Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.430
Filtrar
1.
Molecules ; 29(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39124968

RESUMEN

Tropomyosin receptor kinases (Trks) are transmembrane receptor tyrosine kinases named TrkA, TrkB, and TrkC and encoded by the NTRK1, NTRK2, and NTRK3 genes, respectively. These kinases have attracted significant attention and represent a promising therapeutic target for solid tumor treatment due to their vital role in cellular signaling pathways. First-generation TRK inhibitors, i.e., Larotrectinib sulfate and Entrectinib, received clinical approval in 2018 and 2019, respectively. However, the use of these inhibitors was significantly limited because of the development of resistance due to mutations. Fortunately, the second-generation Trk inhibitor Repotrectinib (TPX-0005) was approved by the FDA in November 2023, while Selitrectinib (Loxo-195) has provided an effective solution to this issue. Another macrocycle-based analog, along with many other TRK inhibitors, is currently in clinical trials. Two of the three marketed drugs for NTRK fusion cancers feature a pyrazolo[1,5-a] pyrimidine nucleus, prompting medicinal chemists to develop numerous novel pyrazolopyrimidine-based molecules to enhance clinical applications. This article focuses on a comprehensive review of chronological synthetic developments and the structure-activity relationships (SAR) of pyrazolo[1,5-a]pyrimidine derivatives as Trk inhibitors. This article will also provide comprehensive knowledge and future directions to the researchers working in the field of medicinal chemistry by facilitating the structural modification of pyrazolo [1,5-a]pyrimidine derivatives to synthesize more effective novel chemotherapeutics as TRK inhibitors.


Asunto(s)
Inhibidores de Proteínas Quinasas , Pirazoles , Pirimidinas , Receptor trkA , Pirimidinas/química , Pirimidinas/farmacología , Pirimidinas/síntesis química , Humanos , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/uso terapéutico , Relación Estructura-Actividad , Receptor trkA/antagonistas & inhibidores , Receptor trkA/metabolismo , Receptor trkA/genética , Receptor trkB/antagonistas & inhibidores , Receptor trkB/metabolismo , Receptor trkC/antagonistas & inhibidores , Receptor trkC/genética , Receptor trkC/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química
2.
Acta Oncol ; 63: 542-551, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967220

RESUMEN

BACKGROUND: Neurotrophic tyrosine receptor kinase (NTRK) gene fusions are oncogenic drivers. Using the Auria Biobank in Finland, we aimed to identify and characterize patients with these gene fusions, and describe their clinical and tumor characteristics, treatments received, and outcomes. MATERIAL AND METHODS: We evaluated pediatrics with any solid tumor type and adults with colorectal cancer (CRC), non-small cell lung cancer (NSCLC), sarcoma, or salivary gland cancer. We determined tropomyosin receptor kinase (TRK) protein expression by pan-TRK immunohistochemistry (IHC) staining of tumor samples from the Auria Biobank, scored by a certified pathologist. NTRK gene fusion was confirmed by next generation sequencing (NGS). All 2,059 patients were followed-up starting 1 year before their cancer diagnosis. RESULTS: Frequency of NTRK gene fusion tumors was 3.1% (4/127) in pediatrics, 0.7% (8/1,151) for CRC, 0.3% (1/288) for NSCLC, 0.9% (1/114) for salivary gland cancer, and 0% (0/379) for sarcoma. Among pediatrics there was one case each of fibrosarcoma (TPM3::NTRK1), Ewing's sarcoma (LPPR1::NTRK2), primitive neuroectodermal tumor (DAB2IP::NTRK2), and papillary thyroid carcinoma (RAD51B::NTRK3). Among CRC patients, six harbored tumors with NTRK1 fusions (three fused with TPM3), one harbored a NTRK3::GABRG1 fusion, and the other a NTRK2::FXN/LPPR1 fusion. Microsatellite instability was higher in CRC patients with NTRK gene fusion tumors versus wild-type tumors (50.0% vs. 4.4%). Other detected fusions were SGCZ::NTRK3 (NSCLC) and ETV6::NTRK3 (salivary gland cancer). Four patients (three CRC, one NSCLC) received chemotherapy; one patient (with CRC) received radiotherapy. CONCLUSION: NTRK gene fusions are rare in adult CRC, NSCLC, salivary tumors, sarcoma, and pediatric solid tumors.


Asunto(s)
Receptor trkA , Receptor trkC , Humanos , Finlandia/epidemiología , Masculino , Niño , Femenino , Adulto , Persona de Mediana Edad , Adolescente , Receptor trkA/genética , Preescolar , Adulto Joven , Receptor trkC/genética , Anciano , Bancos de Muestras Biológicas , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Fusión Génica , Sarcoma/genética , Sarcoma/patología , Neoplasias de las Glándulas Salivales/genética , Neoplasias de las Glándulas Salivales/patología , Receptor trkB/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Lactante , Proteínas de Fusión Oncogénica/genética , Neoplasias/genética , Neoplasias/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Glicoproteínas de Membrana
3.
J Med Chem ; 67(13): 11197-11208, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38950284

RESUMEN

Tropomyosin receptor kinases (Trks) are receptor tyrosine kinases activated by neurotrophic factors, called neurotrophins. Among them, TrkA interacts with the nerve growth factor (NGF), which leads to pain induction. mRNA-display screening was carried out to discover a hit compound 2, which inhibits protein-protein interactions between TrkA and NGF. Subsequent structure optimization improving phosphorylation inhibitory activity and serum stability was pursued using a unique process that took advantage of the peptide being synthesized by translation from mRNA. This gave peptide 19, which showed an analgesic effect in a rat incisional pain model. The peptides described here can serve as a new class of analgesics, and the structure optimization methods reported provide a strategy for discovering new peptide drugs.


Asunto(s)
Receptor trkA , Receptor trkA/antagonistas & inhibidores , Receptor trkA/metabolismo , Animales , Ratas , Humanos , Relación Estructura-Actividad , Descubrimiento de Drogas , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Analgésicos/farmacología , Analgésicos/química , Analgésicos/síntesis química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/química , Péptidos Cíclicos/síntesis química , Masculino , Factor de Crecimiento Nervioso/metabolismo , Fosforilación , Dolor/tratamiento farmacológico , Ratas Sprague-Dawley
5.
J Manag Care Spec Pharm ; 30(7): 672-683, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38950155

RESUMEN

BACKGROUND: Neurotrophic tyrosine receptor kinase (NTRK) gene fusions are rare oncogenic drivers prevalent in 0.3% of solid tumors. They are most common in salivary gland cancer (2.6%), thyroid cancer (1.6%), and soft-tissue sarcoma (1.5%). Currently, there are 2 US Food and Drug Administration-approved targeted therapies for NTRK gene fusions: larotrectinib, approved in 2018, and entrectinib, approved in 2019. To date, the real-world uptake of tyrosine receptor kinase inhibitor (TRKi) use for NTRK-positive solid tumors in academic cancer centers remains largely unknown. OBJECTIVE: To describe the demographics, clinical and genomic characteristics, and testing and treatment patterns of patients with NTRK-positive solid tumors treated at US academic cancer centers. METHODS: This was a retrospective chart review study conducted in academic cancer centers in the United States. All patients diagnosed with an NTRK fusion-positive (NTRK1, NTRK2, NTRK3) solid tumor (any stage) and who received cancer treatment at participating sites between January 1, 2012, and July 1, 2023, were included in this study. Patient demographics, clinical characteristics, genomic characteristics, NTRK testing data, and treatment patterns were collected from electronic medical records and analyzed using descriptive statistics as appropriate. RESULTS: In total, 6 centers contributed data for 55 patients with NTRK-positive tumors. The mean age was 49.3 (SD = 20.5) years, 51% patients were female, and the majority were White (78%). The median duration of time from cancer diagnosis to NTRK testing was 85 days (IQR = 44-978). At the time of NTRK testing, 64% of patients had stage IV disease, compared with 33% at cancer diagnosis. Prevalent cancer types in the overall cohort included head and neck (15%), thyroid (15%), brain (13%), lung (13%), and colorectal (11%). NTRK1 fusions were most common (45%), followed by NTRK3 (40%) and NTRK2 (15%). Across all lines of therapy, 51% of patients (n = 28) received a TRKi. Among TRKi-treated patients, 71% had stage IV disease at TRKi initiation. The median time from positive NTRK test to initiation of TRKi was 48 days (IQR = 9-207). TRKis were commonly given as first-line (30%) or second-line (48%) therapies. Median duration of therapy was 610 (IQR = 182-764) days for TRKi use and 207.5 (IQR = 42-539) days for all other first-line therapies. CONCLUSIONS: This study reports on contemporary real-world NTRK testing patterns and use of TRKis in solid tumors, including time between NTRK testing and initiation of TRKi therapy and duration of TRKi therapy.


Asunto(s)
Neoplasias , Inhibidores de Proteínas Quinasas , Receptor trkA , Receptor trkB , Receptor trkC , Humanos , Femenino , Masculino , Estudios Retrospectivos , Persona de Mediana Edad , Estados Unidos , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Receptor trkC/genética , Anciano , Receptor trkA/genética , Adulto , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptor trkB/genética , Centros Médicos Académicos , Glicoproteínas de Membrana/genética , Proteínas de Fusión Oncogénica/genética , Estudios de Cohortes , Pirimidinas/uso terapéutico , Pirazoles/uso terapéutico , Benzamidas/uso terapéutico , Adulto Joven , Indazoles/uso terapéutico
6.
Clin Adv Hematol Oncol ; 22 Suppl 5(6): 1-20, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38953725

RESUMEN

Neurotrophic tyrosine receptor kinase (NTRK) gene fusions are implicated in various cancers, including those of the lung and thyroid. The prevalence of NTRK fusions is 0.1 to 0.3% in non-small cell lung cancer (NSCLC) and as high as 26% in pediatric papillary thyroid carcinoma. Detection methods include immunohistochemistry, fluorescence in situ hybridization, reverse transcription polymerase chain reaction, and next-generation sequencing. Management of NTRK fusion-positive lung cancer primarily involves targeted therapies, notably the tyrosine receptor kinase (TRK) inhibitors larotrectinib and entrectinib. Both agents demonstrate high response rates and durable disease control, particularly in metastatic adenocarcinoma of the lung. They are preferred as first-line treatments because of their efficacy over immunotherapy. Possible adverse events include dizziness, weight gain, neuropathy-like pain, and liver enzyme elevation. Larotrectinib and entrectinib also produce robust and durable responses in NTRK fusion-positive thyroid cancer that is refractory to radioactive iodine. Second-generation TRK inhibitors that have been designed to overcome acquired resistance are under investigation.


Asunto(s)
Indazoles , Neoplasias Pulmonares , Proteínas de Fusión Oncogénica , Inhibidores de Proteínas Quinasas , Pirazoles , Pirimidinas , Neoplasias de la Tiroides , Humanos , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/efectos adversos , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Indazoles/uso terapéutico , Indazoles/efectos adversos , Pirazoles/uso terapéutico , Pirazoles/efectos adversos , Proteínas de Fusión Oncogénica/genética , Pirimidinas/uso terapéutico , Pirimidinas/efectos adversos , Receptor trkA/genética , Receptor trkA/antagonistas & inhibidores , Benzamidas/uso terapéutico , Resultado del Tratamiento
9.
J Cardiovasc Med (Hagerstown) ; 25(9): 664-673, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949125

RESUMEN

BACKGROUND AND AIMS: Sodium-glucose cotransporter 2 inhibitors (SGLT2is) can ameliorate arrhythmias; however, the mechanisms underlying their antiarrhythmic effect remain unclear. Therefore, we aimed to test the hypothesis that the SGLT2i empagliflozin (EMPA) ameliorates ventricular arrhythmias caused by myocardial infarction (MI) by inhibiting sympathetic remodeling. METHODS: Male nondiabetic Sprague-Dawley rats were divided into Sham ( n  = 10), MI ( n  = 13), low-EMPA (10 mg/kg/day; n  = 13), and high-EMPA (30 mg/kg/day; n  = 13) groups. Except for the Sham group, MI models were established by ligation of the left anterior descending coronary artery. After 4 weeks, the hearts were removed. Echocardiography, electrical stimulation, hematoxylin-eosin staining and Masson's staining, Western blotting, immunohistochemistry (IHC), and ELISA were performed. RESULTS: Except for left ventricular posterior wall thickness (LVPWT), EMPA treatment significantly ameliorated the left ventricular anterior wall thickness (LVAWT), interventricular septum thickness (IVST), left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameter (LVESD), and left ventricular ejection fraction (LVEF) in MI rats; there was no statistical difference between the low-EMPA and high-EMPA groups. The threshold for ventricular fibrillation induction and myocardial fibrosis was significantly ameliorated in EMPA-treated rats, and there was no statistical difference between the high-EMPA and low-EMPA groups. EMPA decreased the expression of nerve growth factor (NGF), tyrosine kinase receptor A (TrkA), tyrosine hydroxylase, and growth-associated protein 43 (GAP43) in the left ventricular infarction margin myocardium of MI rats, especially in the high-EMPA group, with a statistically significant difference between the high-EMPA and low-EMPA groups. High-EMPA significantly decreased noradrenaline (NE) levels in the blood of MI rats; however, there was no statistical difference between the low-EMPA and MI groups. CONCLUSION: EMPA ameliorated the occurrence of ventricular arrhythmias in MI rats, which may be related to a reduction in sympathetic activity, inhibition of the NGF/TrkA pathway, inhibition of sympathetic remodeling, and improvement in cardiac function and cardiac structural remodeling.


Asunto(s)
Compuestos de Bencidrilo , Modelos Animales de Enfermedad , Glucósidos , Infarto del Miocardio , Factor de Crecimiento Nervioso , Ratas Sprague-Dawley , Transducción de Señal , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Sistema Nervioso Simpático , Remodelación Ventricular , Animales , Masculino , Compuestos de Bencidrilo/farmacología , Glucósidos/farmacología , Factor de Crecimiento Nervioso/metabolismo , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/complicaciones , Infarto del Miocardio/patología , Infarto del Miocardio/metabolismo , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/fisiopatología , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Remodelación Ventricular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Receptor trkA/metabolismo , Receptor trkA/antagonistas & inhibidores , Proteína GAP-43/metabolismo , Función Ventricular Izquierda/efectos de los fármacos , Arritmias Cardíacas/etiología , Arritmias Cardíacas/prevención & control , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/tratamiento farmacológico , Ratas , Antiarrítmicos/farmacología , Conexina 43
12.
Eur J Med Chem ; 276: 116640, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39033612

RESUMEN

NTRK gene fusion leads to the activation of downstream signaling pathways, which is a oncogenic driver in various cancers. NTRK fusion-positive cancers can be treated with the first-generation TRK inhibitors, larotrectinib and entrectinib. Unfortunately, the patients eventually face the dilemma of no drugs available as the emergence of certain resistance mutations. The development of efficient and broad-spectrum second-generation TRK inhibitors is still of great significance. Here, we analyzed the binding modes of compounds 6, 10 with TRKA protein, respectively, a series of novel indazole TRK inhibitors were designed and synthesized using molecular hybridization strategy. Among them, the optimal compound B31 showed strong antiproliferative activities against Km-12, Ba/F3-TRKAG595R, and Ba/F3-TRKAG667C cell lines with IC50 values of 0.3, 4.7, and 9.9 nM, respectively. And the inhibitory effect against TRKAG667C (IC50 = 9.9 nM) was better than that of selitrectinib (IC50 = 113.1 nM). Further, compound B31 exhibited moderate kinase selectivity and excellent plasma stability (t1/2 > 480 min). In vivo pharmacokinetic studies in Sprague-Dawley rats showed that B31 had acceptable pharmacokinetic properties.


Asunto(s)
Antineoplásicos , Proliferación Celular , Descubrimiento de Drogas , Indazoles , Inhibidores de Proteínas Quinasas , Ratas Sprague-Dawley , Receptor trkA , Indazoles/farmacología , Indazoles/química , Indazoles/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Humanos , Animales , Relación Estructura-Actividad , Receptor trkA/antagonistas & inhibidores , Receptor trkA/metabolismo , Proliferación Celular/efectos de los fármacos , Ratas , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Estructura Molecular , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Masculino
13.
Acta Neuropathol Commun ; 12(1): 118, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014476

RESUMEN

Background Neurotrophic tropomyosin receptor kinase (NTRK) gene fusions are found in 1% of gliomas across children and adults. TRK inhibitors are promising therapeutic agents for NTRK-fused gliomas because they are tissue agnostic and cross the blood-brain barrier (BBB). Methods We investigated twelve NGS-verified NTRK-fused gliomas from a single institute, Seoul National University Hospital. Results The patient cohort included six children (aged 1-15 years) and six adults (aged 27-72 years). NTRK2 fusions were found in ten cerebral diffuse low-grade and high-grade gliomas (DLGGs and DHGGs, respectively), and NTRK1 fusions were found in one cerebral desmoplastic infantile ganglioglioma and one spinal DHGG. In this series, the fusion partners of NTRK2 were HOOK3, KIF5A, GKAP1, LHFPL3, SLMAP, ZBTB43, SPECC1L, FKBP15, KANK1, and BCR, while the NTRK1 fusion partners were TPR and TPM3. DLGGs tended to harbour only an NTRK fusion, while DHGGs exhibited further genetic alterations, such as TERT promoter/TP53/PTEN mutation, CDKN2A/2B homozygous deletion, PDGFRA/KIT/MDM4/AKT3 amplification, or multiple chromosomal copy number aberrations. Four patients received adjuvant TRK inhibitor therapy (larotrectinib, repotrectinib, or entrectinib), among which three also received chemotherapy (n = 2) or proton therapy (n = 1). The treatment outcomes for patients receiving TRK inhibitors varied: one child who received larotrectinib for residual DLGG maintained stable disease. In contrast, another child with DHGG in the spinal cord experienced multiple instances of tumour recurrence. Despite treatment with larotrectinib, ultimately, the child died as a result of tumour progression. An adult patient with glioblastoma (GBM) treated with entrectinib also experienced tumour progression and eventually died. However, there was a successful outcome for a paediatric patient with DHGG who, after a second gross total tumour removal followed by repotrectinib treatment, showed no evidence of disease. This patient had previously experienced relapse after the initial surgery and underwent autologous peripheral blood stem cell therapy with carboplatin/thiotepa and proton therapy. Conclusions Our study clarifies the distinct differences in the pathology and TRK inhibitor response between LGG and HGG with NTRK fusions.


Asunto(s)
Inhibidores de Proteínas Quinasas , Pirazoles , Receptor trkB , Humanos , Masculino , Femenino , Niño , Preescolar , Adulto , Adolescente , Persona de Mediana Edad , Anciano , Lactante , Receptor trkB/genética , Receptor trkB/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/uso terapéutico , Receptor trkA/genética , Receptor trkA/antagonistas & inhibidores , Glioma/genética , Glioma/patología , Glioma/tratamiento farmacológico , Pirimidinas/uso terapéutico , Proteínas de Fusión Oncogénica/genética , Benzamidas/uso terapéutico , Glicoproteínas de Membrana/genética , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Neoplasias del Sistema Nervioso Central/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Indazoles
14.
ACS Chem Biol ; 19(7): 1626-1637, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39026469

RESUMEN

Chronic pain is a prevalent problem that plagues modern society, and better understanding its mechanisms is critical for developing effective therapeutics. Nerve growth factor (NGF) and its primary receptor, Tropomyosin receptor kinase A (TrkA), are known to be potent mediators of chronic pain, but there is a lack of established methods for precisely perturbing the NGF/TrkA signaling pathway in the study of pain and nociception. Optobiological tools that leverage light-induced protein-protein interactions allow for precise spatial and temporal control of receptor signaling. Previously, our lab reported a blue light-activated version of TrkA generated using light-induced dimerization of the intracellular TrkA domain, opto-iTrkA. In this work, we show that opto-iTrkA activation is able to activate endogenous ERK and Akt signaling pathways and causes the retrograde transduction of phospho-ERK signals in dorsal root ganglion (DRG) neurons. Opto-iTrkA activation also sensitizes the transient receptor potential vanilloid 1 (TRPV1) channel in cellular models, further corroborating the physiological relevance of the optobiological stimulus. Finally, we show that opto-iTrkA enables light-inducible potentiation of mechanical sensitization in mice. Light illumination enables nontraumatic and reversible (<2 days) sensitization of mechanical pain in mice transduced with opto-iTrkA, which provides a platform for dissecting TrkA pathways for nociception in vitro and in vivo.


Asunto(s)
Dolor Crónico , Ganglios Espinales , Luz , Receptor trkA , Animales , Receptor trkA/metabolismo , Dolor Crónico/metabolismo , Ratones , Ganglios Espinales/metabolismo , Canales Catiónicos TRPV/metabolismo , Humanos , Transducción de Señal , Ratones Endogámicos C57BL , Masculino , Factor de Crecimiento Nervioso/metabolismo , Neuronas/metabolismo
15.
Nat Commun ; 15(1): 5110, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877018

RESUMEN

Tyrosine kinase (TK) fusions are frequently found in cancers, either as initiating events or as a mechanism of resistance to targeted therapy. Partner genes and exons in most TK fusions are followed typical recurrent patterns, but the underlying mechanisms and clinical implications of these patterns are poorly understood. By developing Functionally Active Chromosomal Translocation Sequencing (FACTS), we discover that typical TK fusions involving ALK, ROS1, RET and NTRK1 are selected from pools of chromosomal rearrangements by two major determinants: active transcription of the fusion partner genes and protein stability. In contrast, atypical TK fusions that are rarely seen in patients showed reduced protein stability, decreased downstream oncogenic signaling, and were less responsive to inhibition. Consistently, patients with atypical TK fusions were associated with a reduced response to TKI therapies. Our findings highlight the principles of oncogenic TK fusion formation and selection in cancers, with clinical implications for guiding targeted therapy.


Asunto(s)
Neoplasias , Proteínas de Fusión Oncogénica , Proteínas Tirosina Quinasas , Proteínas Proto-Oncogénicas c-ret , Translocación Genética , Humanos , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Quinasa de Linfoma Anaplásico/genética , Quinasa de Linfoma Anaplásico/metabolismo , Receptor trkA/genética , Receptor trkA/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/genética , Línea Celular Tumoral
16.
Zhonghua Bing Li Xue Za Zhi ; 53(6): 598-604, 2024 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-38825906

RESUMEN

Objective: To investigate the clinicopathological, immunophenotypic and molecular genetic characteristics, and differential diagnosis of NTRK-rearranged spindle cell neoplasms (NTRK-RSCNs) in the gastrointestinal tract. Methods: Two NTRK-RSCNs diagnosed at the Department of Pathology of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China and one case diagnosed at Zhengzhou Central Hospital, Zhengzhou, China from 2019 to 2022 were collected. The clinical data, histopathology, immunophenotypes and prognosis were analyzed. Fluorescence in situ hybridization (FISH) and next-generation sequencing (NGS) were used to detect NTRK gene rearrangements, while relevant literature was also reviewed and discussed. Results: Two patients were male and one was female, with the age of 17, 47 and 62 years, respectively. The tumors were located in the duodenum, ascending colon and descending colon, respectively. The tumors were protuberant masses with gray and rubbery sections. Their maximum diameter was 2.5, 5.0 and 10.0 cm, respectively. Histologically, the tumors invaded mucosa, intrinsic muscle and serosal adipose tissue. Tumor cells consisted of spindle or oval shaped cells with monotonous morphology and arranged in bundles or stripes pattern. Spindle cells were mildly to moderately atypical, with slightly eosinophilic cytoplasm and inconspicuous nucleoli. Necrosis and mitotic figures were observed in one high-grade tumor. All tumors expressed CD34, S-100 and pan-TRK in varying degrees. FISH analysis showed that NTRK1 gene was break-apart in 1 case and NTRK2 gene break-apart in 2 cases. NGS technologies showed LMNA::NTRK1 fusion in one case, STRN::NTRK2 fusion in another case. All patients recovered well after the surgery without recurrence at the end of the follow-up. Conclusions: NTRK-RSCN is rarely diagnosed in the gastrointestinal tract and has significant variations in morphology. It overlaps with various other mesenchymal tumors which should be considered as differential diagnoses. Be familiar with the features of histological morphology in combination with immunophenotype and molecular genetic characteristics can not only help diagnose NTRK-RSCNs, but provide therapeutic targets for clinical treatment.


Asunto(s)
Neoplasias Gastrointestinales , Hibridación Fluorescente in Situ , Receptor trkA , Humanos , Masculino , Femenino , Persona de Mediana Edad , Receptor trkA/genética , Receptor trkA/metabolismo , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/patología , Adolescente , Reordenamiento Génico , Diagnóstico Diferencial , Secuenciación de Nucleótidos de Alto Rendimiento , Receptor trkB/genética , Receptor trkB/metabolismo
17.
Int J Mol Sci ; 25(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38892241

RESUMEN

Glutamate functions as the major excitatory neurotransmitter for primary sensory neurons and has a crucial role in sensitizing peripheral nociceptor terminals producing sensitization. Glutaminase (GLS) is the synthetic enzyme that converts glutamine to glutamate. GLS-immunoreactivity (-ir) and enzyme activity are elevated in dorsal root ganglion (DRG) neuronal cell bodies during chronic peripheral inflammation, but the mechanism for this GLS elevation is yet to be fully characterized. It has been well established that, after nerve growth factor (NGF) binds to its high-affinity receptor tropomyosin receptor kinase A (TrkA), a retrograde signaling endosome is formed. This endosome contains the late endosomal marker Rab7GTPase and is retrogradely transported via axons to the cell soma located in the DRG. This complex is responsible for regulating the transcription of several critical nociceptive genes. Here, we show that this retrograde NGF signaling mediates the expression of GLS in DRG neurons during the process of peripheral inflammation. We disrupted the normal NGF/TrkA signaling in adjuvant-induced arthritic (AIA) Sprague Dawley rats by the pharmacological inhibition of TrkA or blockade of Rab7GTPase, which significantly attenuated the expression of GLS in DRG cell bodies. The results indicate that NGF/TrkA signaling is crucial for the production of glutamate and has a vital role in the development of neurogenic inflammation. In addition, our pain behavioral data suggest that Rab7GTPase can be a potential target for attenuating peripheral inflammatory pain.


Asunto(s)
Ganglios Espinales , Glutaminasa , Inflamación , Factor de Crecimiento Nervioso , Ratas Sprague-Dawley , Receptor trkA , Transducción de Señal , Animales , Ganglios Espinales/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Glutaminasa/metabolismo , Ratas , Receptor trkA/metabolismo , Inflamación/metabolismo , Inflamación/patología , Masculino , Neuronas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7
18.
Cancer Med ; 13(12): e7351, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38925616

RESUMEN

BACKGROUND: Members of the neurotrophic tropomyosin receptor kinase (NTRK) gene family, NTRK1, NTRK2, and NTRK3 encode TRK receptor tyrosine kinases. Intra- or inter-chromosomal gene rearrangements produce NTRK gene fusions encoding fusion proteins which are oncogenic drivers in various solid tumors. METHODS: This study investigated the prevalence of NTRK fusion genes and identified fusion partners in Japanese patients with solid tumors recorded in the Center for Cancer Genomics and Advanced Therapeutics database of comprehensive genomic profiling test. RESULTS: In the analysis population (n = 46,621), NTRK fusion genes were detected in 91 patients (0.20%). The rate was higher in pediatric cases (<18 years; 1.69%) than in adults (0.16%). NTRK gene fusions were identified in 21 different solid tumor types involving 38 different partner genes including 22 (57.9%) previously unreported NTRK gene fusions. The highest frequency of NTRK gene fusions was head and neck cancer (1.31%) and thyroid cancer (1.31%), followed by soft tissue sarcoma (STS; 0.91%). A total of 97 NTRK fusion gene partners were analyzed involving mainly NTRK1 (49.5%) or NTRK3 (44.2%) gene fusions. The only fusion gene detected in head and neck cancer was ETV6::NTRK3 (n = 22); in STS, ETV6::NTRK3 (n = 7) and LMNA::NTRK1 (n = 5) were common. Statistically significant mutual exclusivity of NTRK fusions with alterations was confirmed in TP53, KRAS, and APC. NTRK gene fusion was detected from 11 STS cases: seven unclassified sarcoma, three sarcoma NOS, and one Ewing sarcoma. CONCLUSIONS: NTRK gene fusion identification in solid tumors enables accurate diagnosis and potential TRK inhibitor therapy.


Asunto(s)
Neoplasias , Proteínas de Fusión Oncogénica , Receptor trkA , Humanos , Japón/epidemiología , Proteínas de Fusión Oncogénica/genética , Receptor trkA/genética , Masculino , Neoplasias/genética , Neoplasias/epidemiología , Femenino , Niño , Adulto , Receptor trkC/genética , Adolescente , Receptor trkB/genética , Prevalencia , Adulto Joven , Persona de Mediana Edad , Preescolar , Anciano , Glicoproteínas de Membrana
19.
Hum Pathol ; 149: 29-38, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38857659

RESUMEN

BACKGROUND: Chromosomal rearrangements involving one of the NTRK genes result in oncogenic driver mutations in thyroid carcinoma (TC) and serve as a target for therapy. We compared the clinicopathologic features of thyroid carcinomas with NTRK fusions vs. thyroid neoplasms with other malignancy associated gene fusions within our institution. MATERIALS AND METHODS: Our pathology archives were searched from 2013 to 2023 for thyroid neoplasms with gene fusions, excluding THADA fusions and medullary thyroid carcinomas. RESULTS: 55 thyroid lesions were identified: 22 with NTRK fusions (NTRK cohort) and 33 with other fusions (non-NTRK cohort). On fine needle aspiration (FNA), 54% of the NTRK cohort were classified as Category V as per Bethesda System for Reporting Thyroid Cytology (TBSRTC) and 51.5% of non-NTRK cohort as TBSRTC Category III. In the NTRK cohort, the most common reported fusion was ETV6::NTRK3 and the most common reported fusion in the non-NTRK cohort was PAX8::PPAR-gamma. On histologic examination both cohorts were most commonly diagnosed as PTC follicular variant. Invasive features were more common in the NTRK cohort in comparison to the non-NTRK cohort. Locoregional recurrence occurred in 2/22 NTRK cases and 2/33 non-NTRK cases, with average time from surgery to recurrence being 5.5 months and 21 months, respectively. The majority of patients in both groups are alive with no evidence of disease. CONCLUSIONS: Thyroid neoplasms with a malignancy associated gene fusion are likely to be diagnosed as subtype/variant of PTC. Patients whose thyroid lesions harbor NTRK fusions present with a PTC-FV that on presentation has more aggressive clinicopathologic findings and are likely to have earlier disease recurrence.


Asunto(s)
Receptor trkA , Neoplasias de la Tiroides , Humanos , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Anciano , Receptor trkA/genética , Biomarcadores de Tumor/genética , Proteínas de Fusión Oncogénica/genética , Fusión Génica , Adulto Joven , Receptor trkC/genética , Biopsia con Aguja Fina , Anciano de 80 o más Años , Predisposición Genética a la Enfermedad , Adolescente
20.
Hum Pathol ; 149: 39-47, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38866255

RESUMEN

Our objective is to investigate a cost-effective approach to screen for NTRK fusion in the major subtypes of non-small cell lung cancer (NSCLC). Evaluate the concordance between immunohistochemistry (IHC) and next-generation sequencing (NGS), as well as between fluorescence in situ hybridization (FISH) and NGS, to detect any discrepancies in methodological consistency between lung adenocarcinoma (LADC) and lung squamous cell carcinoma (LSCC). Analyze the factors influencing IHC results. A cohort of 1654 patients with NSCLC underwent screening for NTRK fusion using whole slide IHC. The positive cases were analyzed by both FISH and NGS. Totally, 57 tested positive for pan-TRK, with positivity rates of 0.68% (10/1467) for LADC and 29.01% (47/162) for LSCC. FISH showed separate NTRK1 and NTRK3 rearrangements in two pan-TRK-positive LADCs, while all LSCCs tested negative. NGS confirmed functional NTRK fusion in two FISH-positive cases: one involving TPM3-NTRK1 and the other involving SQSTM1-NTRK3. A non-functional fusion of NTRK2-XRCC1 was detected in LSCC, while FISH was negative. According to our approach, the prevalence of NTRK fusion in NSCLC is 0.12%. The concordance rate between IHC and RNA-based NGS was 20% (2/10) in LADC and 0% (0/162) in LSCC. When the positive criteria increased over 50% of tumor cells showing strong staining, the concordance would be 100% (2/2). A concordance rate of 100% (2/2) was observed between FISH and RNA-based NGS in LADC. The expression of pan-TRK was significantly correlated with the tumor proportion score (TPS) of PD-L1 (p < 0.05) and transcript per million (TPM) values of NTRK2 (p < 0.05). We recommend using IHC with strict criteria to screen NTRK fusion in LADC rather than LSCC, confirmed by RNA-based NGS directly. When the NGS results are inconclusive, FISH validation is necessary.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Estudios de Factibilidad , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunohistoquímica , Hibridación Fluorescente in Situ , Neoplasias Pulmonares , Receptor trkA , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Masculino , Persona de Mediana Edad , Receptor trkA/genética , Anciano , Proteínas de Fusión Oncogénica/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Receptor trkC/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Adulto , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...