Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.639
Filtrar
1.
Traffic ; 25(5): e12936, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38725127

RESUMEN

Endosomal trafficking of TrkA is a critical process for nerve growth factor (NGF)-dependent neuronal cell survival and differentiation. The small GTPase ADP-ribosylation factor 6 (Arf6) is implicated in NGF-dependent processes in PC12 cells through endosomal trafficking and actin cytoskeleton reorganization. However, the regulatory mechanism for Arf6 in NGF signaling is largely unknown. In this study, we demonstrated that EFA6A, an Arf6-specific guanine nucleotide exchange factor, was abundantly expressed in PC12 cells and that knockdown of EFA6A significantly inhibited NGF-dependent Arf6 activation, TrkA recycling from early endosomes to the cell surface, prolonged ERK1/2 phosphorylation, and neurite outgrowth. We also demonstrated that EFA6A forms a protein complex with TrkA through its N-terminal region, thereby enhancing its catalytic activity for Arf6. Similarly, we demonstrated that EFA6A forms a protein complex with TrkA in cultured dorsal root ganglion (DRG) neurons. Furthermore, cultured DRG neurons from EFA6A knockout mice exhibited disturbed NGF-dependent TrkA trafficking compared with wild-type neurons. These findings provide the first evidence for EFA6A as a key regulator of NGF-dependent TrkA trafficking and signaling.


Asunto(s)
Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP , Endosomas , Factores de Intercambio de Guanina Nucleótido , Factor de Crecimiento Nervioso , Proyección Neuronal , Receptor trkA , Animales , Células PC12 , Receptor trkA/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Ratas , Endosomas/metabolismo , Factores de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Ratones , Transporte de Proteínas , Ganglios Espinales/metabolismo , Ratones Noqueados
2.
J Pathol ; 263(2): 257-269, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38613194

RESUMEN

Genomic rearrangements of the neurotrophic receptor tyrosine kinase genes (NTRK1, NTRK2, and NTRK3) are the most common mechanism of oncogenic activation for this family of receptors, resulting in sustained cancer cell proliferation. Several targeted therapies have been approved for tumours harbouring NTRK fusions and a new generation of TRK inhibitors has already been developed due to acquired resistance. We established a patient-derived LMNA::NTRK1-rearranged soft-tissue sarcoma cell model ex vivo with an acquired resistance to targeted TRK inhibition. Molecular profiling of the resistant clones revealed an acquired NF2 loss of function mutation that was absent in the parental cell model. Parental cells showed continuous sensitivity to TRK-targeted treatment, whereas the resistant clones were insensitive. Furthermore, resistant clones showed upregulation of the MAPK and mTOR/AKT pathways in the gene expression based on RNA sequencing data and increased sensitivity to MEK and mTOR inhibitor therapy. Drug synergy was seen using trametinib and rapamycin in combination with entrectinib. Medium-throughput drug screening further identified small compounds as potential drug candidates to overcome resistance as monotherapy or in combination with entrectinib. In summary, we developed a comprehensive model of drug resistance in an LMNA::NTRK1-rearranged soft-tissue sarcoma and have broadened the understanding of acquired drug resistance to targeted TRK therapy. Furthermore, we identified drug combinations and small compounds to overcome acquired drug resistance and potentially guide patient care in a functional precision oncology setting. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Resistencia a Antineoplásicos , Reordenamiento Génico , Lamina Tipo A , Mutación , Neurofibromina 2 , Inhibidores de Proteínas Quinasas , Receptor trkA , Sarcoma , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Resistencia a Antineoplásicos/genética , Receptor trkA/genética , Receptor trkA/antagonistas & inhibidores , Receptor trkA/metabolismo , Sarcoma/genética , Sarcoma/tratamiento farmacológico , Sarcoma/patología , Sarcoma/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Piridonas/farmacología , Benzamidas/farmacología , Pirimidinonas/farmacología , Sirolimus/farmacología , Neoplasias de los Tejidos Blandos/genética , Neoplasias de los Tejidos Blandos/tratamiento farmacológico , Neoplasias de los Tejidos Blandos/patología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Transducción de Señal/efectos de los fármacos , Sinergismo Farmacológico , Indazoles
4.
ACS Chem Neurosci ; 15(9): 1755-1769, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602894

RESUMEN

Neurotrophins are a family of growth factors that play a key role in the development and regulation of the functioning of the central nervous system. Their use as drugs is made difficult by their poor stability, cellular permeability, and side effects. Continuing our effort to use peptides that mimic the neurotrophic growth factor (NGF), the family model protein, and specifically the N-terminus of the protein, here we report on the spectroscopic characterization and resistance to hydrolysis of the 14-membered cyclic peptide reproducing the N-terminus sequence (SSSHPIFHRGEFSV (c-NGF(1-14)). Far-UV CD spectra and a computational study show that this peptide has a rigid conformation and left-handed chirality typical of polyproline II that favors its interaction with the D5 domain of the NGF receptor TrkA. c-NGF(1-14) is able to bind Cu2+ with good affinity; the resulting complexes have been characterized by potentiometric and spectroscopic measurements. Experiments on PC12 cells show that c-NGF(1-14) acts as an ionophore, influencing the degree and the localization of both the membrane transporter (Ctr1) and the copper intracellular transporter (CCS). c-NGF(1-14) induces PC12 differentiation, mimics the protein in TrkA phosphorylation, and activates the kinase cascade, inducing Erk1/2 phosphorylation. c-NGF(1-14) biological activities are enhanced when the peptide interacts with Cu2+ even with the submicromolar quantities present in the culture media as demonstrated by ICP-OES measurements. Finally, c-NGF(1-14) and Cu2+ concur to activate the cAMP response element-binding protein CREB that, in turn, induces the brain-derived neurotrophic factor (BDNF) and the vascular endothelial growth factor (VEGF) release.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Cobre , Factor de Crecimiento Nervioso , Péptidos Cíclicos , Factor A de Crecimiento Endotelial Vascular , Células PC12 , Animales , Ratas , Factor de Crecimiento Nervioso/farmacología , Factor de Crecimiento Nervioso/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cobre/metabolismo , Cobre/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/química , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Ionóforos/farmacología , Proteínas de Transporte de Catión/metabolismo , Receptor trkA/metabolismo
5.
Biomed Pharmacother ; 174: 116552, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599061

RESUMEN

AIMS: Pulmonary hypertension (PH) is characterised by an increase in pulmonary arterial pressure, ultimately leading to right ventricular failure and death. We have previously shown that nerve growth factor (NGF) plays a critical role in PH. Our objectives here were to determine whether NGF controls Connexin-43 (Cx43) expression and function in the pulmonary arterial smooth muscle, and whether this mechanism contributes to NGF-induced pulmonary artery hyperreactivity. METHODS AND RESULTS: NGF activates its TrkA receptor to increase Cx43 expression, phosphorylation, and localization at the plasma membrane in human pulmonary arterial smooth muscle cells, thus leading to enhanced activity of Cx43-dependent GAP junctions as shown by Lucifer Yellow dye assay transfer and fluorescence recovery after photobleaching -FRAP- experiments. Using both in vitro pharmacological and in vivo SiRNA approaches, we demonstrate that NGF-dependent increase in Cx43 expression and activity in the rat pulmonary circulation causes pulmonary artery hyperreactivity. We also show that, in a rat model of PH induced by chronic hypoxia, in vivo blockade of NGF or of its TrkA receptor significantly reduces Cx43 increased pulmonary arterial expression induced by chronic hypoxia and displays preventive effects on pulmonary arterial pressure increase and right heart hypertrophy. CONCLUSIONS: Modulation of Cx43 by NGF in pulmonary arterial smooth muscle cells contributes to NGF-induced alterations of pulmonary artery reactivity. Since NGF and its TrkA receptor play a role in vivo in Cx43 increased expression in PH induced by chronic hypoxia, these NGF/Cx43-dependent mechanisms may therefore play a significant role in human PH pathophysiology.


Asunto(s)
Conexina 43 , Miocitos del Músculo Liso , Factor de Crecimiento Nervioso , Arteria Pulmonar , Animales , Humanos , Masculino , Ratas , Células Cultivadas , Conexina 43/metabolismo , Uniones Comunicantes/metabolismo , Uniones Comunicantes/efectos de los fármacos , Hipertensión Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Factor de Crecimiento Nervioso/metabolismo , Fosforilación , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Ratas Sprague-Dawley , Ratas Wistar , Receptor trkA/metabolismo
6.
Pain Res Manag ; 2024: 1552594, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410126

RESUMEN

Objectives: Knee osteoarthritis (KOA) pain is caused by nociceptors, which are actually sensory nerve fiber endings that can detect stimuli to produce and transmit pain signals, and high levels of NGF in synovial tissue led to peripheral hyperalgesia in KOA. The purpose of this study is to investigate how sensory nerve fibers respond to the NGF/TrKA signal pathway and mediate the peripheral hyperalgesia in KOA rats. Methods: Forty SD male rats were randomly divided into 4 groups: normal, KOA, KOA + NGF, and KOA + siRNA TrKA. KOA model rats were induced by anterior cruciate ligament transection (ACLT). Mechanical and cold withdrawal thresholds (MWT and CWT) were measured 4 times in each group. The synovial tissues were harvested on day 28, and the expressions of NGF, TrKA, TRPV1, IL-1ß, and PGP9.5 were determined using western blot, qPCR, and immunofluorescence staining. The primary rat fibroblast-like synoviocytes (FLSs) and DRG cells were divided into 4 groups as in vivo. The expressions of NGF, TrKA, TRPV1, and CGRP in vitro were determined using western blot and qPCR. Results: KOA and intra-articular injection with NGF protein increased both mRNA and protein levels, not only TRPV1, PGP 9.5, and IL-1ß in the synovial tissue, but also TRPV1, PGP 9.5, and S100 in the DRG tissue, while above changes were partly reversed after siRNA TrKA intervention. Besides, siRNA TrKA could improve peripheral hyperalgesia and decreased the TRPV1 positive nerve fiber innervation in synovial tissue. The results in vitro were consistent with those in vivo. Conclusion: This study showed the activation of the NGF/TrKA signaling pathway in KOA promoted the release of pain mediators, increased the innervation of sensory nerve fibers in the synovium, and worsened peripheral hyperalgesia. It also showed increased TRPV1 positive sensory innervation in KOA was mediated by NGF/TrKA signaling and exacerbated peripheral hyperalgesia.


Asunto(s)
Hiperalgesia , Osteoartritis de la Rodilla , Ratas , Masculino , Animales , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Ratas Sprague-Dawley , Receptor trkA/metabolismo , Factor de Crecimiento Nervioso/efectos adversos , Factor de Crecimiento Nervioso/metabolismo , Transducción de Señal/fisiología , Dolor , ARN Interferente Pequeño
7.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38397049

RESUMEN

Neurotrophic tyrosine receptor kinase (NTRK) has been a remarkable therapeutic target for treating different malignancies, playing an essential role in oncogenic signaling pathways. Groundbreaking trials like NAVIGATE led to the approval of NTRK inhibitors by the Food and Drug Administration (FDA) to treat different malignancies, significantly impacting current oncology treatment. Accurate detection of NTRK gene fusion becomes very important for possible targeted therapy. Various methods to detect NTRK gene fusion have been applied widely based on sensitivity, specificity, and accessibility. The utility of different tests in clinical practice is discussed in this study by providing insights into their effectiveness in targeting patients who may benefit from therapy. Widespread use of NTRK inhibitors in different malignancies could remain limited due to resistance mechanisms that cause challenges to medication efficacy in addition to common side effects of the medications. This review provides a succinct overview of the application of NTRK inhibitors in various types of cancer by emphasizing the critical clinical significance of NTRK fusion gene detection. The discussion also provides a solid foundation for understanding the current challenges and potential changes for improving the efficacy of NTRK inhibitor therapy to treat different malignancies.


Asunto(s)
Neoplasias , Receptor trkA , Humanos , Receptor trkA/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Oncología Médica , Transducción de Señal , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas de Fusión Oncogénica/metabolismo
8.
Nat Immunol ; 25(2): 268-281, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38195702

RESUMEN

Melanoma cells, deriving from neuroectodermal melanocytes, may exploit the nervous system's immune privilege for growth. Here we show that nerve growth factor (NGF) has both melanoma cell intrinsic and extrinsic immunosuppressive functions. Autocrine NGF engages tropomyosin receptor kinase A (TrkA) on melanoma cells to desensitize interferon γ signaling, leading to T and natural killer cell exclusion. In effector T cells that upregulate surface TrkA expression upon T cell receptor activation, paracrine NGF dampens T cell receptor signaling and effector function. Inhibiting NGF, either through genetic modification or with the tropomyosin receptor kinase inhibitor larotrectinib, renders melanomas susceptible to immune checkpoint blockade therapy and fosters long-term immunity by activating memory T cells with low affinity. These results identify the NGF-TrkA axis as an important suppressor of anti-tumor immunity and suggest larotrectinib might be repurposed for immune sensitization. Moreover, by enlisting low-affinity T cells, anti-NGF reduces acquired resistance to immune checkpoint blockade and prevents melanoma recurrence.


Asunto(s)
Melanoma , Receptor de Factor de Crecimiento Nervioso , Humanos , Receptor de Factor de Crecimiento Nervioso/genética , Receptor de Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Tropomiosina , Melanoma/terapia , Receptor trkA/genética , Receptor trkA/metabolismo , Citoprotección , Inhibidores de Puntos de Control Inmunológico , Células T de Memoria , Terapia de Inmunosupresión , Inmunoterapia , Receptores de Antígenos de Linfocitos T
9.
Neuromodulation ; 27(2): 273-283, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36801128

RESUMEN

OBJECTIVE: Functional dyspepsia (FD), which has a complicated pathophysiologic process, is a common functional gastrointestinal disease. Gastric hypersensitivity is the key pathophysiological factor in patients with FD with chronic visceral pain. Auricular vagal nerve stimulation (AVNS) has the therapeutic effect of reducing gastric hypersensitivity by regulating the activity of the vagus nerve. However, the potential molecular mechanism is still unclear. Therefore, we investigated the effects of AVNS on the brain-gut axis through the central nerve growth factor (NGF)/ tropomyosin receptor kinase A (TrkA)/phospholipase C-gamma (PLC-γ) signaling pathway in FD model rats with gastric hypersensitivity. MATERIALS AND METHODS: We established the FD model rats with gastric hypersensitivity by means of colon administration of trinitrobenzenesulfonic acid on ten-day-old rat pups, whereas the control rats were given normal saline. AVNS, sham AVNS, K252a (an inhibitor of TrkA, intraperitoneally), and K252a + AVNS were performed on eight-week-old model rats for five consecutive days. The therapeutic effect of AVNS on gastric hypersensitivity was determined by the measurement of abdominal withdrawal reflex response to gastric distention. NGF in gastric fundus and NGF, TrkA, PLC-γ, and transient receptor potential vanilloid 1 (TRPV1) in the nucleus tractus solitaries (NTS) were detected separately by polymerase chain reaction, Western blot, and immunofluorescence tests. RESULTS: It was found that a high level of NGF in gastric fundus and an upregulation of the NGF/TrkA/PLC-γ signaling pathway in NTS were manifested in model rats. Meanwhile, both AVNS treatment and the administration of K252a not only decreased NGF messenger ribonucleic acid (mRNA) and protein expressions in gastric fundus but also reduced the mRNA expressions of NGF, TrkA, PLC-γ, and TRPV1 and inhibited the protein levels and hyperactive phosphorylation of TrkA/PLC-γ in NTS. In addition, the expressions of NGF and TrkA proteins in NTS were decreased significantly after the immunofluorescence assay. The K252a + AVNS treatment exerted a more sensitive effect on regulating the molecular expressions of the signal pathway than did the K252a treatment. CONCLUSION: AVNS can regulate the brain-gut axis effectively through the central NGF/TrkA/PLC-γ signaling pathway in the NTS, which suggests a potential molecular mechanism of AVNS in ameliorating visceral hypersensitivity in FD model rats.


Asunto(s)
Dispepsia , Estimulación del Nervio Vago , Animales , Ratas , Dispepsia/terapia , Factor de Crecimiento Nervioso/metabolismo , Fosfolipasa C gamma/metabolismo , Receptor trkA/genética , Receptor trkA/metabolismo , ARN Mensajero , Transducción de Señal , Tropomiosina/metabolismo
10.
Curr Top Med Chem ; 24(1): 3-30, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38058091

RESUMEN

BACKGROUND: The tropomyosin receptor kinases (TRKs) are crucial for many cellular functions, such as growth, motility, differentiation, and metabolism. Abnormal TRK signalling contributes to a variety of human disorders, most evidently cancer. Comprehensive genomic studies have found numerous changes in the genes that code for TRKs like MET, HER2/ErbB2, and EGFR, among many others. Precision medicine resistance, relapse occurring because of the protein point mutations, and the existence of multiple molecular feedback loops are significant therapeutic hurdles to the long-term effectiveness of TRK inhibitors as general therapeutic agents for the treatment of cancer. OBJECTIVE: This review is carried out to highlight the role of tropomyosin receptor kinase in cancer and the function of TRK inhibitors in the intervention of cancer. METHODS: Literature research has been accomplished using Google Scholar and databases like ScienceDirect, WOS, PubMed, SciFinder, and Scopus. RESULTS: In this review, we provide an overview of the main molecular and functional properties of TRKs and their inhibitors. It also discusses how these advancements have affected the development and use of novel treatments for malignancies and other conditions caused by activated TRKs. Several therapeutic strategies, including the discovery and development of small-molecule TRK inhibitors belonging to various chemical classes and their activity, as well as selectivity towards the receptors, have been discussed in detail. CONCLUSION: This review will help the researchers gain a fundamental understanding of TRKs, how this protein family works, and the ways to create chemical moieties, such as TRK inhibitors, which can serve as tailored therapies for cancer.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Receptor trkB/metabolismo , Receptor trkB/uso terapéutico , Receptor trkA/metabolismo , Receptor trkA/uso terapéutico , Tropomiosina/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
11.
Int J Biol Macromol ; 254(Pt 3): 127909, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37951450

RESUMEN

Nerve growth factor (NGF) and its receptor, tropomyosin kinase receptor kinase type A (TrkA) is emerging as an important target for Glioblastoma (GBM) treatment. TrkA is the cancer biomarker majorly involved in tumor invasion and migration into nearby normal tissue. However, currently, available Trk inhibitors exhibit many adverse effects in cancer patients, thus demanding a novel class of ligands to regulate Trk signaling. Here, we exploited the role of TrkA (NTRK1) expression from the 651 datasets of brain tumors. RNA sequence analysis identified overexpression of NTRK1 in GBM, recurrent GBM as well in Oligoastrocytoma patients. Also, TrkA expression tends to increase over the higher grades of GBM. TrkA protein targeting hydrazone derivatives, R48, R142, and R234, were designed and their mode of interaction was studied using molecular docking and dynamic simulation studies. Ligands' stability and binding assessment reveals R48, 2 2-(2-(2-hydroxy-4-nitrophenyl) hydrazineylidene)-1-phenylbutane-1,3-dione, as a potent ligand that interacts well with TrkA's hydrophobic residues, Ile, Phe, Leu, Ala, and Val. R48- TrkA exhibits stable binding potentials with an average RMSD value <0.8 nm. R48 obeyed Lipinski's rule of five and possessed the best oral bioavailability, suggesting R48 as a potential compound with drug-likeness properties. In-vitro analysis also revealed that R48 exhibited a higher cytotoxicity effect for U87 GBM cells than TMZ with the IC50 value of 68.99 µM. It showed the lowest percentage of cytotoxicity to the non-cancerous TrkA expressing MEF cells. However, further SiRNA analysis validates the non-specific binding of R48, necessitating structural alteration for the development of R48-based TrkA inhibitor for GBM therapeutics.


Asunto(s)
Glioblastoma , Receptor trkA , Humanos , Receptor trkA/genética , Receptor trkA/metabolismo , Simulación del Acoplamiento Molecular , Recurrencia Local de Neoplasia , Transducción de Señal , Inhibidores de Proteínas Quinasas/farmacología , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología
12.
Curr Cancer Drug Targets ; 24(3): 271-287, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37670705

RESUMEN

Tropomyosin receptor kinase (TRK) A, TRKA, is a specific binding receptor of nerve growth factor (NGF), which plays an essential role in the occurrence and progression of human cancers. TRKA overexpression has been proven to be a powerful carcinogenic driver and has been verified in many tumors. The TRKA receptor kinase domain is over-activated in an NGF-dependent manner, accompanied by activation of downstream signal pathways, such as RAS-MAPK, PI3K-AKT, JAK2-STAT3 pathway, PLC γ pathway, and Hippo pathway, which participate in tumor cell proliferation, invasion, epithelial-mesenchymal transition (EMT), perineural invasion (PNI), drug resistance, and cancer pain. In addition, chimeric oncogenes produced by the fusion of NTRK1 and other genes are also the direct cause of tumorigenesis and cancer development. The newly developed TRK inhibitors can improve symptoms and tumor regression in cancer patients with overexpression of TRKA or NTRK1 fusion gene. With the emergence of drug resistance, next generation of TRK inhibitors can still maintain strong clinical efficacy in the case of TRK kinase domain mutations, and these inhibitors are in clinical trials. This review summarizes the characteristics and research progress of TRKA, focusing on the regulatory role of the TRKA signal pathway in different tumors. In addition, we have summarized the clinical significance of TRKA and the TRK inhibitors. This review may provide a new reference for the study of the mechanism of TRKA in different tumors, and also provide a new perspective for the in-depth understanding of the role of TRKA as a biomarker and therapeutic target in human cancer.


Asunto(s)
Neoplasias , Factor de Crecimiento Nervioso , Humanos , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Receptor trkA/genética , Receptor trkA/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Carcinogénesis/genética
14.
Sci Transl Med ; 15(727): eade4619, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38117901

RESUMEN

Peripheral neurons terminate at the surface of tendons partly to relay nociceptive pain signals; however, the role of peripheral nerves in tendon injury and repair remains unclear. Here, we show that after Achilles tendon injury in mice, there is new nerve growth near tendon cells that express nerve growth factor (NGF). Conditional deletion of the Ngf gene in either myeloid or mesenchymal mouse cells limited both innervation and tendon repair. Similarly, inhibition of the NGF receptor tropomyosin receptor kinase A (TrkA) abrogated tendon healing in mouse tendon injury. Sural nerve transection blocked the postinjury increase in tendon sensory innervation and the expansion of tendon sheath progenitor cells (TSPCs) expressing tubulin polymerization promoting protein family member 3. Single cell and spatial transcriptomics revealed that disruption of sensory innervation resulted in dysregulated inflammatory signaling and transforming growth factor-ß (TGFß) signaling in injured mouse tendon. Culture of mouse TSPCs with conditioned medium from dorsal root ganglia neuron further supported a role for neuronal mediators and TGFß signaling in TSPC proliferation. Transcriptomic and histologic analyses of injured human tendon biopsy samples supported a role for innervation and TGFß signaling in human tendon regeneration. Last, treating mice after tendon injury systemically with a small-molecule partial agonist of TrkA increased neurovascular response, TGFß signaling, TSPC expansion, and tendon tissue repair. Although further studies should investigate the potential effects of denervation on mechanical loading of tendon, our results suggest that peripheral innervation is critical for the regenerative response after acute tendon injury.


Asunto(s)
Factor de Crecimiento Nervioso , Traumatismos de los Tendones , Animales , Humanos , Ratones , Proliferación Celular , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/farmacología , Células Madre , Tendones/metabolismo , Factor de Crecimiento Transformador beta , Receptor trkA/metabolismo
15.
Int J Mol Sci ; 24(22)2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-38003427

RESUMEN

In spite of its variety of biological activities, the clinical exploitation of human NGF (hNGF) is currently limited to ocular pathologies. It is therefore interesting to test the effects of hNGF in preclinical models that may predict their efficacy and safety in the clinical setting of ocular disorders and compare the effects of hNGF with those of its analogs. We used a human retinal pigment cell line, ARPE-19 cells, to investigate the effects of hNGF and its analogs, mouse NGF (mNGF) and painless NGF (pNGF), on cell viability under basal conditions and after exposure to oxidative stimuli, i.e., hydrogen peroxide (H2O2) and ultraviolet (UV)-A rays. The effects of hNGF and pNGF were also tested on the gene expression and protein synthesis of the two NGF receptor subtypes, p75 neurotrophic receptors (p75NTR) and tyrosine kinase A (TrkA) receptors. We drew the following conclusions: (i) the exposure of ARPE-19 cells to H2O2 or UV-A causes a dose-dependent decrease in the number of viable cells; (ii) under baseline conditions, hNGF, but not pNGF, causes a concentration-dependent decrease in cell viability in the range of doses 1-100 ng/mL; (iii) hNGF, but not pNGF, significantly potentiates the toxic effects of H2O2 or of UV-A on ARPE-19 cells in the range of doses 1-100 ng/mL, while mNGF at the same doses presents an intermediate behavior; (iv) 100 ng/mL of hNGF triggers an increase in p75NTR expression in H2O2-treated ARPE-19 cells, while pNGF at the same dose does not; (v) pNGF, but not hNGF (both given at 100 ng/mL), increases the total cell fluorescence intensity for TrkA receptors in H2O2-treated ARPE-19 cells. The present findings suggest a vicious positive feedback loop through which NGF-mediated upregulation of p75NTR contributes to worsening the toxic effects of oxidative damage in the human retinal epithelial cell line ARPE-19. Looking at the possible clinical relevance of these findings, one can postulate that pNGF might show a better benefit/risk ratio than hNGF in the treatment of ocular disorders.


Asunto(s)
Peróxido de Hidrógeno , Receptor trkA , Humanos , Ratones , Animales , Receptor trkA/metabolismo , Retroalimentación , Peróxido de Hidrógeno/farmacología , Factor de Crecimiento Nervioso/farmacología , Factor de Crecimiento Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Línea Celular , Estrés Oxidativo , Células Epiteliales/metabolismo
16.
Proc Natl Acad Sci U S A ; 120(42): e2219589120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37812694

RESUMEN

NTRK (neurotrophic tyrosine receptor kinase) gene fusions that encode chimeric proteins exhibiting constitutive activity of tropomyosin receptor kinases (TRK), are oncogenic drivers in multiple cancer types. However, the underlying mechanisms in oncogenesis that involve various N-terminal fusion partners of NTRK fusions remain elusive. Here, we show that NTRK fusion proteins form liquid-like condensates driven by their N-terminal fusion partners. The kinase reactions are accelerated in these condensates where the complexes for downstream signaling activation are also concentrated. Our work demonstrates that the phase separation driven by NTRK fusions is not only critical for TRK activation, but the condensates formed through phase separation serve as organizational hubs for oncogenic signaling.


Asunto(s)
Neoplasias , Proteínas de Fusión Oncogénica , Humanos , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/genética , Neoplasias/genética , Neoplasias/metabolismo , Fusión Génica , Receptor trkA/genética , Receptor trkA/metabolismo , Inhibidores de Proteínas Quinasas
17.
PeerJ ; 11: e15219, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37070091

RESUMEN

Background: NTRK1 gene, encoding TrkA, is essential for the nervous system and drives a variety of biological processes, including pain. Given the unsatisfied analgesic effects of some new drugs targeting NTRK1 in clinic, a deeper understanding for the mechanism of NTRK1 in neurons is crucial. Methods: We assessed the transcriptional responses in SH-SY5Y cells with NTRK1 overexpression using bioinformatics analysis. GO and KEGG analyses were performed, PPI networks were constructed, and the functional modules and top 10 genes were screened. Subsequently, hub genes were validated using RT-qPCR. Results: A total of 419 DEGs were identified, including 193 upregulated and 226 downregulated genes. GO showed that upregulated genes were mainly enriched in response to endoplasmic reticulum (ER) stress, protein folding in ER, etc., and downregulated genes were highly enriched in a series of cellular parts and cellular processes. KEGG showed DEGs were enriched in protein processing in ER and pathways associated with cell proliferation and migration. The finest module was dramatically enriched in the ER stress response-related biological process. The verified seven hub genes consisted of five upregulated genes (COL1A1, P4HB, HSPA5, THBS1, and XBP1) and two downregulated genes (CCND1 and COL3A1), and almost all were correlated with response to ER stress. Conclusion: Our data demonstrated that NTRK1 significantly influenced the gene transcription of ER stress response in SH-SY5Y cells. It indicated that ER stress response could contribute to various functions of NTRK1-dependent neurons, and therefore, ER stress response-associated genes need further study for neurological dysfunction implicated in NTRK1.


Asunto(s)
Neuroblastoma , Receptor trkA , Transcriptoma , Humanos , Línea Celular , Estrés del Retículo Endoplásmico/genética , Neuroblastoma/metabolismo , Neuronas/metabolismo , Receptor trkA/genética , Receptor trkA/metabolismo
18.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768281

RESUMEN

Nerve growth factor (NGF) was the first neurotrophin described. This neurotrophin contributes to organogenesis by promoting sensory innervation and angiogenesis in the endocrine and immune systems. Neuronal and non-neuronal cells produce and secrete NGF, and several cell types throughout the body express the high-affinity neurotrophin receptor TrkA and the low-affinity receptor p75NTR. NGF is essential for glucose-stimulated insulin secretion and the complete development of pancreatic islets. Plus, this factor is involved in regulating lipolysis and thermogenesis in adipose tissue. Immune cells produce and respond to NGF, modulating their inflammatory phenotype and the secretion of cytokines, contributing to insulin resistance and metabolic homeostasis. This neurotrophin regulates the synthesis of gonadal steroid hormones, which ultimately participate in the metabolic homeostasis of other tissues. Therefore, we propose that this neurotrophin's imbalance in concentrations and signaling during metabolic syndrome contribute to its pathophysiology. In the present work, we describe the multiple roles of NGF in immunoendocrine organs that are important in metabolic homeostasis and related to the pathophysiology of metabolic syndrome.


Asunto(s)
Síndrome Metabólico , Factor de Crecimiento Nervioso , Humanos , Síndrome Metabólico/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Neuronas/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Receptor trkA/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo
19.
Adv Sci (Weinh) ; 10(10): e2206155, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36725311

RESUMEN

The upstream role of sensory innervation during bone homeostasis is widely underestimated in bone repairing strategies. Herein, a neuromodulation approach is proposed to orchestrate bone defect healing by constructing engineered sensory nerves (eSN) in situ to leverage the adaptation feature of SN during tissue formation. NGF liberated from ECM-constructed eSN effectively promotes sensory neuron differentiation and enhances CGRP secretion, which lead to improved RAOECs mobility and osteogenic differentiation of BMSC. In turn, such eSN effectively drives ossification in vivo via NGF-TrkA signaling pathway, which substantially accelerates critical size bone defect healing. More importantly, eSN also adaptively suppresses excessive bone formation and promotes bone remodeling by activating osteoclasts via CGRP-dependent mechanism when combined with BMP-2 delivery, which ingeniously alleviates side effects of BMP-2. In sum, this eSN approach offers a valuable avenue to harness the adaptive role of neural system to optimize bone homeostasis under various clinical scenario.


Asunto(s)
Osteogénesis , Receptor trkA , Receptor trkA/metabolismo , Osteogénesis/fisiología , Péptido Relacionado con Gen de Calcitonina , Factor de Crecimiento Nervioso/metabolismo , Transducción de Señal
20.
Proc Natl Acad Sci U S A ; 120(6): e2205426120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36730190

RESUMEN

In neurons, many membrane proteins, synthesized in cell bodies, must be efficiently delivered to axons to influence neuronal connectivity, synaptic communication, and repair. Previously, we found that axonal targeting of TrkA neurotrophin receptors in sympathetic neurons occurs via an atypical transport mechanism called transcytosis, which relies on TrkA interactions with PTP1B, a protein tyrosine phosphatase. Here, we generated TrkAR685A mice, where TrkA receptor signaling is preserved, but its PTP1B-dependent transcytosis is disrupted to show that this mode of axonal transport is essential for sympathetic neuron development and autonomic function. TrkAR685A mice have decreased axonal TrkA levels in vivo, loss of sympathetic neurons, and reduced innervation of targets. The neuron loss and diminished target innervation phenotypes are specifically restricted to the developmental period when sympathetic neurons are known to rely on the TrkA ligand, nerve growth factor, for trophic support. Postnatal TrkAR685A mice exhibit reduced pupil size and eyelid ptosis, indicative of sympathetic dysfunction. Furthermore, we also observed a significant loss of TrkA-expressing nociceptive neurons in the dorsal root ganglia during development in TrkAR685A mice, suggesting that transcytosis might be a general mechanism for axonal targeting of TrkA receptors. Together, these findings establish the necessity of transcytosis in supplying TrkA receptors to axons, specifically during development, and highlight the physiological relevance of this axon targeting mechanism in the nervous system.


Asunto(s)
Neuronas , Receptor trkA , Ratones , Animales , Receptor trkA/genética , Receptor trkA/metabolismo , Neuronas/metabolismo , Receptores de Factor de Crecimiento Nervioso/genética , Axones/metabolismo , Transcitosis , Sistema Nervioso Simpático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA