Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
CNS Neurosci Ther ; 30(5): e14742, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38715283

RESUMEN

BACKGROUND: Adenosine A3 receptor (ADORA3) belongs to the adenosine receptor families and the role of ADORA3 in vascular dementia (VaD) is largely unexplored. The present study sought to determine the therapeutic role of ADORA3 antagonist in a mouse model of VaD. METHODS: The GSE122063 dataset was selected to screen the differential expression genes and pathways between VaD patients and controls. A mouse model of bilateral carotid artery stenosis (BCAS) was established. The cognitive functions were examined by the novel object recognition test, Y maze test, and fear of conditioning test. The white matter injury (WMI) was examined by 9.4 T MRI, western blot, and immunofluorescence staining. The mechanisms of ADORA3-regulated phagocytosis by microglia were examined using qPCR, western blot, dual immunofluorescence staining, and flow cytometry. RESULTS: The expression of ADORA3 was elevated in brain tissues of VaD patients and ADORA3 was indicated as a key gene for VaD in the GSE122063. In BCAS mice, the expression of ADORA3 was predominantly elevated in microglia in the corpus callosum. ADORA3 antagonist promotes microglial phagocytosis to myelin debris by facilitating cAMP/PKA/p-CREB pathway and thereby ameliorates WMI and cognitive impairment in BCAS mice. The therapeutic effect of ADORA3 antagonist was partially reversed by the inhibition of the cAMP/PKA pathway. CONCLUSIONS: ADORA3 antagonist alleviates chronic ischemic WMI by modulating myelin clearance of microglia, which may be a potential therapeutic target for the treatment of VaD.


Asunto(s)
Demencia Vascular , Ratones Endogámicos C57BL , Microglía , Fagocitosis , Receptor de Adenosina A3 , Animales , Humanos , Masculino , Ratones , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Estenosis Carotídea , Demencia Vascular/patología , Demencia Vascular/metabolismo , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Compuestos Orgánicos , Fagocitosis/efectos de los fármacos , Fagocitosis/fisiología , Receptor de Adenosina A3/metabolismo , Receptor de Adenosina A3/genética , Sustancia Blanca/patología , Sustancia Blanca/metabolismo , Sustancia Blanca/efectos de los fármacos
2.
Int Immunopharmacol ; 133: 112095, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38678668

RESUMEN

BACKGROUND: Adenosine A3 receptor (A3R) exerts analgesic, anti-inflammatory, and anti-nociceptive effects. In this study, we determined the analgesic mechanism of manual acupuncture (MA) in rats with complete Freund's adjuvant (CFA)-induced arthritis and explored whether MA ameliorates inflammation in these rats by upregulating A3R. METHODS: Sixty Sprague Dawley (SD) rats were randomly divided into the following groups: Control, CFA, CFA + MA, CFA + sham MA, CFA + MA + DMSO, CFA + MA + IB-MECA, and CFA + MA + Reversine groups. The arthritis rat model was induced by injecting CFA into the left ankle joints. Thereafter, the rats were subjected to MA (ST36 acupoint) for 3 days. The clinical indicators paw withdrawal latency (PWL), paw withdrawal threshold (PWT), and open field test (OFT) were used to determine the analgesic effect of MA. In addition, to explore the effect of A3R on inflammation after subjecting arthritis rats to MA, IB-MECA (A3R agonist) and Reversine (A3R antagonist) were injected into ST36 before MA. RESULTS: MA ameliorated the pathological symptoms of CFA-induced arthritis, including the pain indicators PWL and PWT, number of rearing, total ambulatory distance, and activity trajectory. Furthermore, after MA, the mRNA and protein expression of A3R was upregulated in CFA-induced arthritis rats. In contrast, the protein levels of TNF-α, IL-1ß, Rap1, and p-p65 were downregulated after MA. Interestingly, the A3R agonist and antagonist further downregulated and upregulated inflammatory cytokine expression, respectively, after MA. Furthermore, the A3R antagonist increased the degree of ankle swelling after MA. CONCLUSION: MA can alleviate inflammatory pain by inhibiting the NF-κB signaling pathway via upregulating A3R expression of the superficial fascia of the ST36 acupoint site in CFA-induced arthritis rats.


Asunto(s)
Terapia por Acupuntura , Artritis Experimental , Adyuvante de Freund , Ratas Sprague-Dawley , Receptor de Adenosina A3 , Regulación hacia Arriba , Animales , Receptor de Adenosina A3/metabolismo , Receptor de Adenosina A3/genética , Artritis Experimental/terapia , Ratas , Masculino , Inflamación , Dolor/tratamiento farmacológico , Puntos de Acupuntura , Manejo del Dolor/métodos
3.
Mol Biol Rep ; 51(1): 464, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38551734

RESUMEN

Adenosine receptors are important in the normal physiological function of cells and the pathogenesis of various cancer cells, including breast cancer cells. The activity of adenosine receptors in cancer cells is related to cell proliferation, angiogenesis, metastasis, immune system evasion, and interference with apoptosis. Considering the different roles of adenosine receptors in cancer cells, we intend to investigate the function of adenosine receptors and their biological pathways in breast cancer to improve understanding of therapeutically relevant signaling pathways.


Asunto(s)
Neoplasias de la Mama , Receptor de Adenosina A3 , Humanos , Femenino , Receptor de Adenosina A3/genética , Receptor de Adenosina A3/metabolismo , Neoplasias de la Mama/genética , Apoptosis
4.
Cell Death Dis ; 14(10): 706, 2023 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898628

RESUMEN

Skeletal muscle regeneration is a complex process orchestrated by multiple interacting steps. An increasing number of reports indicate that inflammatory responses play a central role in linking initial muscle injury responses to timely muscle regeneration following injury. The nucleoside adenosine has been known for a long time as an endogenously produced anti-inflammatory molecule that is generated in high amounts during tissue injury. It mediates its physiological effects via four types of adenosine receptors. From these, adenosine A3 receptors (A3Rs) are not expressed by the skeletal muscle but are present on the surface of various inflammatory cells. In the present paper, the effect of the loss of A3Rs was investigated on the regeneration of the tibialis anterior (TA) muscle in mice following cardiotoxin-induced injury. Here we report that regeneration of the skeletal muscle from A3R-/- mice is characterized by a stronger initial inflammatory response resulting in a larger number of transmigrating inflammatory cells to the injury site, faster clearance of cell debris, enhanced proliferation and faster differentiation of the satellite cells (the muscle stem cells), and increased fusion of the generated myoblasts. This leads to accelerated skeletal muscle tissue repair and the formation of larger myofibers. Though the infiltrating immune cells expressed A3Rs and showed an increased inflammatory profile in the injured A3R-/- muscles, bone marrow transplantation experiments revealed that the increased response of the tissue-resident cells to tissue injury is responsible for the observed phenomenon. Altogether our data indicate that A3Rs are negative regulators of injury-related regenerative inflammation and consequently also that of the muscle fiber growth in the TA muscle. Thus, inhibiting A3Rs might have a therapeutic value during skeletal muscle regeneration following injury.


Asunto(s)
Cardiotoxinas , Células Satélite del Músculo Esquelético , Ratones , Animales , Cardiotoxinas/toxicidad , Receptor de Adenosina A3/genética , Músculo Esquelético , Fibras Musculares Esqueléticas
5.
Biomolecules ; 11(10)2021 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-34680083

RESUMEN

A3 adenosine receptor (A3AR) agonists have emerged as potent relievers of neuropathic pain by a T cell-mediated production of IL-10. The H4 histamine receptor (H4R), also implicated in pain modulation, is expressed on T cells playing a preeminent role in its activation and release of IL-10. To improve the therapeutic opportunities, this study aimed to verify the hypothesis of a possible cross-talk between A3AR and H4R in the resolution of neuropathic pain. In the mouse model of Chronic Constriction Injury (CCI), the acute intraperitoneal co-administration of the A3AR agonist IB-MECA (0.5 mg/kg) and the H4R agonist VUF 8430 (10 mg/kg), were additive in counteracting mechano-allodynia increasing IL-10 plasma levels. In H4R-/- mice, IB-MECA activity was reduced, lower pain relief and lower modulation of plasma IL-1ß, TNF-α, IL-6 and IL-10 were shown. The complete anti-allodynia effect of IB-MECA in H4R-/- mice was restored after intravenous administration of CD4+ T cells obtained from naïve wild type mice. In conclusion, a role of the histaminergic system in the mechanism of A3AR-mediated neuropathic pain relief was suggested highlighting the driving force evoked by CD4+ T cells throughout IL-10 up-regulation.


Asunto(s)
Interleucina-10/genética , Neuralgia/tratamiento farmacológico , Receptor de Adenosina A3/genética , Receptores Histamínicos H4/genética , Adenosina/análogos & derivados , Adenosina/farmacología , Agonistas del Receptor de Adenosina A3/farmacología , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Guanidinas/farmacología , Humanos , Ratones , Neuralgia/genética , Neuralgia/patología , Receptores Histamínicos H4/agonistas , Tiourea/análogos & derivados , Tiourea/farmacología
6.
Cells ; 10(7)2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201851

RESUMEN

Recently, the involvement of the nervous system in the pathology of allergic diseases has attracted increasing interest. However, the precise pathophysiological role of enteric neurons in food allergies has not been elucidated. We report the presence of functional high-affinity IgE receptors (FcεRIs) in enteric neurons. FcεRI immunoreactivities were observed in approximately 70% of cholinergic myenteric neurons from choline acetyltransferase-eGFP mice. Furthermore, stimulation by IgE-antigen elevated intracellular Ca2+ concentration in isolated myenteric neurons from normal mice, suggesting that FcεRIs are capable of activating myenteric neurons. Additionally, the morphological investigation revealed that the majority of mucosal mast cells were in close proximity to enteric nerve fibers in the colonic mucosa of food allergy mice. Next, using a newly developed coculture system of isolated myenteric neurons and mucosal-type bone-marrow-derived mast cells (mBMMCs) with a calcium imaging system, we demonstrated that the stimulation of isolated myenteric neurons by veratridine caused the activation of mBMMCs, which was suppressed by the adenosine A3 receptor antagonist MRE 3008F20. Moreover, the expression of the adenosine A3 receptor gene was detected in mBMMCs. Therefore, in conclusion, it is suggested that, through interaction with mucosal mast cells, IgE-antigen-activated myenteric neurons play a pathological role in further exacerbating the pathology of food allergy.


Asunto(s)
Comunicación Celular , Sistema Nervioso Entérico/fisiopatología , Hipersensibilidad a los Alimentos/inmunología , Hipersensibilidad a los Alimentos/fisiopatología , Mucosa Intestinal/inmunología , Mucosa Intestinal/fisiopatología , Mastocitos/inmunología , Neuronas/patología , Adenosina/farmacología , Antagonistas del Receptor de Adenosina A3/farmacología , Animales , Antígenos/metabolismo , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/patología , Comunicación Celular/efectos de los fármacos , Células Cultivadas , Sistema Nervioso Entérico/efectos de los fármacos , Sistema Nervioso Entérico/inmunología , Mucosa Intestinal/efectos de los fármacos , Espacio Intracelular/metabolismo , Masculino , Mastocitos/efectos de los fármacos , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Modelos Biológicos , Plexo Mientérico/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor de Adenosina A3/genética , Receptor de Adenosina A3/metabolismo , Receptores de IgE/metabolismo
7.
FASEB J ; 35(4): e21211, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33710641

RESUMEN

Organization of G protein-coupled receptors at the plasma membrane has been the focus of much recent attention. Advanced microscopy techniques have shown that these receptors can be localized to discrete microdomains and reorganization upon ligand activation is crucial in orchestrating their signaling. Here, we have compared the membrane organization and downstream signaling of a mutant (R108A, R3.50A) of the adenosine A3 receptor (A3 AR) to that of the wild-type receptor. Fluorescence Correlation Spectroscopy (FCS) studies with a fluorescent agonist (ABEA-X-BY630) demonstrated that both wild-type and mutant receptors bind agonist with high affinity but in subsequent downstream signaling assays the R108A mutation abolished agonist-mediated inhibition of cAMP production and ERK phosphorylation. In further FCS studies, both A3 AR and A3 AR R108A underwent similar agonist-induced increases in receptor density and molecular brightness which were accompanied by a decrease in membrane diffusion after agonist treatment. Using bimolecular fluorescence complementation, experiments showed that the R108A mutant retained the ability to recruit ß-arrestin and these receptor/arrestin complexes displayed similar membrane diffusion and organization to that observed with wild-type receptors. These data demonstrate that effective G protein signaling is not a prerequisite for agonist-stimulated ß-arrestin recruitment and membrane reorganization of the A3 AR.


Asunto(s)
Agonistas del Receptor de Adenosina A3/farmacología , Adenosina/análogos & derivados , Compuestos de Boro/farmacología , Proteínas de Unión al GTP/metabolismo , Receptor de Adenosina A3/metabolismo , Adenosina/farmacología , Animales , Arrestina/metabolismo , Células CHO , Cricetulus , Regulación de la Expresión Génica/efectos de los fármacos , Mutación , Unión Proteica , Receptor de Adenosina A3/genética
8.
J Clin Invest ; 131(7)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33621215

RESUMEN

The A3 adenosine receptor (A3AR) has emerged as a therapeutic target with A3AR agonists to tackle the global challenge of neuropathic pain, and investigation into its mode of action is essential for ongoing clinical development. Immune cell A3ARs, and their activation during pathology, modulate cytokine release. Thus, the use of immune cells as a cellular substrate for the pharmacological action of A3AR agonists is enticing, but unknown. The present study discovered that Rag-KO mice lacking T and B cells, as compared with WT mice, are insensitive to the anti-allodynic effects of A3AR agonists. Similar findings were observed in interleukin-10 and interleukin-10 receptor knockout mice. Adoptive transfer of CD4+ T cells from WT mice infiltrated the dorsal root ganglion (DRG) and restored A3AR agonist-mediated anti-allodynia in Rag-KO mice. CD4+ T cells from Adora3-KO or Il10-KO mice did not. Transfer of CD4+ T cells from WT mice, but not Il10-KO mice, into Il10-KO mice or Adora3-KO mice fully reinstated the anti-allodynic effects of A3AR activation. Notably, A3AR agonism reduced DRG neuron excitability when cocultured with CD4+ T cells in an IL-10-dependent manner. A3AR action on CD4+ T cells infiltrated in the DRG decreased phosphorylation of GluN2B-containing N-methyl-D-aspartate receptors at Tyr1472, a modification associated with regulating neuronal hypersensitivity. Our findings establish that activation of A3AR on CD4+ T cells to release IL-10 is required and sufficient evidence for the use of A3AR agonists as therapeutics.


Asunto(s)
Agonistas del Receptor de Adenosina A3/farmacología , Linfocitos T CD4-Positivos/inmunología , Ganglios Espinales/inmunología , Interleucina-10/inmunología , Neuralgia/tratamiento farmacológico , Neuronas/inmunología , Receptor de Adenosina A3/inmunología , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Linfocitos T CD4-Positivos/patología , Ganglios Espinales/patología , Interleucina-10/genética , Ratones , Ratones Noqueados , Neuralgia/genética , Neuralgia/inmunología , Neuralgia/patología , Neuronas/patología , Receptor de Adenosina A3/genética
9.
Mol Immunol ; 132: 1-7, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33524770

RESUMEN

Macrophages perform the fundamental function of sensing cellular damage, initiating and mediating immune response and tissue repair. Adenine nucleotides are in relatively high abundance in cells and are released from cells during tissue damage that are converted to adenosine in the extracellular environment. The A1, A2A, A2B and A3 adenosine receptors serve to regulate immune function. Despite characterization of the adenosine receptors, a comprehensive examination of adenosine receptor signaling in THP-1 macrophage cells has not been done. Moreover, previous studies employed chemical agonists and antagonists that have the potential for off-target affects. Here we systematically knockdown each of the four known adenosine receptors in THP-1 macrophages using validated siRNA and investigated their function under LPS stimulation. We demonstrate that the A1 receptor is required for adenosine-stimulated IL-10 and IL-1ß secretion indicating an important role of this receptor during resolution of inflammation and tissue repair in these cells. The A1 and A3 receptor were required for IL-6 and IL-1ß secretion showing a net pro-inflammatory role for these receptors. Finally, we present the novel finding that THP-1 macrophages lacking the A2B receptor undergo pyroptosis when exposed to LPS, demonstrating a novel role of the A2B receptor in regulation of programmed cell death during inflammation. This work underscores the fundamental importance of adenosine signaling and provides insight into the independent roles of the adenosine receptors in modulating cytokine signaling.


Asunto(s)
Citocinas/metabolismo , Macrófagos/metabolismo , Piroptosis/inmunología , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A2B/metabolismo , Receptor de Adenosina A3/metabolismo , Adenosina/farmacología , Células Cultivadas , Técnicas de Silenciamiento del Gen , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Piroptosis/efectos de los fármacos , Piroptosis/genética , ARN Interferente Pequeño , Receptor de Adenosina A1/genética , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2B/genética , Receptor de Adenosina A3/genética , Receptores Purinérgicos P1/genética , Receptores Purinérgicos P1/metabolismo , Transducción de Señal/inmunología
10.
Mol Cell ; 81(4): 659-674.e7, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33472058

RESUMEN

About 150 post-transcriptional RNA modifications have been identified in all kingdoms of life. During RNA catabolism, most modified nucleosides are resistant to degradation and are released into the extracellular space. In this study, we explored the physiological role of these extracellular modified nucleosides and found that N6-methyladenosine (m6A), widely recognized as an epigenetic mark in RNA, acts as a ligand for the human adenosine A3 receptor, for which it has greater affinity than unmodified adenosine. We used structural modeling to define the amino acids required for specific binding of m6A to the human A3 receptor. We also demonstrated that m6A was dynamically released in response to cytotoxic stimuli and facilitated type I allergy in vivo. Our findings implicate m6A as a signaling molecule capable of activating G protein-coupled receptors (GPCRs) and triggering pathophysiological responses, a previously unreported property of RNA modifications.


Asunto(s)
Adenosina/análogos & derivados , Epigénesis Genética , Procesamiento Postranscripcional del ARN , Receptor de Adenosina A3/metabolismo , Transducción de Señal , Adenosina/genética , Adenosina/metabolismo , Animales , Femenino , Células HEK293 , Humanos , Masculino , Conejos , Receptor de Adenosina A3/genética
11.
Free Radic Biol Med ; 163: 43-55, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33307167

RESUMEN

Adenosine is an important neuromodulator in the CNS, regulating neuronal survival and synaptic transmission. The antioxidant ascorbate (the reduced form of vitamin C) is concentrated in CNS neurons through a sodium-dependent transporter named SVCT2 and participates in several CNS processes, for instance, the regulation of glutamate receptors functioning and the synthesis of neuromodulators. Here we studied the interplay between the adenosinergic system and ascorbate transport in neurons. We found that selective activation of A3, but not of A1 or A2a, adenosine receptors modulated ascorbate transport, decreasing intracellular ascorbate content. Förster resonance energy transfer (FRET) analyses showed that A3 receptors associate with the ascorbate transporter SVCT2, suggesting tight signaling compartmentalization between A3 receptors and SVCT2. The activation of A3 receptors increased ascorbate release in an SVCT2-dependent manner, which largely altered the neuronal redox status without interfering with cell death, glycolytic metabolism, and bioenergetics. Overall, by regulating vitamin C transport, the adenosinergic system (via activation of A3 receptors) can regulate ascorbate bioavailability and control the redox balance in neurons.


Asunto(s)
Receptor de Adenosina A3 , Transportadores de Sodio Acoplados a la Vitamina C , Ácido Ascórbico , Neuronas/metabolismo , Oxidación-Reducción , Receptor de Adenosina A3/genética , Transportadores de Sodio Acoplados a la Vitamina C/genética , Transportadores de Sodio Acoplados a la Vitamina C/metabolismo
12.
Aging (Albany NY) ; 13(1): 694-713, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33253120

RESUMEN

The incidence of subarachnoid hemorrhage (SAH) and hazard ratio of death increase with age. Overactivation of microglia contributes to brain damage. This study aimed to investigate the effects of A3 adenosine receptors (A3R) activation on neurofunction and microglial phenotype polarization in the context of SAH in aged rats. The A3R agonist (CI-IB-MECA) and antagonist (MRS1523) were used in the SAH model. Microglia were cultured to mimic SAH in the presence or absence of CI-IB-MECA and/or siRNA for A3R. The neurofunction and status of the microglial phenotype were evaluated. The P38 inhibitor SB202190 and the STAT6 inhibitor AS1517499 were used to explore the signaling pathway. The results showed that SAH induced microglia to polarize to the M(LPS) phenotype both in vivo and in vitro. CI-IB-MECA distinctly skewed microglia towards the M(IL-4) phenotype and ameliorated neurological dysfunction, along with the downregulation of inflammatory cytokines. Knockdown of A3R or inhibition of P38 and/or STAT6 weakened the effects of CI-IB-MECA on microglial phenotypic shifting. Collectively, our findings suggest that activation of A3R exerted anti-inflammatory and neuroprotective effects by regulating microglial phenotype polarization through P38/STAT6 pathway and indicated that A3R agonists may be a promising therapeutic options for the treatment of brain injury after SAH.


Asunto(s)
Agonistas del Receptor de Adenosina A3/farmacología , Antagonistas del Receptor de Adenosina A3/farmacología , Lesiones Encefálicas/inmunología , Encéfalo/efectos de los fármacos , Citocinas/inmunología , Inflamación/inmunología , Receptor de Adenosina A3/efectos de los fármacos , Hemorragia Subaracnoidea/inmunología , Animales , Encéfalo/inmunología , Lesiones Encefálicas/genética , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Imidazoles/farmacología , Microglía , Piridinas/farmacología , Pirimidinas/farmacología , Ratas , Receptor de Adenosina A3/genética , Receptor de Adenosina A3/inmunología , Factor de Transcripción STAT6/antagonistas & inhibidores , Factor de Transcripción STAT6/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
Sci Rep ; 10(1): 20781, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247159

RESUMEN

The adenosine A3 receptor (A3R) belongs to a family of four adenosine receptor (AR) subtypes which all play distinct roles throughout the body. A3R antagonists have been described as potential treatments for numerous diseases including asthma. Given the similarity between (adenosine receptors) orthosteric binding sites, obtaining highly selective antagonists is a challenging but critical task. Here we screen 39 potential A3R, antagonists using agonist-induced inhibition of cAMP. Positive hits were assessed for AR subtype selectivity through cAMP accumulation assays. The antagonist affinity was determined using Schild analysis (pA2 values) and fluorescent ligand binding. Structure-activity relationship investigations revealed that loss of the 3-(dichlorophenyl)-isoxazolyl moiety or the aromatic nitrogen heterocycle with nitrogen at α-position to the carbon of carboximidamide group significantly attenuated K18 antagonistic potency. Mutagenic studies supported by molecular dynamic simulations combined with Molecular Mechanics-Poisson Boltzmann Surface Area calculations identified the residues important for binding in the A3R orthosteric site. We demonstrate that K18, which contains a 3-(dichlorophenyl)-isoxazole group connected through carbonyloxycarboximidamide fragment with a 1,3-thiazole ring, is a specific A3R (< 1 µM) competitive antagonist. Finally, we introduce a model that enables estimates of the equilibrium binding affinity for rapidly disassociating compounds from real-time fluorescent ligand-binding studies. These results demonstrate the pharmacological characterisation of a selective competitive A3R antagonist and the description of its orthosteric binding mode. Our findings may provide new insights for drug discovery.


Asunto(s)
Antagonistas del Receptor de Adenosina A3/química , Antagonistas del Receptor de Adenosina A3/farmacología , Antagonistas del Receptor de Adenosina A3/farmacocinética , Animales , Sitios de Unión/genética , Unión Competitiva , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Evaluación Preclínica de Medicamentos , Humanos , Cinética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Ensayo de Unión Radioligante , Ratas , Receptor de Adenosina A3/química , Receptor de Adenosina A3/genética , Receptor de Adenosina A3/metabolismo , Receptores Purinérgicos P1/química , Receptores Purinérgicos P1/genética , Receptores Purinérgicos P1/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad de la Especie , Relación Estructura-Actividad
14.
Int J Mol Sci ; 21(19)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33007835

RESUMEN

Glaucoma is a progressive chronic retinal degenerative disease and a leading cause of global irreversible blindness, characterized by optic nerve damage and retinal ganglion cell (RGC) death. Elevated intraocular pressure (IOP) is a main risk factor of glaucoma. Neuroinflammation plays an important role in glaucoma. We have been demonstrating that elevated pressure triggers microglia reactivity that contribute to the loss of RGCs. Adenosine, acting on adenosine receptors, is a crucial modulator of microglia phenotype. Microglia express all adenosine receptors. Previously, we demonstrated that the activation of adenosine A3 receptor (A3R) affords protection to the retina, including RGCs, unveiling the possibility for a new strategy for glaucoma treatment. Since microglial cells express A3R, we now studied the ability of a selective A3R agonist (2-Cl-IB-MECA) in controlling microglia reactivity induced by elevated hydrostatic pressure (EHP), used to mimic elevated IOP. The activation of A3R reduced EHP-induced inducible nitric oxide synthase (iNOS) expression, microglia migration and phagocytosis in BV-2 cells. In retinal microglia, proliferation and phagocytosis elicited by EHP were also decreased by A3R activation. This work demonstrates that 2-Cl-IB-MECA, the selective agonist of A3R, is able to hinder microglia reactivity, suggesting that A3R agonists could afford protection against glaucomatous degeneration through the control of neuroinflammation.


Asunto(s)
Agonistas del Receptor de Adenosina A3/farmacología , Adenosina/análogos & derivados , Glaucoma/tratamiento farmacológico , Receptor de Adenosina A3/genética , Adenosina/genética , Adenosina/farmacología , Animales , Muerte Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Glaucoma/genética , Glaucoma/patología , Humanos , Presión Intraocular/efectos de los fármacos , Microglía/efectos de los fármacos , Nervio Óptico/efectos de los fármacos , Nervio Óptico/patología , Traumatismos del Nervio Óptico/tratamiento farmacológico , Traumatismos del Nervio Óptico/genética , Traumatismos del Nervio Óptico/patología , Fagocitosis/efectos de los fármacos , Ratas , Degeneración Retiniana/tratamiento farmacológico , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología
15.
Int J Rheum Dis ; 23(11): 1505-1513, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32969158

RESUMEN

AIM: Methotrexate (MTX) administered at the dose 10-15 mg/m2 is recommended as the first-line therapy in most juvenile idiopathic arthritis (JIA) subtypes. The disease-modifying effect of methotrexate is associated with release of adenosine and mediated via binding to adenosine receptor A2A (ADORA2A) and 3 (ADORA3). The aim of our study was to determine the association between single nucleotide polymorphisms in ADORA2A (rs2236624, rs2298383) and ADORA3 (rs3393) receptor genes on the disease activity and presence of MTX therapy side effects in patients with JIA. METHODS: One hundred children with JIA of all subtypes treated with MTX were recruited to the study. Demographic and clinical parameters were collected at the baseline of MTX therapy and on a control visit 4-6 months after starting MTX. Single nucleotide polymorphism genotyping was performed using genomic DNA isolated from peripheral blood samples. RESULTS: The polymorphic variant of ADORA2A rs2236624 was associated with ~3.5 times higher odds of gastrointestinal side effects occurrence (odds ratio: 3.59, 95% CI: 1.15-11.22, P = 0.0282). Children with the ADORA3 rs3393 polymorphic variants (CT/CC) after 6 months of MTX treatment had significantly lower number of joints with active arthritis (median: 0.00 vs 1.00, P = 0.0400) and value of C-reactive protein (0.60 vs 2.40, P = 0.0242) in comparison to TT variant. CONCLUSION: Although future studies are needed to verify our findings, polymorphisms in ADORA2A and ADORA3 genes may become the determinants of MTX treatment efficacy and gastrointestinal toxicity in children with JIA.


Asunto(s)
Artritis Juvenil/tratamiento farmacológico , Inmunosupresores/uso terapéutico , Metotrexato/uso terapéutico , Variantes Farmacogenómicas , Polimorfismo de Nucleótido Simple , Receptor de Adenosina A2A/genética , Receptor de Adenosina A3/genética , Factores de Edad , Artritis Juvenil/diagnóstico , Artritis Juvenil/genética , Niño , Preescolar , Femenino , Humanos , Inmunosupresores/efectos adversos , Masculino , Metotrexato/efectos adversos , Farmacogenética , Estudios Prospectivos , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Resultado del Tratamiento
16.
Int J Mol Sci ; 21(12)2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32604732

RESUMEN

The adenosine A3 receptor (A3R) is the only adenosine receptor subtype to be overexpressed in inflammatory and cancer cells and therefore is considered a novel and promising therapeutic target for inflammatory diseases and cancer. Heterologous expression of A3R at levels to allow biophysical characterization is a major bottleneck in structure-guided drug discovery efforts. Here, we apply protein engineering using chimeric receptors to improve expression and activity in yeast. Previously we had reported improved expression and trafficking of the chimeric A1R variant using a similar approach. In this report, we constructed chimeric A3/A2AR comprising the N-terminus and transmembrane domains from A3R (residues 1-284) and the cytoplasmic C-terminus of the A2AR (residues 291-412). The chimeric receptor showed approximately 2-fold improved expression with a 2-fold decreased unfolded protein response when compared to wild type A3R. Moreover, by varying culture conditions such as initial cell density and induction temperature a further 1.7-fold increase in total receptor yields was obtained. We observed native-like coupling of the chimeric receptor to Gai-Gpa1 in engineered yeast strains, activating the downstream, modified MAPK pathway. This strategy of utilizing chimeric receptor variants in yeast thus provides an exciting opportunity to improve expression and activity of "difficult-to-express" receptors, expanding the opportunity for utilizing yeast in drug discovery.


Asunto(s)
Adenosina , Membrana Celular , Mutación , Receptor de Adenosina A2A , Receptor de Adenosina A3 , Saccharomyces cerevisiae , Humanos , Adenosina/metabolismo , Membrana Celular/metabolismo , Pliegue de Proteína , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A3/química , Receptor de Adenosina A3/genética , Receptor de Adenosina A3/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
17.
Pharmacogenomics J ; 20(6): 784-791, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32448869

RESUMEN

Adenosine receptors ADORA2A and ADORA3 are part of the adenosine-mediated antiinflammatory pathway and are overexpressed in patients with Rheumatoid arthritis (RA). Methotrexate (MTX) antiinflammatory effects are partially mediated via increased release of adenosine into extracellular space. Polymorphisms in ADORA2A and ADORA3 genes may have an impact on the efficacy and toxicity of MTX in RA patients. The study included 127 RA patients. Treatment efficacy was estimated using the changes in Disease activity score (DAS28) after 6 months of MTX monotherapy, according to EULAR response criteria. Patients with good and moderate response were classified as "responders", and with a poor response as "nonresponders". Adverse effects were collected during the follow-up period. Genotyping for polymorphisms within ADORA2A gene (rs2298383, rs2236624, rs5751876, rs17004921) and ADORA3 gene (rs2298191, rs1544223, rs3393) was performed using the KASPar assays. Among patients 112 (88.19%) were responders (18.8% good, 81.2% moderate). We observed no association between analyzed genotypes or alleles and MTX response by EULAR criteria but carriers of ADORA2A rs17004921 T allele (CT + TT) had a higher DAS28 decrease after 6 months of treatment than patients with CC genotype (p = 0.013). Adverse effects were reported in 31 patients (24.41%). Bone erosions were present in 82 (64.6%) patients. Haplotype block was observed among all 3 analyzed polymorphisms within ADORA3 gene and TAA haplotype was associated with bone erosions (29% vs 15.6%, p = 0.023) and hepatotoxicity (51.3% vs 21.6%, p = 0.013). According to our study, ADORA3 TAA haplotype may be associated with bone erosions and hepatotoxicity in RA patients treated with MTX.


Asunto(s)
Artritis Reumatoide/genética , Genotipo , Haplotipos/genética , Metotrexato/efectos adversos , Receptor de Adenosina A2A/genética , Receptor de Adenosina A3/genética , Adulto , Anciano , Antirreumáticos/efectos adversos , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/tratamiento farmacológico , Femenino , Estudios de Asociación Genética/métodos , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Resultado del Tratamiento
18.
Biochem Pharmacol ; 177: 113934, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32224136

RESUMEN

The A3 adenosine receptor (A3AR) is a G protein-coupled receptor that is involved in a wide variety of physiological and pathological processes, such as cancer. However, the use of compounds pharmacologically targeting this receptor remains limited in clinical practice, despite extensive efforts for compound synthesis. Moreover, the possible occurrence of biased agonism further complicates the interpretation of the functional characteristics of compounds. Hence the need for simple assays, which are comparable in terms of the used cell lines and read-out technique. We previously established a stable ß-arrestin 2 (ßarr2) bioassay, employing a simple, luminescent read-out via functional complementation of a split nanoluciferase enzyme. Here, we developed a complementary, new bioassay in which coupling of an engineered miniGαi protein to activated A3AR is monitored using a similar approach. Application of both bioassays for the concurrent determination of the potencies and efficacies of a set of 19 N6-substituted adenosine analogues not only allowed for the characterization of structure-activity relationships, but also for the quantification of biased agonism. Although a broad distribution in potency and efficacy values was obtained within the test panel, no significant bias was observed toward either the ßarr2 or miniGαi pathway.


Asunto(s)
Agonistas del Receptor de Adenosina A3/farmacología , Evaluación Preclínica de Medicamentos/métodos , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Receptor de Adenosina A3/metabolismo , Arrestina beta 2/metabolismo , Adenosina/análogos & derivados , Agonistas del Receptor de Adenosina A3/síntesis química , Citometría de Flujo/métodos , Subunidades alfa de la Proteína de Unión al GTP/genética , Células HEK293 , Humanos , Ligandos , Mediciones Luminiscentes/métodos , Receptor de Adenosina A3/genética , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Transducción Genética/métodos , Transfección/métodos , Arrestina beta 2/genética
19.
J Cell Physiol ; 235(3): 2441-2451, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31556103

RESUMEN

Acupuncture has many advantages in the treatment of certain diseases as opposed to drug therapy. Besides, adenosine has been revealed to affect cellular progression including proliferation. Therefore, this study aimed at exploring the mechanism involving acupuncture stress and adenosine in fibroblast proliferation. The fibroblasts from fascia tissues of the acupoint area (Zusanli) were stimulated by different levels of stress, different concentrations of adenosine, and agonist or antagonist of A3 receptor (A3 R) to investigate the effect of stress stimulation, adenosine, and adenosine-A3 R inhibition on fibroblasts. Then, the fibroblasts were treated with stress stimulation of 200 kPa or/and mitogen-activated protein kinase (MAPK) blocker. We revealed that stress stimulation and the binding of adenosine and A3 R promoted fibroblast proliferation in the fascial tissue, increased the expression of immune-related factors, adenosine and A3 R, and activated the MAPK signaling pathway. MAPK signaling pathway also directly affected the expression of adenosine, A3 R, and immune-related factors. Stress stimulation and adenosine treatment upregulated A3 R expression, and then activated the MAPK signaling pathway, which could in turn upregulate expression of adenosine, A3 R and immune-related factors, and promote cell proliferation. Adenosine is shown to form a positive feedback loop with the MAPK signaling pathway. Collectively, stress stimulation in vitro induces the increase of adenosine in fibroblasts through the energy metabolism and activation of the MAPK signaling pathway through A3 R, ultimately promoting fibroblast proliferation.


Asunto(s)
Acupuntura/métodos , Adenosina/genética , Metabolismo Energético/genética , Receptor de Adenosina A3/genética , Puntos de Acupuntura , Agonistas del Receptor de Adenosina A3/farmacología , Animales , Proliferación Celular/genética , Fibroblastos/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/genética , Microscopía Confocal , Cultivo Primario de Células , Ratas , Transducción de Señal/efectos de los fármacos
20.
Chem Res Toxicol ; 33(1): 154-161, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31461269

RESUMEN

Despite the recent advances in the life sciences and the remarkable investment in drug discovery research, the success rate of small-molecule drug development remains low. Safety is the second most influential factor of drug attrition in clinical studies; thus, the selection of compounds with fewer toxicity concerns is crucial to increase the success rate of drug discovery. Compounds that promiscuously bind to multiple targets are likely to cause unexpected pharmacological activity that may lead to adverse effects. Therefore, avoiding such compounds during early research stages would contribute to identifying compounds with a higher chance of success in the clinic. To evaluate the interaction profile against a wide variety of targets, we constructed a small-scale promiscuity panel (PP) consisting of eight targets (ROCK1, PDE4D2, GR, PPARγ, 5-HT2B, adenosine A3, M1, and GABAA) that were selected from diverse gene families. The validity of this panel was confirmed by comparison with the promiscuity index evaluated from larger-scale panels. Analysis of data from the PP revealed that both lipophilicity and basicity are likely to increase promiscuity, while the molecular weight does not significantly contribute. Additionally, the promiscuity assessed using our PP correlated with the occurrence of both in vitro cytotoxicity and in vivo toxicity, suggesting that the PP is useful to identify compounds with fewer toxicity concerns. In summary, this small-scale and cost-effective PP can contribute to the identification of safer compounds that would lead to a reduction in drug attrition due to safety issues.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Animales , Supervivencia Celular , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Células Hep G2 , Humanos , Ratones , PPAR gamma/genética , Ratas , Receptor de Adenosina A3/genética , Receptor Muscarínico M1/genética , Receptor de Serotonina 5-HT2B/genética , Receptores de GABA-A/genética , Receptores de Glucocorticoides/genética , Quinasas Asociadas a rho/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA