß-catenin protein expression, indicating its stabilization and transcriptional activation. These results indicate that p-RXRα promotes DEN-induced hepatocarcinogenesis in mice through the activation of the ß-catenin signaling pathway, suggesting that p-RXRα may serve as a possible therapeutic target for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinogénesis/inducido químicamente , Carcinogénesis/genética , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Dietilnitrosamina/toxicidad , Doxiciclina , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ratones , Ratones Transgénicos , Receptor alfa X Retinoide/genética , Receptor alfa X Retinoide/metabolismo , Receptores X Retinoide , Transducción de Señal , beta Catenina/genética , beta Catenina/metabolismo
19.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34830251

RESUMEN

Five novel analogs of 6-(ethyl)(4-isobutoxy-3-isopropylphenyl)amino)nicotinic acid-or NEt-4IB-in addition to seven novel analogs of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (bexarotene) were prepared and evaluated for selective retinoid-X-receptor (RXR) agonism alongside bexarotene (1), a FDA-approved drug for cutaneous T-cell lymphoma (CTCL). Bexarotene treatment elicits side-effects by provoking or disrupting other RXR-dependent pathways. Analogs were assessed by the modeling of binding to RXR and then evaluated in a human cell-based RXR-RXR mammalian-2-hybrid (M2H) system as well as a RXRE-controlled transcriptional system. The analogs were also tested in KMT2A-MLLT3 leukemia cells and the EC50 and IC50 values were determined for these compounds. Moreover, the analogs were assessed for activation of LXR in an LXRE system as drivers of ApoE expression and subsequent use as potential therapeutics in neurodegenerative disorders, and the results revealed that these compounds exerted a range of differential LXR-RXR activation and selectivity. Furthermore, several of the novel analogs in this study exhibited reduced RARE cross-signaling, implying RXR selectivity. These results demonstrate that modification of partial agonists such as NEt-4IB and potent rexinoids such as bexarotene can lead to compounds with improved RXR selectivity, decreased cross-signaling of other RXR-dependent nuclear receptors, increased LXRE-heterodimer selectivity, and enhanced anti-proliferative potential in leukemia cell lines compared to therapeutics such as 1.


Asunto(s)
Antineoplásicos/farmacología , Apolipoproteínas E/genética , Bexaroteno/farmacología , Leucocitos/efectos de los fármacos , Ácidos Nicotínicos/farmacología , Receptor alfa X Retinoide/agonistas , Animales , Antineoplásicos/síntesis química , Apolipoproteínas E/metabolismo , Bexaroteno/análogos & derivados , Bexaroteno/síntesis química , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Expresión Génica , Humanos , Leucocitos/metabolismo , Leucocitos/patología , Ácidos Nicotínicos/síntesis química , Receptor alfa X Retinoide/genética , Receptor alfa X Retinoide/metabolismo , Relación Estructura-Actividad
20.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34830351

RESUMEN

The aim of this study was to analyze the expression of peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor α (RxRα), a binding heterodimer playing a pivotal role in the successful trophoblast invasion, in the placental tissue of preeclamptic patients. Furthermore, we aimed to characterize a possible interaction between PPARγ and H3K4me3 (trimethylated lysine 4 of the histone H3), respectively H3K9ac (acetylated lysine 9 of the histone H3), to illuminate the role of histone modifications in a defective trophoblast invasion in preeclampsia (PE). Therefore, the expression of PPARγ and RxRα was analyzed in 26 PE and 25 control placentas by immunohistochemical peroxidase staining, as well as the co-expression with H3K4me3 and H3K9ac by double immunofluorescence staining. Further, the effect of a specific PPARγ-agonist (Ciglitazone) and PPARγ-antagonist (T0070907) on the histone modifications H3K9ac and H3K4me3 was analyzed in vitro. In PE placentas, we found a reduced expression of PPARγ and RxRα and a reduced co-expression with H3K4me3 and H3K9ac in the extravillous trophoblast (EVT). Furthermore, with the PPARγ-antagonist treated human villous trophoblast (HVT) cells and primary isolated EVT cells showed higher levels of the histone modification proteins whereas treatment with the PPARγ-agonist reduced respective histone modifications. Our results show that the stimulation of PPARγ-activity leads to a reduction of H3K4me3 and H3K9ac in trophoblast cells, but paradoxically decreases the nuclear PPARγ expression. As the importance of PPARγ, being involved in a successful trophoblast invasion has already been investigated, our results reveal a pathophysiologic connection between PPARγ and the epigenetic modulation via H3K4me3 and H3K9ac in PE.


Asunto(s)
Epigénesis Genética , Histonas/genética , PPAR gamma/genética , Preeclampsia/genética , Receptor alfa X Retinoide/genética , Trofoblastos/metabolismo , Adulto , Benzamidas/farmacología , Estudios de Casos y Controles , Femenino , Histonas/metabolismo , Humanos , Metilación/efectos de los fármacos , PPAR gamma/agonistas , PPAR gamma/antagonistas & inhibidores , PPAR gamma/metabolismo , Preeclampsia/metabolismo , Preeclampsia/patología , Embarazo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Piridinas/farmacología , Receptor alfa X Retinoide/metabolismo , Transducción de Señal , Tiazolidinedionas/farmacología , Trofoblastos/efectos de los fármacos , Trofoblastos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...