Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Mol Med Rep ; 25(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35014690

RESUMEN

Optogenetics combined with protein engineering based on natural light­sensitive dimerizing proteins has evolved as a powerful strategy to study cellular functions. The present study focused on tropomyosin kinase receptors (Trks) that have been engineered to be light­sensitive. Trk belongs to the superfamily of receptor tyrosine kinases (RTKs), which are single­pass transmembrane receptors that are activated by natural ligands and serve crucial roles in cellular growth, differentiation, metabolism and motility. However, functional variations exist among receptors fused with light­sensitive proteins. The present study proposed a signal transduction model for light­induced receptor activation. This model is based on analysis of previous light­induced Trk receptors reported to date and comparisons to the activation mechanism of natural receptors. In this model, quantitative differences on the dimerization induced from either top­to­bottom or bottom­to­up may lead to the varying amplitude of intracellular signals. We hypothesize that the top­to­bottom propagation is more favourable for activation and yields better results compared with the bottom­to­top direction. The careful delineation of the dimerization mechanisms fine­tuning activation will guide future design for an optimum cellular output with the precision of light.


Asunto(s)
Factores de Crecimiento Nervioso/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Dimerización , Humanos , Luz , Fototransducción , Modelos Biológicos , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Receptor trkA/química , Receptor trkA/metabolismo
2.
Commun Biol ; 3(1): 776, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33328556

RESUMEN

Tyrosine kinase domains dynamically fluctuate between two main structural forms that are referred to as type I (DFG-in) or type II (DFG-out) conformations. Comprehensive data comparing type I and type II inhibitors are currently lacking for NTRK fusion-driven cancers. Here we used a type II NTRK inhibitor, altiratinib, as a model compound to investigate its inhibitory potential for larotrectinib (type I inhibitor)-resistant mutations in NTRK. Our study shows that a subset of larotrectinib-resistant NTRK1 mutations (V573M, F589L and G667C) retains sensitivity to altiratinib, while the NTRK1V573M and xDFG motif NTRK1G667C mutations are highly sensitive to type II inhibitors, including altiratinib, cabozantinib and foretinib. Moreover, molecular modeling suggests that the introduction of a sulfur moiety in the binding pocket, via methionine or cysteine substitutions, specifically renders the mutant kinase hypersensitive to type II inhibitors. Future precision treatment strategies may benefit from selective targeting of these kinase mutants based on our findings.


Asunto(s)
Resistencia a Antineoplásicos/genética , Mutación , Neoplasias/genética , Dominios y Motivos de Interacción de Proteínas/genética , Inhibidores de Proteínas Quinasas/farmacología , Receptor trkA/genética , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Ratones , Modelos Moleculares , Conformación Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Proteínas de Fusión Oncogénica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptor trkA/antagonistas & inhibidores , Receptor trkA/química , Receptor trkA/metabolismo , Receptor trkC/química , Receptor trkC/genética , Receptor trkC/metabolismo , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Commun Biol ; 3(1): 706, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239753

RESUMEN

Tyrosine kinase A (TrkA) is a membrane receptor which, upon ligand binding, activates several pathways including MAPK/ERK signaling, implicated in a spectrum of human pathologies; thus, TrkA is an emerging therapeutic target in treatment of neuronal diseases and cancer. However, mechanistic insights into TrKA signaling are lacking due to lack of site-dependent phosphorylation control. Here we engineer two light-sensitive tyrosine analogues, namely p-azido-L-phenylalanine (AzF) and the caged-tyrosine (ONB), through amber codon suppression to optically manipulate the phosphorylation state of individual intracellular tyrosines in TrkA. We identify TrkA-AzF and ONB mutants, which can activate the ERK pathway in the absence of NGF ligand binding through light control. Our results not only reveal how TrkA site-dependent phosphorylation controls the defined signaling process, but also extend the genetic code expansion technology to enable regulation of receptor-type kinase activation by optical control at the precision of a single phosphorylation site. It paves the way for comprehensive analysis of kinase-associated pathways as well as screening of compounds intervening in a site-directed phosphorylation pathway for targeted therapy.


Asunto(s)
Colorantes Fluorescentes , Sistema de Señalización de MAP Quinasas/genética , Receptor trkA , Tirosina , Azidas/química , Azidas/metabolismo , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Células HEK293 , Humanos , Fosforilación/genética , Receptor trkA/química , Receptor trkA/genética , Receptor trkA/metabolismo , Tirosina/análogos & derivados , Tirosina/química , Tirosina/metabolismo
4.
Biochem J ; 477(20): 4053-4070, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33043964

RESUMEN

The tropomyosin-related kinase (Trk) family consists of three receptor tyrosine kinases (RTKs) called TrkA, TrkB, and TrkC. These RTKs are regulated by the neurotrophins, a class of secreted growth factors responsible for the development and function of neurons. The Trks share a high degree of homology and utilize overlapping signaling pathways, yet their signaling is associated with starkly different outcomes in certain cancers. For example, in neuroblastoma, TrkA expression and signaling correlates with a favorable prognosis, whereas TrkB is associated with poor prognoses. To begin to understand how activation of the different Trks can lead to such distinct cellular outcomes, we investigated differences in kinase activity and duration of autophosphorylation for the TrkA and TrkB tyrosine kinase domains (TKDs). We find that the TrkA TKD has a catalytic efficiency that is ∼2-fold higher than that of TrkB, and becomes autophosphorylated in vitro more rapidly than the TrkB TKD. Studies with mutated TKD variants suggest that a crystallographic dimer seen in many TrkA (but not TrkB) TKD crystal structures, which involves the kinase-insert domain, may contribute to this enhanced TrkA autophosphorylation. Consistent with previous studies showing that cellular context determines whether TrkB signaling is sustained (promoting differentiation) or transient (promoting proliferation), we also find that TrkB signaling can be made more transient in PC12 cells by suppressing levels of p75NTR. Our findings shed new light on potential differences between TrkA and TrkB signaling, and suggest that subtle differences in signaling dynamics can lead to substantial shifts in the cellular outcome.


Asunto(s)
Neuroblastoma/metabolismo , Receptor trkA/metabolismo , Receptor trkB/metabolismo , Transducción de Señal/genética , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Dominio Catalítico , Diferenciación Celular/genética , Proliferación Celular/genética , Técnicas de Silenciamiento del Gen , Cinética , Mutación , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/farmacología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuroblastoma/enzimología , Neuroblastoma/genética , Células PC12 , Fosforilación , Dominios Proteicos , ARN Interferente Pequeño , Ratas , Receptor trkA/química , Receptor trkA/genética , Receptor trkB/química , Receptor trkB/genética , Receptores de Factores de Crecimiento/genética , Receptores de Factores de Crecimiento/metabolismo , Proteínas Recombinantes , Transducción de Señal/efectos de los fármacos
5.
PLoS One ; 15(6): e0231542, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32497034

RESUMEN

Many receptors elicit signal transduction by activating multiple intracellular pathways. This transduction can be triggered by a non-specific ligand, which simultaneously activates all the signaling pathways of the receptors. However, the binding of one biased ligand preferentially trigger one pathway over another, in a process called biased signaling. The identification the functional motions related to each of these distinct pathways has a direct impact on the development of new effective and specific drugs. We show here how to detect specific functional motions by considering the case of the NGF/TrkA-Ig2 complex. NGF-mediated TrkA receptor activation is dependent on specific structural motions that trigger the neuronal growth, development, and survival of neurons in nervous system. The R221W mutation in the ngf gene impairs nociceptive signaling. We discuss how the large-scale structural effects of this mutation lead to the suppression of collective motions necessary to induce TrkA activation of nociceptive signaling. Our results suggest that subtle changes in the NGF interaction network due to the point mutation are sufficient to inhibit the motions of TrkA receptors putatively linked to nociception. The methodological approach presented in this article, based jointly on the normal mode analysis and the experimentally observed functional alterations due to point mutations provides an essential tool to reveal the structural changes and motions linked to the disease, which in turn could be necessary for a drug design study.


Asunto(s)
Modelos Moleculares , Factor de Crecimiento Nervioso/metabolismo , Mutación Puntual , Receptor trkA/genética , Receptor trkA/metabolismo , Transducción de Señal , Movimiento , Factor de Crecimiento Nervioso/química , Unión Proteica , Conformación Proteica , Receptor trkA/química
6.
Biochim Biophys Acta Mol Cell Res ; 1867(2): 118614, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31760089

RESUMEN

We address the contribution of kinase domain structure and catalytic activity to membrane trafficking of TrkA receptor tyrosine kinase. We conduct a systematic comparison between TrkA-wt, an ATP-binding defective mutant (TrkA-K544N) and other mutants displaying separate functional impairments of phosphorylation, ubiquitination, or recruitment of intracellular partners. We find that only K544N mutation endows TrkA with restricted membrane mobility and a substantial increase of cell surface pool already in the absence of ligand stimulation. This mutation is predicted to drive a structural destabilization of the αC helix in the N-lobe by molecular dynamics simulations, and enhances interactions with elements of the actin cytoskeleton. On the other hand, a different TrkA membrane immobilization is selectively observed after NGF stimulation, requires both phosphorylation and ubiquitination to occur, and is most probably related to the signaling abilities displayed by the wt but not mutated receptors. In conclusion, our results allow to distinguish two different TrkA membrane immobilization modes and demonstrate that not all kinase-inactive mutants display identical membrane trafficking.


Asunto(s)
Receptor trkA/metabolismo , Citoesqueleto de Actina/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Humanos , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Factor de Crecimiento Nervioso/farmacología , Fosforilación/efectos de los fármacos , Conformación Proteica en Hélice alfa , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Transporte de Proteínas , Receptor trkA/química , Receptor trkA/genética , Ubiquitinación/efectos de los fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
7.
J Biol Chem ; 295(1): 275-286, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31801826

RESUMEN

Tropomyosin-receptor kinases (TRKs) are essential for the development of the nervous system. The molecular mechanism of TRKA activation by its ligand nerve growth factor (NGF) is still unsolved. Recent results indicate that at endogenous levels most of TRKA is in a monomer-dimer equilibrium and that the binding of NGF induces an increase of the dimeric and oligomeric forms of this receptor. An unsolved issue is the role of the TRKA transmembrane domain (TMD) in the dimerization of TRKA and the structural details of the TMD in the active dimer receptor. Here, we found that the TRKA-TMD can form dimers, identified the structural determinants of the dimer interface in the active receptor, and validated this interface through site-directed mutagenesis together with functional and cell differentiation studies. Using in vivo cross-linking, we found that the extracellular juxtamembrane region is reordered after ligand binding. Replacement of some residues in the juxtamembrane region with cysteine resulted in ligand-independent active dimers and revealed the preferred dimer interface. Moreover, insertion of leucine residues into the TMD helix induced a ligand-independent TRKA activation, suggesting that a rotation of the TMD dimers underlies NGF-induced TRKA activation. Altogether, our findings indicate that the transmembrane and juxtamembrane regions of TRKA play key roles in its dimerization and activation by NGF.


Asunto(s)
Simulación de Dinámica Molecular , Factor de Crecimiento Nervioso/metabolismo , Multimerización de Proteína , Receptor trkA/química , Sustitución de Aminoácidos , Animales , Sitios de Unión , Diferenciación Celular , Células HeLa , Humanos , Células PC12 , Unión Proteica , Ratas , Receptor trkA/genética , Receptor trkA/metabolismo
8.
J Phys Chem B ; 123(50): 10709-10717, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31751135

RESUMEN

In the receptor tyrosine kinase family, conformational change induced by ligand binding is transmitted across the membrane via a single transmembrane helix and a flexible juxtamembrane domain (JMD). Membrane dynamics makes it challenging to study the structural mechanism of receptor activation experimentally. In this study, we employ all-atom molecular dynamics with highly mobile membrane mimetic (HMMM) to capture the native conformation of the JMD in tropomyosin receptor kinase A (TrkA). We find that phosphatidylinositol 4,5-bisphosphate (PIP2) lipids engage in stable binding with multiple basic residues. Anionic lipids can compete with salt bridges within the peptide and alter TrkA-JMD conformation. We discover three-residue insertion into the membrane and are able to either enhance or reduce the level of insertion through computationally-designed point mutations. The vesicle-binding experiment supports computational results and indicates that hydrophobic insertion is comparable to electrostatic binding for membrane anchoring. Biochemical assays on cell lines with mutated TrkA show that enhanced TrkA-JMD insertion promotes receptor degradation but does not affect the short-term signaling capacity. Our joint work points to a scenario where lipid headgroups and tails interact with basic and hydrophobic residues on disordered domain, respectively, to restrain flexibility and potentially modulate protein function.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Receptor trkA/química , Receptor trkA/metabolismo , Electricidad Estática , Dominios Proteicos
9.
BMC Complement Altern Med ; 19(1): 295, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31694615

RESUMEN

BACKGROUND: NGF-TrkA is well known to play a key role in propagating and sustaining pruritogenic signals, which form the pathology of chronic pruritus. Inhibition of NGF-TrkA is a known strategy for the treatment of pruritus. In the present paper, we describe the identification, in vitro characterization, structure-activity analysis, and inhibitory evaluation of a novel TrkA inhibitory scaffold exemplified by Cucurbitacins (Cus). METHODS: Cus were identified as TrkA inhibitors in a large-scale kinase library screen. To obtain structural models of Cus as TrkA inhibitors, AutoDock was used to explore their binding to TrkA. Furthermore, PC12 cell culture systems have been used to study the effects of Cus and traditional Chinese medicinal plants (Tian Gua Di and bitter gourd leaf) extracts on the kinase activity of TrkA. RESULTS: Cus block the phosphorylation of TrkA on several tyrosine sites, including Tyr490, Tyr674/675, and Tyr785, and inhibit downstream Akt and MAPK phosphorylation in response to NGF in PC12 cell model systems. Furthermore, traditional Chinese medicinal plants (Tian Gua Di and bitter gourd leaf) containing Cu extracts were shown to inhibit the phosphorylation of TrkA and Akt. These data reveal mechanisms, at least partly, of the anti-pruritus bioactivity of Cus. CONCLUSION: Taken together, with the recent discovery of the important role of TrkA as a therapeutic target, Cus could be the basis for the design of improved TrkA kinase inhibitors, which could someday help treat pruritus.


Asunto(s)
Cucumis melo/química , Cucurbitacinas/química , Inhibidores Enzimáticos/química , Momordica charantia/química , Extractos Vegetales/química , Receptor trkA/antagonistas & inhibidores , Secuencias de Aminoácidos , Animales , Frutas/química , Humanos , Cinética , Factor de Crecimiento Nervioso/metabolismo , Células PC12 , Fosforilación , Ratas , Receptor trkA/química
10.
Bioorg Med Chem Lett ; 29(19): 126624, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31444087

RESUMEN

In silico virtual screening using the ligand-based ROCS approach and the commercially purchasable compound collection from the ZINC database resulted in the identification of distinctly different and novel acetamide core frameworks with series representatives 1a and 2a exhibiting nanomolar affinity in the kinase domain only hTrkA HTRF biochemical assay. Additional experimental validation using the Caliper technology with either the active or inactive kinase conditions demonstrated the leads, 1a and 2a, to preferentially bind the kinase inactive state. X-ray structural analysis of the kinase domain of hTrkA…1a/2a complexes confirmed the kinase, bind the inhibitor leads in the inactive state and to exhibit a type 2 binding mode with the DFG-out and αC-helix out conformation. The leads also demonstrated sub-micromolar activity in the full length hTrkA cell-based assay and selectivity against the closely related hTrkB isoform. However, the poor microsomal stability and permeability of the leads is suggestive of a multiparametric lead optimization effort requirement for further progression.


Asunto(s)
Diseño de Fármacos , Inhibidores de Proteínas Quinasas/farmacología , Receptor trkA/antagonistas & inhibidores , Simulación por Computador , Humanos , Ligandos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Inhibidores de Proteínas Quinasas/química , Receptor trkA/química , Relación Estructura-Actividad
11.
Cells ; 8(4)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30939824

RESUMEN

Nerve growth factor (NGF) is a protein necessary for development and maintenance of the sympathetic and sensory nervous systems. We have previously shown that the NGF N-terminus peptide NGF(1-14) is sufficient to activate TrkA signaling pathways essential for neuronal survival and to induce an increase in brain-derived neurotrophic factor (BDNF) expression. Cu2+ ions played a critical role in the modulation of the biological activity of NGF(1-14). Using computational, spectroscopic, and biochemical techniques, here we report on the ability of a newly synthesized peptide named d-NGF(1-15), which is the dimeric form of NGF(1-14), to interact with TrkA. We found that d-NGF(1-15) interacts with the TrkA-D5 domain and induces the activation of its signaling pathways. Copper binding to d-NGF(1-15) stabilizes the secondary structure of the peptides, suggesting a strengthening of the noncovalent interactions that allow for the molecular recognition of D5 domain of TrkA and the activation of the signaling pathways. Intriguingly, the signaling cascade induced by the NGF peptides ultimately involves cAMP response element-binding protein (CREB) activation and an increase in BDNF protein level, in keeping with our previous result showing an increase of BDNF mRNA. All these promising connections can pave the way for developing interesting novel drugs for neurodegenerative diseases.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cobre/farmacología , Factor de Crecimiento Nervioso/metabolismo , Secuencia de Aminoácidos , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Dimerización , Endocitosis/efectos de los fármacos , Femenino , Ionóforos/farmacología , Factor de Crecimiento Nervioso/química , Células PC12 , Fenotipo , Fosforilación/efectos de los fármacos , Dominios Proteicos , Ratas , Ratas Wistar , Receptor trkA/química , Receptor trkA/metabolismo , Termodinámica
12.
Sci Rep ; 9(1): 930, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30700786

RESUMEN

Inhibition of the NGF/TrkA interaction presents an interesting alternative to the use of non-steroidal anti-inflammatories and/or opioids for the control of inflammatory, chronic and neuropathic pain. Most prominent of the current approaches to this therapy is the antibody Tanezumab, which is a late-stage development humanized monoclonal antibody that targets NGF. We sought to determine whether peptides might similarly inhibit the NGF/TrkA interaction and so serve as future therapeutic leads. Starting from two peptides that inhibit the NGF/TrkA interaction, we sought to eliminate a cysteine residue close to the C-terminal of both sequences, by an approach of mutagenic analysis and saturation mutagenesis of mutable residues. Elimination of cysteine from a therapeutic lead is desirable to circumvent manufacturing difficulties resulting from oxidation. Our analyses determined that the cysteine residue is not required for NGF binding, but is essential for inhibition of the NGF/TrkA interaction at pharmacologically relevant peptide concentrations. We conclude that a cysteine residue is required within potential peptide-based therapeutic leads and hypothesise that these peptides likely act as dimers, mirroring the dimeric structure of the TrkA receptor.


Asunto(s)
Cisteína/química , Biblioteca de Péptidos , Inhibidores de Proteínas Quinasas/química , Receptor trkA , Anticuerpos Monoclonales Humanizados/química , Humanos , Receptor trkA/antagonistas & inhibidores , Receptor trkA/química
13.
J Med Chem ; 62(4): 1731-1760, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30188734

RESUMEN

The use of kinase-directed precision medicine has been heavily pursued since the discovery and development of imatinib. Annually, it is estimated that around ∼20 000 new cases of tropomyosin receptor kinase (TRK) cancers are diagnosed, with the majority of cases exhibiting a TRK genomic rearrangement. In this Perspective, we discuss current development and clinical applications for TRK precision medicine by providing the following: (1) the biological background and significance of the TRK kinase family, (2) a compilation of known TRK inhibitors and analysis of their cocrystal structures, (3) an overview of TRK clinical trials, and (4) future perspectives for drug discovery and development of TRK inhibitors.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptor trkA/antagonistas & inhibidores , Receptor trkB/antagonistas & inhibidores , Receptor trkC/antagonistas & inhibidores , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Dominio Catalítico , Línea Celular Tumoral , Descubrimiento de Drogas , Humanos , Ratones Endogámicos BALB C , Medicina de Precisión/métodos , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Ratas Sprague-Dawley , Receptor trkA/química , Receptor trkA/metabolismo , Receptor trkB/química , Receptor trkB/metabolismo , Receptor trkC/química , Receptor trkC/metabolismo
14.
Bioorg Med Chem ; 26(21): 5596-5611, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30385226

RESUMEN

Two new series of 5-subtituted and 5,6-disubstituted pyrrolo[2,3-d]pyrimidine octamides (4a-o and 6a-g) and their corresponding free amines 5a-m and 7a-g have been synthesized and biologically evaluated for their antiproliferative activity against three human cancer cell lines. The 5,6-disubstituted octamides 6d-g as well as the amine derivative 7b have shown the best anticancer activity with single digit micromolar GI50 values over the tested cancer cells, and low cytotoxic effects (GI50 > 10.0 µM) against HFF-1 normal cell. A structure activity relationship (SAR) study has been established and disclosed that terminal octamide moiety at C2 as well as disubstitution with fluorobenzyl piperazines at C5 and C6 of pyrrolo[2,3-d]pyrimidine are the key structural features prerequisite for best antiproliferative activity. Moreover, the most active member 6f was tested for its antiproliferative activity over a panel of 60 cancer cell lines at NCI, and exhibited distinct broad spectrum anticancer activity with submicromolar GI50 and TGI values over multiple cancer cells. Kinase profile of compound 6f over 53 oncogenic kinases at 10 µM concentration showed its highly selective inhibitory activity towards FGFR4, Tie2 and TrkA kinases. The observed activity of 6f against TrkA (IC50 = 2.25 µM), FGFR4 (IC50 = 6.71 µM) and Tie2 (IC50 = 6.84 µM) was explained by molecular docking study, which also proposed that 6f may be a type III kinase inhibitor, binding to an allosteric site rather than kinase hinge region. Overall, compound 6f may serve as a promising anticancer lead compound that could be further optimized for development of potent anticancer agents.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Pirroles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacocinética , Pirimidinas/síntesis química , Pirimidinas/química , Pirimidinas/farmacocinética , Pirroles/síntesis química , Pirroles/química , Pirroles/farmacocinética , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/química , Receptor TIE-2/antagonistas & inhibidores , Receptor TIE-2/química , Receptor trkA/antagonistas & inhibidores , Receptor trkA/química
15.
Biochem J ; 475(22): 3669-3685, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30366959

RESUMEN

Receptor tyrosine kinases (RTKs) are cell surface receptors which control cell growth and differentiation, and play important roles in tumorigenesis. Despite decades of RTK research, the mechanism of RTK activation in response to their ligands is still under debate. Here, we investigate the interactions that control the activation of the tropomyosin receptor kinase (Trk) family of RTKs in the plasma membrane, using a FRET-based methodology. The Trk receptors are expressed in neuronal tissues, and guide the development of the central and peripheral nervous systems during development. We quantify the dimerization of human Trk-A, Trk-B, and Trk-C in the absence and presence of their cognate ligands: human ß-nerve growth factor, human brain-derived neurotrophic factor, and human neurotrophin-3, respectively. We also assess conformational changes in the Trk dimers upon ligand binding. Our data support a model of Trk activation in which (1) Trks have a propensity to interact laterally and to form dimers even in the absence of ligand, (2) different Trk unliganded dimers have different stabilities, (3) ligand binding leads to Trk dimer stabilization, and (4) ligand binding induces structural changes in the Trk dimers which propagate to their transmembrane and intracellular domains. This model, which we call the 'transition model of RTK activation,' may hold true for many other RTKs.


Asunto(s)
Membrana Celular/metabolismo , Receptor trkA/metabolismo , Receptor trkB/metabolismo , Receptor trkC/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Ligandos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía de Fluorescencia por Excitación Multifotónica , Factor de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Neurotrofina 3 , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Receptor trkA/química , Receptor trkA/genética , Receptor trkB/química , Receptor trkB/genética , Receptor trkC/química , Receptor trkC/genética
16.
Int J Mol Sci ; 19(8)2018 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-30103559

RESUMEN

The nerve growth factor (NGF) is a neurotrophin essential for the development and maintenance of neurons, whose activity is influenced by copper ions. The NGF protein exerts its action by binding to its specific receptor, TrkA. In this study, a specific domain of the TrkA receptor, region 58⁻64, was synthesized and its copper(II) complexes characterized by means of potentiometric and spectroscopic studies. The two vicinal histidine residues provide excellent metal anchoring sites and, at physiological pH, a complex with the involvement of the peptide backbone amide nitrogen is the predominant species. The TrkA peptide is competitive for metal binding with analogous peptides due to the N-terminal domain of NGF. These data provide cues for future exploration of the effect of metal ions on the activity of the NGF and its specific cellular receptor.


Asunto(s)
Cobre/química , Factor de Crecimiento Nervioso/química , Péptidos/química , Receptor trkA/química , Sitios de Unión , Cobre/metabolismo , Humanos , Factor de Crecimiento Nervioso/metabolismo , Péptidos/metabolismo , Unión Proteica , Receptor trkA/metabolismo
17.
J Clin Invest ; 128(7): 3129-3143, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29715200

RESUMEN

Receptor tyrosine kinases (RTKs) are important drivers of cancers. In addition to genomic alterations, aberrant activation of WT RTKs plays an important role in driving cancer progression. However, the mechanisms underlying how RTKs drive prostate cancer remain incompletely characterized. Here we show that non-proteolytic ubiquitination of RTK regulates its kinase activity and contributes to RTK-mediated prostate cancer metastasis. TRAF4, an E3 ubiquitin ligase, is highly expressed in metastatic prostate cancer. We demonstrated here that it is a key player in regulating RTK-mediated prostate cancer metastasis. We further identified TrkA, a neurotrophin RTK, as a TRAF4-targeted ubiquitination substrate that promotes cancer cell invasion and found that inhibition of TrkA activity abolished TRAF4-dependent cell invasion. TRAF4 promoted K27- and K29-linked ubiquitination at the TrkA kinase domain and increased its kinase activity. Mutation of TRAF4-targeted ubiquitination sites abolished TrkA tyrosine autophosphorylation and its interaction with downstream proteins. TRAF4 knockdown also suppressed nerve growth factor (NGF) stimulated TrkA downstream p38 MAPK activation and invasion-associated gene expression. Furthermore, elevated TRAF4 levels significantly correlated with increased NGF-stimulated invasion-associated gene expression in prostate cancer patients, indicating that this signaling axis is significantly activated during oncogenesis. Our results revealed a posttranslational modification mechanism contributing to aberrant non-mutated RTK activation in cancer cells.


Asunto(s)
Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptor trkA/metabolismo , Factor 4 Asociado a Receptor de TNF/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Invasividad Neoplásica , Trasplante de Neoplasias , Células PC-3 , Neoplasias de la Próstata/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Receptor trkA/química , Receptor trkA/genética , Factor 4 Asociado a Receptor de TNF/antagonistas & inhibidores , Factor 4 Asociado a Receptor de TNF/genética , Ubiquitinación , Regulación hacia Arriba
18.
Cancer Lett ; 426: 25-36, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29605512

RESUMEN

Tropomyosin-related kinase A (TrkA) plays important roles in tumor cell growth and survival signaling and contributes to chemo-resistance in pancreatic cancer. Therefore, we developed KK5101, a novel TrkA target inhibitor and assessed its anti-cancer effects and investigated underlying mechanism of action in pancreatic cancer. KK5101 was characterized to inhibit TrkA selectively and potently by protein binding assay. It effectively inhibited the growth and proliferation of pancreatic cancer cells. Also, KK5101 increased apoptosis with loss of mitochondrial membrane potential, as evidenced by increases of cytochrome c releases. It increased numbers of TUNEL-positive apoptotic cells, and cell death including early and late apoptosis by Annexin V assay. In addition, activation of the TrkA signaling cascades including p-AKT, p-MEK, and p-STAT3 were inhibited by KK5101 treatment in vitro, as well as ex vivo tumor spheroid models, resulting in potent induction of apoptosis. Importantly, KK5101 also significantly attenuated tumor growth of in vivo pancreatic cancer models. These findings indicate that KK5101 may exert antitumor effects by directly affecting cancer cell growth or survival via inhibition of TrkA signaling pathway. We therefore suggest that KK5101 is a novel therapeutic candidate for treating pancreatic cancer.


Asunto(s)
Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/síntesis química , Receptor trkA/administración & dosificación , Receptor trkA/antagonistas & inhibidores , Receptor trkA/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocromos c/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Neoplasias Pancreáticas/enzimología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Receptor trkA/química , Proteínas Recombinantes , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
19.
J Mol Graph Model ; 80: 327-352, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29454290

RESUMEN

Targeting tropomycin kinase A (TrkA) by small molecule inhibitors is considered as a promising strategy for treating several human cancers. To achieve this goal, a ligand based QSAR model was applied using the Discovery studio 4.5 (DS 4.5). Hence, a total list of 161 TrkA inhibitors was investigated. The TrkA inhibitors were extensively explored to detect their optimal physicochemical properties and pharmacophoric binding modes, which were converted into numeric descriptors and allowed to compete within the context of the Genetic Function Algorithm (GFA) approximations to find the subset of terms that correlates best with the activity. The resulted successful QSAR equation had statistical criteria of (r2129=0.67, r2LOO=0.61 r2PRESS against 32 external test inhibitors=0.50). Afterwards, the most successful pharmacophore: HypoB-T5-3, was used to screen compounds within the National Cancer institute (NCI) database. Only 41 compounds were retrieved and 21 of them exhibited anti-TrkA activity. The most potent hit had an IC50 value of 2.4µM. Later, upon docking the active hits into the TrkA binding pocket, important interactions were revealed including hydrogen bonding with the amino acids Asp668 and Lys544 in addition to the cation-π interactions with the sidechain of Arg559.


Asunto(s)
Diseño de Fármacos , Modelos Moleculares , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad Cuantitativa , Receptor trkA/química , Humanos , Ligandos , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Receptor trkA/antagonistas & inhibidores , Reproducibilidad de los Resultados , Programas Informáticos
20.
Clin Cancer Res ; 24(10): 2357-2369, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29463555

RESUMEN

Purpose: Rearrangement of the neurotrophic tropomyosin receptor kinase 1 (NTRK1) gene, which encodes tyrosine receptor kinase A (TRK-A), occurs in various cancers, including colon cancer. Although entrectinib is effective in the treatment of central nervous system (CNS) metastases that express NTRK1 fusion proteins, acquired resistance inevitably results in recurrence. The CNS is a sanctuary for targeted drugs; however, the mechanism by which CNS metastases become entrectinib-resistant remains elusive and must be clarified to develop better therapeutics.Experimental Design: The entrectinib-resistant cell line KM12SM-ER was developed by continuous treatment with entrectinib in the brain metastasis-mimicking model inoculated with the entrectinib-sensitive human colon cancer cell line KM12SM, which harbors the TPM3-NTRK1 gene fusion. The mechanism of entrectinib resistance in KM12SM-ER cells was examined by next-generation sequencing. Compounds that overcame entrectinib resistance were screened from a library of 122 kinase inhibitors.Results: KM12SM-ER cells, which showed moderate resistance to entrectinib in vitro, had acquired the G667C mutation in NTRK1 The kinase inhibitor foretinib inhibited TRK-A phosphorylation and the viability of KM12SM-ER cells bearing the NTRK1-G667C mutation in vitro Moreover, foretinib markedly inhibited the progression of entrectinib-refractory KM12SM-ER-derived liver metastases and brain tumors in animal models, predominantly through inhibition of TRK-A phosphorylation.Conclusions: These results suggest that foretinib may be effective in overcoming entrectinib resistance associated with the NTRK1-G667C mutation in NTRK1 fusion-positive tumors in various organs, including the brain, and provide a rationale for clinical trials of foretinib in cancer patients with entrectinib-resistant tumors harboring the NTRK1-G667C mutation, including patients with brain metastases. Clin Cancer Res; 24(10); 2357-69. ©2018 AACR.


Asunto(s)
Anilidas/farmacología , Benzamidas/farmacología , Neoplasias Encefálicas/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Indazoles/farmacología , Mutación , Proteínas de Fusión Oncogénica/genética , Quinolinas/farmacología , Receptor trkA/genética , Sustitución de Aminoácidos , Anilidas/química , Animales , Benzamidas/química , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Xenoinjertos , Humanos , Indazoles/química , Ratones , Modelos Moleculares , Quinolinas/química , Receptor trkA/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...