Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Eur J Pharmacol ; 973: 176537, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38604546

RESUMEN

Previous studies have shown that all kinin system is constitutively expressed in the normal and inflamed skin, with a potential role in both physiological and pathological processes. However, the understanding regarding the involvement of the kinin system in skin pigmentation and pigmentation disorders remains incomplete. In this context, the present study was designed to determine the role of kinins in the Monobenzone (MBZ)-induced vitiligo-like model. Our findings showed that MBZ induces higher local skin depigmentation in kinin receptors knockout mice (KOB1R, KOB2R and KOB1B2R) than in wild type (WT). Remarkably, lower levels of melanin content and reduced ROS generation were detected in KOB1R and KOB2R mice treated with MBZ. In addition, both KOB1R and KOB2R show increased dermal cell infiltrate in vitiligo-like skin, when compared to WT-MBZ. Additionally, lack of B1R was associated with greater skin accumulation of IL-4, IL-6, and IL-17 by MBZ, while KOB1B2R presented lower levels of TNF and IL-1. Of note, the absence of both kinin B1 and B2 receptors demonstrates a protective effect by preventing the increase in polymorphonuclear and mononuclear cell infiltrations, as well as inflammatory cytokine levels induced by MBZ. In addition, in vitro assays confirm that B1R and B2R agonists increase intracellular melanin synthesis, while bradykinin significantly enhanced extracellular melanin levels and proliferation of B16F10 cells. Our findings highlight that the lack of kinin receptors caused more severe depigmentation in the skin, as well as genetic deletion of both B1/B2 receptors seems to be linked with changes in levels of constitutive melanin levels, suggesting the involvement of kinin system in crucial skin pigmentation pathways.


Asunto(s)
Melaninas , Pigmentación de la Piel , Animales , Pigmentación de la Piel/efectos de los fármacos , Ratones , Melaninas/metabolismo , Melaninas/biosíntesis , Ratones Noqueados , Receptor de Bradiquinina B1/metabolismo , Receptor de Bradiquinina B1/genética , Citocinas/metabolismo , Vitíligo/metabolismo , Vitíligo/patología , Receptor de Bradiquinina B2/metabolismo , Piel/metabolismo , Piel/efectos de los fármacos , Piel/patología , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , Humanos , Masculino
2.
Inflamm Res ; 72(8): 1583-1601, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37464053

RESUMEN

OBJECTIVE AND DESIGN: After traumatic skeletal muscle injury, muscle healing is often incomplete and produces extensive fibrosis. Bradykinin (BK) reduces fibrosis in renal and cardiac damage models through the B2 receptor. The B1 receptor expression is induced by damage, and blocking of the kallikrein-kinin system seems to affect the progression of muscular dystrophy. We hypothesized that both kinin B1 and B2 receptors could play a differential role after traumatic muscle injury, and the lack of the B1 receptor could produce more cellular and molecular substrates for myogenesis and fewer substrates for fibrosis, leading to better muscle healing. MATERIAL AND METHODS: To test this hypothesis, tibialis anterior muscles of kinin receptor knockout animals were subjected to traumatic injury. Myogenesis, angiogenesis, fibrosis, and muscle functioning were evaluated. RESULTS: Injured B1KO mice showed a faster healing progression of the injured area with a larger amount of central nucleated fiber post-injury when compared to control mice. In addition, they exhibited higher neovasculogenic capacity, maintaining optimal tissue perfusion for the post-injury phase; had higher amounts of myogenic markers with less inflammatory infiltrate and tissue destruction. This was followed by higher amounts of SMAD7 and lower amounts of p-SMAD2/3, which resulted in less fibrosis. In contrast, B2KO and B1B2KO mice showed more severe tissue destruction and excessive fibrosis. B1KO animals had better results in post-injury functional tests compared to control animals. CONCLUSIONS: We demonstrate that injured skeletal muscle tissues have a better repair capacity with less fibrosis in the presence of B2 receptor and absence of B1 receptor, including better performances in functional tests.


Asunto(s)
Receptor de Bradiquinina B1 , Receptor de Bradiquinina B2 , Ratones , Animales , Receptor de Bradiquinina B2/genética , Receptor de Bradiquinina B1/genética , Bradiquinina/metabolismo , Bradiquinina/farmacología , Músculo Esquelético , Fibrosis , Regeneración , Receptores de Bradiquinina
3.
Sci Rep ; 12(1): 19015, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36348016

RESUMEN

Eleven multiple analogs of bradykinin-a peptide that is a natural ligand of B1 and B2 receptors but does not bind or activate the B1 receptor unless Arg9 is removed from the sequence by the action of carboxypeptidase N-were synthesized. Their biological activity was examined on T-REx cell lines expressing B1 or B2 receptors using the intracellular IP1 assay. The mRNA expression of B1R and B2R in the lysate of tumor cell lines, e.g., U87-MG (human astrocytoma), SHP-77 (human small cell lung cancer), and H4 (human brain glioma), was determined. For five B1R antagonists, adsorption at the liquid/solid interface (Au nanoparticles (AuNPs) served as the solid surface) was discussed in terms of the vibrations of molecular fragments (structural factors) responsible for the biological properties of these analogs.


Asunto(s)
Bradiquinina , Nanopartículas del Metal , Humanos , Receptor de Bradiquinina B1/genética , Receptor de Bradiquinina B2/genética , Oro , Factores de Transcripción
4.
Life Sci ; 309: 121034, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36208659

RESUMEN

The Kallikrein-Kinin System (KKS) plays an important role in energy metabolism. We have previously described the importance of the kinin B1 receptor (B1R) in metabolism regulation. Considering that the liver manages the different energy demands of different body tissues, we combined two stressful conditions - fasting and voluntary exercise - to address how B1R may affect liver metabolism, focusing on mitochondrial function. AIMS: To investigate how the kinin B1 receptor (B1R) modulates mitochondrial activity under stress conditions, focusing on the rate of energy expenditure and shift in metabolism. MAIN METHODS: Wild-type and B1R-knockout (B1KO) male mice remained in a calorimetric cage with a wheel for 7 days; 48 h before euthanasia, half of the animals from both groups were submitted to fasting conditions. Mitochondrial activity, ketone bodies, and gene expression involving mitochondrial activity were evaluated. KEY FINDINGS: B1R modulates the mitochondrial activity under fasting and voluntary exercise, reducing the VO2 expenditure and HEAT. B1KO animals who exercised and underwent fasting did not have increased glucose levels, suggesting a preference for lipids as an energy source. Moreover, these animals displayed RER around 0.8, which indicates a ß-oxidation increment. Interestingly, the lack of B1R did not induce mitochondrial activity and biogenesis, suggesting interference in metabolism responsivity, a condition modulated by sirtuins under PGC-1α control. SIGNIFICANCE: B1R modulates mitochondrial respiratory control ratios, which suggests metabolic suppression, influencing hepatic metabolism and, consequently, energy homeostasis.


Asunto(s)
Receptor de Bradiquinina B1 , Sirtuinas , Ratones , Animales , Masculino , Receptor de Bradiquinina B1/genética , Cininas , Ayuno , Mitocondrias/metabolismo , Cuerpos Cetónicos , Glucosa , Lípidos , Receptor de Bradiquinina B2/genética
5.
Physiol Res ; 71(4): 477-487, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35899944

RESUMEN

The kinin receptors are classically involved in inflammation, pain and sepsis. The effects of the kinin B1 receptor agonist des-Arg9-bradykinin (DBK) and lipopolysaccharide (LPS) were investigated by comparing the membrane potential responses of aortic rings from transgenic rats overexpressing the kinin B1 receptor (B1R) in the endothelium (TGR(Tie2B1)) and Sprague Dawley (SD) rats. No difference in the resting membrane potential in the aorta's smooth muscle from the transgenic and SD rats was observed. The aorta rings from SD rats hyperpolarized only to LPS but not to DBK, whereas the aorta rings from TGR(Tie2B1) responded by the administration of both drugs. DBK and LPS responses were inhibited by the B1 receptor antagonist R715 and by iberiotoxin in both cases. Thapsigargin induced a hyperpolarization in the smooth muscle of SD rats that was not reversed by R715, but was reversed by iberiotoxin and this hyperpolarization was further augmented by DBK administration. These results show that the model of overexpression of vascular B1 receptors in the TGR(Tie2B1) rats represent a good model to study the role of functional B1 receptors in the absence of any pathological stimulus. The data also show that KCa channels are the final mediators of the hyperpolarizing responses to DBK and LPS. In addition, we suggest an interaction between the B1R and TLR4, since the hyperpolarization induced by LPS could be abolished in the presence of R715.


Asunto(s)
Bradiquinina , Receptor de Bradiquinina B1 , Animales , Aorta , Bradiquinina/farmacología , Endotelio Vascular , Técnicas In Vitro , Lipopolisacáridos/farmacología , Potenciales de la Membrana , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Receptor de Bradiquinina B1/genética , Tapsigargina/farmacología , Receptor Toll-Like 4
6.
J Clin Invest ; 132(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35439173

RESUMEN

CD13, an ectoenzyme on myeloid and stromal cells, also circulates as a shed, soluble protein (sCD13) with powerful chemoattractant, angiogenic, and arthritogenic properties, which require engagement of a G protein-coupled receptor (GPCR). Here we identify the GPCR that mediates sCD13 arthritogenic actions as the bradykinin receptor B1 (B1R). Immunofluorescence and immunoblotting verified high expression of B1R in rheumatoid arthritis (RA) synovial tissue and fibroblast-like synoviocytes (FLSs), and demonstrated binding of sCD13 to B1R. Chemotaxis, and phosphorylation of Erk1/2, induced by sCD13, were inhibited by B1R antagonists. In ex vivo RA synovial tissue organ cultures, a B1R antagonist reduced secretion of inflammatory cytokines. Several mouse arthritis models, including serum transfer, antigen-induced, and local innate immune stimulation arthritis models, were attenuated in Cd13-/- and B1R-/- mice and were alleviated by B1R antagonism. These results establish a CD13/B1R axis in the pathogenesis of inflammatory arthritis and identify B1R as a compelling therapeutic target in RA and potentially other inflammatory diseases.


Asunto(s)
Artritis Reumatoide , Antígenos CD13/metabolismo , Sinoviocitos , Animales , Artritis Reumatoide/patología , Bradiquinina/metabolismo , Bradiquinina/farmacología , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Ratones , Receptor de Bradiquinina B1/genética , Receptor de Bradiquinina B1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Membrana Sinovial/patología , Sinoviocitos/metabolismo
7.
Genes (Basel) ; 12(11)2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34828323

RESUMEN

Wolfram syndrome (WS) 1 is a rare monogenic neurodegenerative disorder caused by mutations in the gene encoding WFS1. Knowledge of the pathophysiology of WS is incomplete and to date, there is no treatment available. Here, we describe early deviations in the renin-angiotensin-aldosterone system (RAAS) and bradykinin pathway (kallikrein kinin system, KKS) observed in a rat model of WS (Wfs1 KO) and the modulative effect of glucagon-like peptide-1 receptor agonist liraglutide (LIR) and anti-epileptic drug valproate (VPA), which have been proven effective in delaying WS progression in WS animal models. We found that the expression of key receptors of the RAAS and KKS, Agtr2 and Bdkrb1, were drastically downregulated both in vitro and in vivo at an early stage in a rat model of WS. Moreover, in Wfs1, KO serum aldosterone levels were substantially decreased and bradykinin levels increased compared to WT animals. Neither treatment nor their combination affected the gene expression levels seen in the Wfs1 KO animals. However, all the treatments elevated serum aldosterone and decreased bradykinin in the Wfs1 KO rats, as well as increasing angiotensin II levels independent of genotype. Altogether, our results indicate that Wfs1 deficiency might disturb the normal functioning of RAAS and KKS and that LIR and VPA have the ability to modulate these systems.


Asunto(s)
Proteínas de Unión a Calmodulina/genética , Regulación hacia Abajo , Proteínas de la Membrana/genética , Receptor de Angiotensina Tipo 2/genética , Receptor de Bradiquinina B1/genética , Síndrome de Wolfram/genética , Aldosterona/sangre , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Técnicas de Inactivación de Genes , Liraglutida/farmacología , Liraglutida/uso terapéutico , Masculino , Ratas , Sistema Renina-Angiotensina/efectos de los fármacos , Ácido Valproico/farmacología , Ácido Valproico/uso terapéutico , Síndrome de Wolfram/sangre , Síndrome de Wolfram/tratamiento farmacológico
8.
Sci Rep ; 11(1): 21050, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702886

RESUMEN

Brain orexin system hyperactivity contributes to neurogenic hypertension. We previously reported upregulated neuronal kinin B1 receptor (B1R) expression in hypertension. However, the role of central B1R activation on the orexin system in neurogenic hypertension has not been examined. We hypothesized that kinin B1R contributes to hypertension via upregulation of brain orexin-arginine vasopressin signaling. We utilized deoxycorticosterone acetate (DOCA)-salt hypertension model in wild-type (WT) and B1R knockout (B1RKO) mice. In WT mice, DOCA-salt-treatment increased gene and protein expression of orexin A, orexin receptor 1, and orexin receptor 2 in the hypothalamic paraventricular nucleus and these effects were attenuated in B1RKO mice. Furthermore, DOCA-salt- treatment increased plasma arginine vasopressin levels in WT mice, but not in B1RKO mice. Cultured primary hypothalamic neurons expressed orexin A and orexin receptor 1. B1R specific agonist (LDABK) stimulation of primary neurons increased B1R protein expression, which was abrogated by B1R selective antagonist R715 but not by the dual orexin receptor antagonist, ACT 462206, suggesting that B1R is upstream of the orexin system. These data provide novel evidence that B1R blockade blunts orexin hyperactivity and constitutes a potential therapeutic target for the treatment of salt-sensitive hypertension.


Asunto(s)
Regulación de la Expresión Génica , Hipertensión/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Orexinas/metabolismo , Receptor de Bradiquinina B1/biosíntesis , Animales , Modelos Animales de Enfermedad , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Hipertensión/genética , Ratones , Ratones Noqueados , Orexinas/genética , Receptor de Bradiquinina B1/genética
9.
Clin Exp Hypertens ; 43(5): 408-415, 2021 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-33687297

RESUMEN

OBJECTIVE: To demonstrate that the kallikrein-kinin system (KKS) is upstream of angiogenic signaling pathway, and to determine the role of the kinin B1 and B2 receptors in myocardial angiogenesis induced by exercise training. METHODS: Forty Wistar rats were randomly assigned to an exercise control (EC) group, a B1 receptor antagonist (B1Ant) group, a B2 receptor antagonist (B2Ant) group, and a double receptor antagonist ((B1+ B2)Ant) group. A myocardial infarction model was employed. Animals in all groups received 30 min of exercise training for 4 weeks. The expression of VEGF and eNOS, capillary supply, and apoptosis rate were evaluated. RESULTS: The mRNA and protein expression of VEGF and eNOS showed similar trends in all groups, and were lowest in the (B1+ B2) Ant group, and highest in the EC group. Levels of VEGF and eNOS mRNA were significantly lower in the B1Ant group than in the B2Ant group (p< .001 and p< .05, respectively). VEGF and eNOS protein in the B1Ant group was also significantly lower (p< .01 and p< .05, respectively) than in the B2Ant group. The capillary numbers in the (B1+ B2) Ant group were significantly lower than in the EC group (395.8 ± 105 vs. 1127.9 ± 192.98, respectively). The apoptosis rate of cardiomyocytes was highest in the (B1+ B2) Ant group. CONCLUSION: KKS may act as an upstream signal transduction pathway for angiogenic factors in myocardial angiogenesis. The B1 and B2 receptors exert additive effects, and the B1 receptor has the most prominent role in mediating KKS-induced myocardial angiogenesis.


Asunto(s)
Miocardio/metabolismo , Neovascularización Fisiológica , Condicionamiento Físico Animal , Receptor de Bradiquinina B1/metabolismo , Receptor de Bradiquinina B2/metabolismo , Animales , Capilares/metabolismo , Cininas/metabolismo , Masculino , Miocitos Cardíacos/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Wistar , Receptor de Bradiquinina B1/genética , Receptor de Bradiquinina B2/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
Sci Rep ; 9(1): 19437, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31857655

RESUMEN

Pharmacological research in mice and human genetic analyses suggest that the kallikrein-kinin system (KKS) may regulate anxiety. We examined the role of the KKS in anxiety and stress in both species. In human genetic association analysis, variants in genes for the bradykinin precursor (KNG1) and the bradykinin receptors (BDKRB1 and BDKRB2) were associated with anxiety disorders (p < 0.05). In mice, however, neither acute nor chronic stress affected B1 receptor gene or protein expression, and B1 receptor antagonists had no effect on anxiety tests measuring approach-avoidance conflict. We thus focused on the B2 receptor and found that mice injected with the B2 antagonist WIN 64338 had lowered levels of a physiological anxiety measure, the stress-induced hyperthermia (SIH), vs controls. In the brown adipose tissue, a major thermoregulator, WIN 64338 increased expression of the mitochondrial regulator Pgc1a and the bradykinin precursor gene Kng2 was upregulated after cold stress. Our data suggests that the bradykinin system modulates a variety of stress responses through B2 receptor-mediated effects, but systemic antagonists of the B2 receptor were not anxiolytic in mice. Genetic variants in the bradykinin receptor genes may predispose to anxiety disorders in humans by affecting their function.


Asunto(s)
Trastornos de Ansiedad/metabolismo , Bradiquinina/metabolismo , Sistema Calicreína-Quinina/fisiología , Estrés Psicológico/metabolismo , Adulto , Animales , Trastornos de Ansiedad/tratamiento farmacológico , Trastornos de Ansiedad/genética , Trastornos de Ansiedad/patología , Antagonistas del Receptor de Bradiquinina B1/administración & dosificación , Antagonistas del Receptor de Bradiquinina B2/administración & dosificación , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Sistema Calicreína-Quinina/efectos de los fármacos , Quininógenos/genética , Quininógenos/metabolismo , Masculino , Ratones , Naftalenos/administración & dosificación , Compuestos Organofosforados/administración & dosificación , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Polimorfismo de Nucleótido Simple , Receptor de Bradiquinina B1/genética , Receptor de Bradiquinina B1/metabolismo , Receptor de Bradiquinina B2/genética , Receptor de Bradiquinina B2/metabolismo , Especificidad de la Especie , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/patología , Regulación hacia Arriba
11.
J Transl Med ; 17(1): 346, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31640792

RESUMEN

BACKGROUND: Tibial fracture is associated with inflammatory reaction leading to severe pain syndrome. Bradykinin receptor activation is involved in inflammatory reactions, but has never been investigated in fracture pain. METHODS: This study aims at defining the role of B1 and B2-kinin receptors (B1R and B2R) in a closed tibial fracture pain model by using knockout mice for B1R (B1KO) or B2R (B2KO) and wild-type (WT) mice treated with antagonists for B1R (SSR 240612 and R954) and B2R (HOE140) or vehicle. A cyclooxygenase (COX) inhibitor (ketoprofen) and an antagonist (SB366791) of Transient Receptor Potential Vaniloid1 (TRPV1) were also investigated since these pathways are associated with BK-induced pain in other models. The impact on mechanical and thermal hyperalgesia and locomotion was assessed by behavior tests. Gene expression of B1R and B2R and spinal cord expression of c-Fos were measured by RT-PCR and immunohistochemistry, respectively. RESULTS: B1KO and B2KO mice demonstrated a reduction in post-fracture pain sensitivity compared to WT mice that was associated with decreased c-Fos expression in the ipsilateral spinal dorsal horn in B2KO. B1R and B2R mRNA and protein levels were markedly enhanced at the fracture site. B1R and B2R antagonists and inhibition of COX and TRPV1 pathways reduced pain in WT. However, the analgesic effect of the COX-1/COX-2 inhibitor disappeared in B1KO and B2KO. In contrast, the analgesic effect of the TRPV1 antagonist persisted after gene deletion of either receptor. CONCLUSIONS: It is suggested that B1R and B2R activation contributes significantly to tibial fracture pain through COX. Hence, B1R and B2R antagonists appear potential therapeutic agents to manage post fracture pain.


Asunto(s)
Dolor/fisiopatología , Receptor de Bradiquinina B1/fisiología , Receptor de Bradiquinina B2/fisiología , Fracturas de la Tibia/fisiopatología , Animales , Antagonistas del Receptor de Bradiquinina B1/farmacología , Antagonistas del Receptor de Bradiquinina B2/farmacología , Inhibidores de la Ciclooxigenasa/farmacología , Modelos Animales de Enfermedad , Inflamación/etiología , Inflamación/patología , Inflamación/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Dolor/tratamiento farmacológico , Dolor/prevención & control , Dimensión del Dolor , Proteínas Proto-Oncogénicas c-fos/biosíntesis , ARN Mensajero , Receptor de Bradiquinina B1/deficiencia , Receptor de Bradiquinina B1/genética , Receptor de Bradiquinina B2/deficiencia , Receptor de Bradiquinina B2/genética , Canales Catiónicos TRPV/antagonistas & inhibidores , Fracturas de la Tibia/complicaciones , Fracturas de la Tibia/patología , Investigación Biomédica Traslacional
12.
Int J Med Sci ; 16(8): 1102-1106, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31523172

RESUMEN

Mesenchymal stem cells are an ideal source for regenerative medicine. For clinical use, cell culture should be done at stable conditions, thus the use of serum should be avoided because of the batch-to-batch variations of serum. Although several kinds of serum-free media are available, a method to confirm whether they contain serum has not been established yet. During studies on effect of adipocyte mesenchymal stem cells (Ad-MSCs) on pain using a human pain gene array, we noticed that BDKRB1 gene was constantly upregulated when serum was used in the culture medium. In this study, we attempted to establish further the potential of this gene as a new marker indicative of the presence of serum in media. Using a real-time quantitative PCR gene array screening containing 84 functional genes, we verified BDKRB1 as a specific gene upregulated in the presence of serum. The expression of BDKRB1 in Ad-MSCs was induced not only by bovine serum but also by human serum. The BDKRB1 expression was induced even when Ad-MSCs was cultured with 0.1% serum in the medium. We concluded that BDKRB1 is a valuable marker to detect traces of both human and animal serum in Ad-MSCs cultures. Our study provides a new method to confirm the absence of serum in media and ensure a stable cell culture condition.


Asunto(s)
Medios de Cultivo/análisis , Células Madre Mesenquimatosas/citología , Receptor de Bradiquinina B1/genética , Suero , Animales , Células Cultivadas , Medios de Cultivo/química , Medios de Cultivo/farmacología , Medio de Cultivo Libre de Suero/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/fisiología , Receptor de Adenosina A2A/genética
13.
Diabetes ; 68(8): 1614-1623, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31167880

RESUMEN

The kinin B1 receptor (B1R) plays a role in inflammatory and metabolic processes. B1R deletion (B1 -/-) protects mice from diet-induced obesity and improves insulin and leptin sensitivity. In contrast, genetic reconstitution of B1R exclusively in adipose tissue reverses the lean phenotype of B1 -/- mice. To study the cell-nonautonomous nature of these effects, we transplanted epididymal white adipose tissue (eWAT) from wild-type donors (B1 +/+) into B1 -/- mice (B1 +/+→B1 -/-) and compared them with autologous controls (B1 +/+→B1 +/+ or B1 -/-→B1 -/-). We then fed these mice a high-fat diet for 16 weeks and investigated their metabolic phenotypes. B1 +/+→B1 -/- mice became obese but not glucose intolerant or insulin resistant, unlike B1 -/-→B1 -/- mice. Moreover, the endogenous adipose tissue of B1 +/+→B1 -/- mice exhibited higher expression of adipocyte markers (e.g., Fabp4 and Adipoq) and changes in the immune cell pool. These mice also developed fatty liver. Wild-type eWAT transplanted into B1 -/- mice normalized circulating insulin, leptin, and epidermal growth factor levels. In conclusion, we demonstrated that B1R in adipose tissue controls the response to diet-induced obesity by promoting adipose tissue expansion and hepatic lipid accumulation in cell-nonautonomous manners.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Receptor de Bradiquinina B1/metabolismo , Tejido Adiposo Blanco/trasplante , Animales , Composición Corporal/genética , Composición Corporal/fisiología , Dieta Alta en Grasa/efectos adversos , Citometría de Flujo , Glucosa/metabolismo , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Masculino , Ratones , Receptor de Bradiquinina B1/genética , Aumento de Peso/genética , Aumento de Peso/fisiología
14.
Malar J ; 18(1): 213, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31234939

RESUMEN

BACKGROUND: Malaria represents a worldwide medical emergency affecting mainly poor areas. Plasmodium parasites during blood stages can release kinins to the extracellular space after internalization of host kininogen inside erythrocytes and these released peptides could represent an important mechanism in liver pathophysiology by activation of calcium signaling pathway in endothelial cells of vertebrate host. Receptors (B1 and B2) activated by kinins peptides are important elements for the control of haemodynamics in liver and its physiology. The aim of this study was to identify changes in the liver host responses (i.e. kinin receptors expression and localization) and the effect of ACE inhibition during malaria infection using a murine model. METHODS: Balb/C mice infected by Plasmodium chabaudi were treated with captopril, an angiotensin I-converting enzyme (ACE) inhibitor, used alone or in association with the anti-malarial chloroquine in order to study the effect of ACE inhibition on mice survival and the activation of liver responses involving B1R and B2R signaling pathways. The kinin receptors (B1R and B2R) expression and localization was analysed in liver by western blotting and immunolocalization in different conditions. RESULTS: It was verified that captopril treatment caused host death during the peak of malaria infection (parasitaemia about 45%). B1R expression was stimulated in endothelial cells of sinusoids and other blood vessels of mice liver infected by P. chabaudi. At the same time, it was also demonstrated that B1R knockout mice infected presented a significant reduction of survival. However, the infection did not alter the B2R levels and localization in liver blood vessels. CONCLUSIONS: Thus, it was observed through in vivo studies that the vasodilation induced by plasma ACE inhibition increases mice mortality during P. chabaudi infection. Besides, it was also seen that the anti-malarial chloroquine causes changes in B1R expression in liver, even after days of parasite clearance. The differential expression of B1R and B2R in liver during malaria infection may have an important role in the disease pathophysiology and represents an issue for clinical treatments.


Asunto(s)
Regulación de la Expresión Génica , Hígado/fisiopatología , Malaria/fisiopatología , Receptor de Bradiquinina B1/genética , Receptor de Bradiquinina B2/genética , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Captopril/farmacología , Cloroquina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Plasmodium chabaudi , Receptor de Bradiquinina B1/metabolismo , Receptor de Bradiquinina B2/metabolismo
15.
Biochem Pharmacol ; 168: 119-132, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31254493

RESUMEN

Fibromyalgia is a disease characterised as generalised chronic primary pain that causes functional disability and a reduction in patients' quality of life, without specific pathophysiology or appropriate treatment. Previous studies have shown that kinins and their B1 and B2 receptors contribute to chronic painful conditions. Thus, we investigated the involvement of kinins and their B1 and B2 receptors in a fibromyalgia-like pain model induced by reserpine in mice. Nociceptive parameters (mechanical allodynia, cold sensitivity and overt nociception) and behaviours of burrowing, thigmotaxis, and forced swimming were evaluated after reserpine administration in mice. The role of kinin B1 and B2 receptors was investigated using knockout mice or pharmacological antagonism. The protein expression of kinin B1 and B2 receptors and the levels of bradykinin and monoamines were measured in the sciatic nerve, spinal cord and cerebral cortex of the animals. Knockout mice for the kinin B1 and B2 receptor reduced reserpine-induced mechanical allodynia. Antagonism of B1 and B2 receptors also reduced mechanical allodynia, cold sensitivity and overt nociception reserpine-induced. Reserpine altered thigmotaxis, forced swimming and burrowing behaviour in the animals; with the latter being reversed by antagonism of kinin B1 receptor. Moreover, reserpine increased the protein expression of kinin B1 and B2 receptors and levels of kinin, as well as reduced the levels of monoamines in peripheral and central structures. Kinins and its B1 and B2 receptors are involved in fibromyalgia-like pain symptoms. B1 or B2 receptors might represent a potential target for the relief of fibromyalgia-like pain symptoms.


Asunto(s)
Bradiquinina/metabolismo , Fibromialgia/metabolismo , Dolor/metabolismo , Receptor de Bradiquinina B1/metabolismo , Receptor de Bradiquinina B2/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Fibromialgia/inducido químicamente , Técnicas de Inactivación de Genes , Hiperalgesia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nocicepción/efectos de los fármacos , Dolor/inducido químicamente , Receptor de Bradiquinina B1/genética , Receptor de Bradiquinina B2/genética , Reserpina/farmacología
16.
Inflamm Res ; 68(10): 845-855, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31218444

RESUMEN

INTRODUCTION: Carboxypeptidase M (CPM) is a glycosylphosphatidylinositol anchored enzyme that plays an important role in the kallikrein-kinin system (KKS). CPM catalytic domain hydrolyzes Arg from C-terminal peptides (i.e., bradykinin and kallidin), generating des-Arg-kinins, the agonists of B1 receptor (B1R). It is known that CPM and kinin B1R are co-localized in the plasma membrane microdomains, where they interact with each other, facilitating receptor signaling. AIMS: We hypothesized here that this CPM-B1R interaction could also affect the activity of the enzyme. METHODS: Thus, in this work, we evaluated the impact of B1R presence or absence on CPM activity and expression, using primary culture of microvascular endothelial cells from wild-type, kinin B1R knockout mice (B 1 -/- ), and transgenic rats overexpressing B1 receptor exclusively in the endothelium. In addition, HEK293T cells, as wells as B 1 -/- primary culture of endothelial cells, both transfected with B1R, were also used. RESULTS: CPM expression and activity were downregulated in cells of knockout mice compared to control and this reduction was rescued after B1R transfection. Cells overexpressing B1R presented higher levels of CPM mRNA, protein, and activity. This profile was reverted by pre-incubation with the B1R antagonist, R715, in highly expressing receptor cells. CONCLUSIONS: Our data show that kinin B1R positively modulates both CPM expression and activity, suggesting that CPM-B1R interaction in membrane microdomains might affect enzyme activity, beyond interfering in receptors signaling. This work highlights the interactions among different components of KKS and contributes to a better understanding of its patho-physiological role.


Asunto(s)
Células Endoteliales/metabolismo , Metaloendopeptidasas/metabolismo , Receptor de Bradiquinina B1/metabolismo , Animales , Células Cultivadas , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Humanos , Pulmón/citología , Metaloendopeptidasas/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas Sprague-Dawley , Ratas Transgénicas , Receptor de Bradiquinina B1/genética
17.
Life Sci ; 228: 121-127, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31039364

RESUMEN

AIMS: B1- and B2-kinin receptors play a major role in several cardiovascular diseases. Therefore, we aimed to evaluate cardiac functional consequences of B1- and B2-kinin receptors ablation, focusing on the cardiac ROS and NO generation. MAIN METHODS: Cardiac contractility, ROS, and NO generation, and protein expression were evaluated in male wild-type (WT), B1- (B1-/-) and B2-kinin (B2-/-) knockout mice. KEY FINDINGS: Impaired contractility in B1-/- and B2-/- hearts was associated with oxidative stress through upregulation of NADPH oxidase p22phox subunit. B1-/- and B2-/- hearts presented higher NO and peroxynitrite levels than WT. Despite decreased sarcoplasmic reticulum Ca2+ ATPase pump (SERCA2) expression, nitration at tyrosine residues of SERCA2 was markedly higher in B1-/- and B2-/- hearts. SIGNIFICANCE: B1- and B2-kinin receptors govern ROS generation, while disruption of B1- and B2-kinin receptors leads to impaired cardiac dysfunction through excessive tyrosine nitration on the SERCA2 structure.


Asunto(s)
Cardiopatías/genética , Corazón/fisiopatología , Receptor de Bradiquinina B1/genética , Receptor de Bradiquinina B2/genética , Animales , Eliminación de Gen , Cardiopatías/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Miocárdica , NADPH Oxidasas/metabolismo , Óxido Nítrico/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Receptor de Bradiquinina B1/metabolismo , Receptor de Bradiquinina B2/metabolismo
18.
Curr Eye Res ; 44(9): 994-999, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31017477

RESUMEN

Purpose: The plasma kallikrein-kinin system is activated during vascular injury caused by diabetic retinopathy (DR), being involved in hyperpermeability and inflammation. Bradykinin B1 receptor (B1R) is expressed in human retina, and its levels are increased in murine models of diabetes. Experimental studies reveal that B1R antagonists ameliorate retinal injury caused by diabetes in rodents. Thus, the aim of this study was to investigate the association between the rs12050217A/G polymorphism in the BDKRB1 gene, the gene that codifies B1R, and DR in type 2 diabetes mellitus (T2DM) patients. Methods: We analyzed 636 T2DM patients and 443 non-diabetic subjects. T2DM patients were categorized by the presence of non-proliferative DR (NPDR, n = 267), proliferative DR (PDR, n = 197), and absence of DR (n = 172). The BDKRB1 rs12050217A/G polymorphism was genotyped by real-time PCR using TaqMan MGB probes. Results: The genotype frequencies of the BDKRB1 rs12050217A/G polymorphism are in Hardy-Weinberg equilibrium and did not differ between T2DM patients and non-diabetic subjects (P > 0.05). The presence of the genotypes containing the rs12050217 G allele was less frequent in patients with PDR when compared to patients with NPDR and without DR (32.0%, 41.9%, and 43.0%, P = 0.045, respectively). Interestingly, the presence of G allele was associated with ~40% protection for PDR, which was confirmed after correction for the presence of hypertension, ethnicity, age, HDL, and gender (odds ratio = 0.616, 95% confidence interval 0.385-0.986, P = 0.043). Conclusion: For the first time, we showed that BDKRB1 rs12050217 G allele is associated with protection for the advanced stage of DR in T2DM patients; however, further studies are needed to confirm this finding.


Asunto(s)
Retinopatía Diabética/genética , Proteínas de Unión al GTP/genética , Polimorfismo de Nucleótido Simple , Receptor de Bradiquinina B1/genética , Adulto , Anciano , Alelos , Estudios Transversales , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Frecuencia de los Genes , Técnicas de Genotipaje , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
Sci Rep ; 9(1): 2973, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30814538

RESUMEN

The regulation of the kallikrein-kinin system is an important mechanism controlling vasodilation and promoting inflammation. We aimed to investigate the role of Toll-like receptor 2 (TLR2) in regulating kinin B1 and B2 receptor expression in human gingival fibroblasts and in mouse gingiva. Both P. gingivalis LPS and the synthetic TLR2 agonist Pam2CSK4 increased kinin receptor transcripts. Silencing of TLR2, but not of TLR4, inhibited the induction of kinin receptor transcripts by both P. gingivalis LPS and Pam2CSK4. Human gingival fibroblasts (HGF) exposed to Pam2CSK4 increased binding sites for bradykinin (BK, B2 receptor agonist) and des-Arg10-Lys-bradykinin (DALBK, B1 receptor agonist). Pre-treatment of HGF for 24 h with Pam2CSK4 resulted in increased PGE2 release in response to BK and DALBK. The increase of B1 and B2 receptor transcripts by P. gingivalis LPS was not blocked by IL-1ß neutralizing antibody; TNF-α blocking antibody did not affect B1 receptor up-regulation, but partially blocked increase of B2 receptor mRNA. Injection of P. gingivalis LPS in mouse gingiva induced an increase of B1 and B2 receptor mRNA. These data show that activation of TLR2 in human gingival fibroblasts as well as in mouse gingival tissue leads to increase of B1 and B2 receptor mRNA and protein.


Asunto(s)
Receptores de Bradiquinina/genética , Receptor Toll-Like 2/metabolismo , Adulto , Animales , Bradiquinina/metabolismo , Femenino , Fibroblastos/metabolismo , Encía/metabolismo , Humanos , Inflamación/metabolismo , Cininas/metabolismo , Lipopéptidos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Receptor de Bradiquinina B1/genética , Receptor de Bradiquinina B2/genética , Receptores de Bradiquinina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
20.
J Cell Physiol ; 234(3): 2851-2865, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30132865

RESUMEN

High nuclear expression of G protein-coupled receptors, including kinin B1 receptors (B1R), has been observed in several human cancers, but the clinical significance of this is unknown. We put forward the hypothesis that these "nuclearized" kinin B1R contribute to tumorigenicity and can be a new target in anticancer strategies. Our initial immunostaining and ultrastructural electron microscopy analyses demonstrated high B1R expression predominantly located at internal/nuclear compartments in the MDA-MB-231 triple-negative breast cancer (TNBC) cell line as well as in clinical samples of patients with TNBC. On the basis of these findings, in the present study, we evaluated the anticancer therapeutic potential of newly identified, cell-permeable B1R antagonists in MDA-MB-231 cells (ligand-receptor binding/activity assays and LC-MS/MS analyses). We found that these compounds (SSR240612, NG67, and N2000) were more toxic to MDA-MB-231 cells in comparison with low- or non-B1R expressing MCF-10A normal human mammary epithelial cells and COS-1 cells, respectively (clonogenic, MTT proliferative/cytocidal assays, and fluorescence-activated cell-sorting (FACS)-based apoptosis analyses). By comparison, the peptide B1R antagonist R954 unable to cross cell membrane failed to produce anticancer effects. Furthermore, the putative mechanisms underlying the anticancer activities of cell-penetrant B1R antagonists were assessed by analyzing cell cycle regulation and signaling molecules related to cell survival and apoptosis (FACS and western blot). Finally, drug combination experiments showed that cell-penetrant B1R antagonists can cooperate with suboptimal doses of chemotherapeutic agents (doxorubicin and paclitaxel) to promote TNBC death. This study provides evidence on the potential value of internally acting kinin B1R antagonists in averting growth of breast cancer.


Asunto(s)
Péptidos de Penetración Celular/farmacología , Receptor de Bradiquinina B1/genética , Receptores Acoplados a Proteínas G/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Antagonistas del Receptor de Bradiquinina B1/farmacología , Células COS , Línea Celular Tumoral , Permeabilidad de la Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/genética , Chlorocebus aethiops , Doxorrubicina/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Paclitaxel/farmacología , Transducción de Señal/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...