Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros












Intervalo de año de publicación
1.
Nat Commun ; 13(1): 734, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136046

RESUMEN

AMPA-type glutamate receptors (AMPARs) mediate rapid signal transmission at excitatory synapses in the brain. Glutamate binding to the receptor's ligand-binding domains (LBDs) leads to ion channel activation and desensitization. Gating kinetics shape synaptic transmission and are strongly modulated by transmembrane AMPAR regulatory proteins (TARPs) through currently incompletely resolved mechanisms. Here, electron cryo-microscopy structures of the GluA1/2 TARP-γ8 complex, in both open and desensitized states (at 3.5 Å), reveal state-selective engagement of the LBDs by the large TARP-γ8 loop ('ß1'), elucidating how this TARP stabilizes specific gating states. We further show how TARPs alter channel rectification, by interacting with the pore helix of the selectivity filter. Lastly, we reveal that the Q/R-editing site couples the channel constriction at the filter entrance to the gate, and forms the major cation binding site in the conduction path. Our results provide a mechanistic framework of how TARPs modulate AMPAR gating and conductance.


Asunto(s)
Canales de Calcio/metabolismo , Receptores AMPA/metabolismo , Animales , Canales de Calcio/genética , Canales de Calcio/aislamiento & purificación , Canales de Calcio/ultraestructura , Microscopía por Crioelectrón , Ácido Glutámico/metabolismo , Células HEK293 , Humanos , Mutación , Técnicas de Placa-Clamp , Dominios Proteicos/genética , Ratas , Receptores AMPA/genética , Receptores AMPA/aislamiento & purificación , Receptores AMPA/ultraestructura , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Transmisión Sináptica , Transfección
2.
Neuropharmacology ; 196: 108711, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34271021

RESUMEN

Glutamate is by far the most abundant neurotransmitter used by excitatory synapses in the vertebrate central nervous system. Once released into the synaptic cleft, it depolarises the postsynaptic membrane and activates downstream signalling pathways resulting in the propagation of the excitatory signal. Initial depolarisation is primarily mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. These ion channels are the first ones to be activated by released glutamate and their kinetics, dynamics and abundance on the postsynaptic membrane defines the strength of the postsynaptic response. This review focuses on native AMPA receptors and synaptic environment they inhabit and considers structural and functional properties of the receptors obtained in heterologous systems in the light of spatial and temporal constraints of the synapse. This article is part of the special Issue on 'Glutamate Receptors - AMPA receptors'.


Asunto(s)
Ácido Glutámico/metabolismo , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Membranas Sinápticas/metabolismo , Animales , Humanos , Receptores AMPA/ultraestructura , Sinapsis/ultraestructura , Membranas Sinápticas/ultraestructura , Transmisión Sináptica , Factores de Tiempo
3.
Nature ; 594(7863): 454-458, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34079129

RESUMEN

AMPA receptors (AMPARs) mediate the majority of excitatory transmission in the brain and enable the synaptic plasticity that underlies learning1. A diverse array of AMPAR signalling complexes are established by receptor auxiliary subunits, which associate with the AMPAR in various combinations to modulate trafficking, gating and synaptic strength2. However, their mechanisms of action are poorly understood. Here we determine cryo-electron microscopy structures of the heteromeric GluA1-GluA2 receptor assembled with both TARP-γ8 and CNIH2, the predominant AMPAR complex in the forebrain, in both resting and active states. Two TARP-γ8 and two CNIH2 subunits insert at distinct sites beneath the ligand-binding domains of the receptor, with site-specific lipids shaping each interaction and affecting the gating regulation of the AMPARs. Activation of the receptor leads to asymmetry between GluA1 and GluA2 along the ion conduction path and an outward expansion of the channel triggers counter-rotations of both auxiliary subunit pairs, promoting the active-state conformation. In addition, both TARP-γ8 and CNIH2 pivot towards the pore exit upon activation, extending their reach for cytoplasmic receptor elements. CNIH2 achieves this through its uniquely extended M2 helix, which has transformed this endoplasmic reticulum-export factor into a powerful AMPAR modulator that is capable of providing hippocampal pyramidal neurons with their integrative synaptic properties.


Asunto(s)
Microscopía por Crioelectrón , Activación del Canal Iónico , Multimerización de Proteína , Receptores AMPA/metabolismo , Receptores AMPA/ultraestructura , Secuencia de Aminoácidos , Animales , Canales de Calcio/química , Canales de Calcio/metabolismo , Canales de Calcio/ultraestructura , Hipocampo , Metabolismo de los Lípidos , Lípidos , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Células Piramidales/metabolismo , Receptores AMPA/química , Rotación
4.
Nature ; 594(7863): 448-453, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33981040

RESUMEN

AMPA-selective glutamate receptors mediate the transduction of signals between the neuronal circuits of the hippocampus1. The trafficking, localization, kinetics and pharmacology of AMPA receptors are tuned by an ensemble of auxiliary protein subunits, which are integral membrane proteins that associate with the receptor to yield bona fide receptor signalling complexes2. Thus far, extensive studies of recombinant AMPA receptor-auxiliary subunit complexes using engineered protein constructs have not been able to faithfully elucidate the molecular architecture of hippocampal AMPA receptor complexes. Here we obtain mouse hippocampal, calcium-impermeable AMPA receptor complexes using immunoaffinity purification and use single-molecule fluorescence and cryo-electron microscopy experiments to elucidate three major AMPA receptor-auxiliary subunit complexes. The GluA1-GluA2, GluA1-GluA2-GluA3 and GluA2-GluA3 receptors are the predominant assemblies, with the auxiliary subunits TARP-γ8 and CNIH2-SynDIG4 non-stochastically positioned at the B'/D' and A'/C' positions, respectively. We further demonstrate how the receptor-TARP-γ8 stoichiometry explains the mechanism of and submaximal inhibition by a clinically relevant, brain-region-specific allosteric inhibitor.


Asunto(s)
Hipocampo/metabolismo , Receptores AMPA/química , Receptores AMPA/metabolismo , Regulación Alostérica , Animales , Sitios de Unión , Canales de Calcio/química , Canales de Calcio/metabolismo , Canales de Calcio/ultraestructura , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas Portadoras/ultraestructura , Microscopía por Crioelectrón , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Modelos Moleculares , Receptores AMPA/ultraestructura
5.
Neurobiol Dis ; 152: 105293, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33556538

RESUMEN

Synaptic structure and function are compromised prior to cell death and symptom onset in a variety of neurodegenerative diseases. In Huntington disease (HD), a CAG repeat expansion in the gene encoding the huntingtin protein results in a presymptomatic stage that typically spans multiple decades and is followed by striking degeneration of striatal tissue and the progression of debilitating motor symptoms. Many lines of evidence demonstrate that the HD presymptomatic window is associated with injurious effects to striatal synapses, many of which appear to be prerequisites to subsequent cell death. While the striatum is the most vulnerable region in the HD brain, it is widely recognized that HD is a brain-wide disease, affecting numerous extrastriatal regions that contribute to debilitating non-motor symptoms including cognitive dysfunction. Currently, we have a poor understanding of the synaptic integrity, or lack thereof, in extrastriatal regions in the presymptomatic HD brain. If early therapeutic intervention seeks to maintain healthy synaptic function, it is important to understand early HD-associated synaptopathy at a brain-wide, rather than striatal-exclusive, level. Here, we focused on the hippocampus as this structure is generally thought to be affected only in manifest HD despite the subtle cognitive deficits known to emerge in prodromal HD. We used super-resolution microscopy and multi-electrode array electrophysiology as sensitive measures of excitatory synapse structure and function, respectively, in the hippocampus of presymptomatic heterozygous HD mice (Q175FDN model). We found clear evidence for enhanced AMPA receptor subunit clustering and hyperexcitability well before the onset of a detectable HD-like behavioral phenotype. In addition, activity-dependent re-organization of synaptic protein nanostructure, and functional measures of synaptic plasticity were impaired in presymptomatic HD mice. These data demonstrate that synaptic abnormalities in the presymptomatic HD brain are not exclusive to the striatum, and highlight the need to better understand the region-dependent complexities of early synaptopathy in the HD brain.


Asunto(s)
Hipocampo/fisiopatología , Enfermedad de Huntington/fisiopatología , Receptores AMPA/ultraestructura , Sinapsis/patología , Sinapsis/ultraestructura , Animales , Femenino , Hipocampo/patología , Hipocampo/ultraestructura , Enfermedad de Huntington/patología , Masculino , Ratones , Plasticidad Neuronal/fisiología , Síntomas Prodrómicos , Receptores AMPA/metabolismo
6.
Neuron ; 102(5): 976-992.e5, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31053408

RESUMEN

Neurotransmitter-gated ion channels are allosteric proteins that switch on and off in response to agonist binding. Most studies have focused on the agonist-bound, activated channel while assigning a lesser role to the apo or resting state. Here, we show that nanoscale mobility of resting α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptors (AMPA receptors) predetermines responsiveness to neurotransmitter, allosteric anions and TARP auxiliary subunits. Mobility at rest is regulated by alternative splicing of the flip/flop cassette of the ligand-binding domain, which controls motions in the distant AMPA receptor N-terminal domain (NTD). Flip variants promote moderate NTD movement, which establishes slower channel desensitization and robust regulation by anions and auxiliary subunits. In contrast, greater NTD mobility imparted by the flop cassette acts as a master switch to override allosteric regulation. In AMPA receptor heteromers, TARP stoichiometry further modifies these actions of the flip/flop cassette generating two functionally distinct classes of partially and fully TARPed receptors typical of cerebellar stellate and Purkinje cells.


Asunto(s)
Células de Purkinje/metabolismo , Receptores AMPA/metabolismo , Regulación Alostérica , Sitio Alostérico , Empalme Alternativo , Animales , Cerebelo/citología , Cerebelo/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Células HEK293 , Humanos , Activación del Canal Iónico , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Ratones , Microscopía de Fuerza Atómica , Técnicas de Placa-Clamp , Dominios Proteicos , Isoformas de Proteínas/genética , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Receptores AMPA/genética , Receptores AMPA/ultraestructura
7.
Science ; 364(6438)2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30872532

RESUMEN

AMPA-type glutamate receptors (AMPARs) mediate excitatory neurotransmission and are central regulators of synaptic plasticity, a molecular mechanism underlying learning and memory. Although AMPARs act predominantly as heteromers, structural studies have focused on homomeric assemblies. Here, we present a cryo-electron microscopy structure of the heteromeric GluA1/2 receptor associated with two transmembrane AMPAR regulatory protein (TARP) γ8 auxiliary subunits, the principal AMPAR complex at hippocampal synapses. Within the receptor, the core subunits arrange to give the GluA2 subunit dominant control of gating. This structure reveals the geometry of the Q/R site that controls calcium flux, suggests association of TARP-stabilized lipids, and demonstrates that the extracellular loop of γ8 modulates gating by selectively interacting with the GluA2 ligand-binding domain. Collectively, this structure provides a blueprint for deciphering the signal transduction mechanisms of synaptic AMPARs.


Asunto(s)
Canales de Calcio/química , Receptores AMPA/química , Animales , Canales de Calcio/ultraestructura , Microscopía por Crioelectrón , Células HEK293 , Hipocampo/metabolismo , Humanos , Dominios Proteicos , Multimerización de Proteína , Ratas , Receptores AMPA/ultraestructura , Transducción de Señal , Sinapsis/metabolismo
8.
Behav Brain Res ; 360: 209-215, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30552946

RESUMEN

Glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) carry the bulk of excitatory synaptic transmission. Their modulation plays key roles in synaptic plasticity, which underlies hippocampal learning and memory. A dysfunctional glutamatergic system may negatively affect learning abilities and underlie symptoms of attention-deficit/hyperactivity disorder (ADHD). The aim of this study was to investigate whether the expression and function of AMPARs were altered in ADHD. We recorded AMPAR mediated synaptic transmission at hippocampal excitatory synapses and quantified immunogold labelling density of AMPAR subunits GluA1 and GluA2/3 in a rat model for ADHD; the spontaneously hypertensive rat (SHR). Electrophysiological recordings showed significantly reduced AMPAR mediated synaptic transmission at the CA3-to-CA1 pyramidal cell synapses in stratum radiatum and stratum oriens in SHRs compared to control rats. Electronmicroscopic immunogold quantifications did not show any statistically significant changes in labelling densities of the GluA1 subunit of the AMPAR on dendritic spines in stratum radiatum or in stratum oriens. However, there was a significant increase of the GluA2/3 subunit intracellularly in stratum oriens in SHR compared to control, interpreted as a compensatory effect. The proportion of synapses lacking AMPAR subunit labelling was the same in the two genotypes. In addition, electronmicroscopic examination of tissue morphology showed the density of this type of synapse (i.e., asymmetric synapses on spines), and the average size of the synaptic membranes, to be the same. AMPAR dysfunction, possibly involving molecular changes, in hippocampus may in part reflect altered learning in individuals with ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/patología , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/metabolismo , Hipocampo/patología , Receptores AMPA/metabolismo , Animales , Animales Recién Nacidos , Trastorno por Déficit de Atención con Hiperactividad/genética , Espinas Dendríticas , Modelos Animales de Enfermedad , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Hipocampo/efectos de los fármacos , Inmunohistoquímica , Técnicas In Vitro , Masculino , Microscopía Electrónica , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Células Piramidales/ultraestructura , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptores AMPA/ultraestructura , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestructura
9.
ACS Chem Neurosci ; 8(12): 2631-2647, 2017 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-28825787

RESUMEN

The forebrain specific AMPA receptor antagonist, LY3130481/CERC-611, which selectively antagonizes the AMPA receptors associated with TARP γ-8, an auxiliary subunit enriched in the forebrain, has potent antiepileptic activities without motor side effects. We designated the compounds with such activities as γ-8 TARP dependent AMPA receptor antagonists (γ-8 TDAAs). In this work, we further investigated the mechanisms of action using a radiolabeled γ-8 TDAA and ternary structural modeling with mutational validations to characterize the LY3130481 binding to γ-8. The radioligand binding to the cells heterologously expressing GluA1 and/or γ-8 revealed that γ-8 TDAAs binds to γ-8 alone without AMPA receptors. Homology modeling of γ-8, based on the crystal structures of a distant TARP homologue, murine claudin 19, in conjunction with knowledge of two γ-8 residues previously identified as critical for the LY3130481 TARP-dependent selectivity provided the basis for a binding mode prediction. This allowed further rational mutational studies for characterization of the structural determinants in TARP γ-8 for LY3130481 activities, both thermodynamically as well as kinetically.


Asunto(s)
Benzotiazoles/química , Simulación del Acoplamiento Molecular , Neuronas/química , Pirazoles/química , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/ultraestructura , Animales , Sitios de Unión , Hipocampo/química , Masculino , Ratones , Modelos Biológicos , Modelos Químicos , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
10.
Nature ; 549(7670): 60-65, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28737760

RESUMEN

AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-subtype ionotropic glutamate receptors mediate fast excitatory neurotransmission throughout the central nervous system. Gated by the neurotransmitter glutamate, AMPA receptors are critical for synaptic strength, and dysregulation of AMPA receptor-mediated signalling is linked to numerous neurological diseases. Here we use cryo-electron microscopy to solve the structures of AMPA receptor-auxiliary subunit complexes in the apo, antagonist- and agonist-bound states and determine the iris-like mechanism of ion channel opening. The ion channel selectivity filter is formed by the extended portions of the re-entrant M2 loops, while the helical portions of M2 contribute to extensive hydrophobic interfaces between AMPA receptor subunits in the ion channel. We show how the permeation pathway changes upon channel opening and identify conformational changes throughout the entire AMPA receptor that accompany activation and desensitization. Our findings provide a framework for understanding gating across the family of ionotropic glutamate receptors and the role of AMPA receptors in excitatory neurotransmission.


Asunto(s)
Microscopía por Crioelectrón , Activación del Canal Iónico , Receptores AMPA/química , Receptores AMPA/ultraestructura , Animales , Canales de Calcio/metabolismo , Claudinas/metabolismo , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Modelos Moleculares , Conformación Proteica , Subunidades de Proteína/agonistas , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ratas , Receptores AMPA/agonistas , Receptores AMPA/antagonistas & inhibidores , Transmisión Sináptica
11.
Nature ; 536(7614): 108-11, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27368053

RESUMEN

Fast excitatory neurotransmission in the mammalian central nervous system is largely carried out by AMPA-sensitive ionotropic glutamate receptors. Localized within the postsynaptic density of glutamatergic spines, AMPA receptors are composed of heterotetrameric receptor assemblies associated with auxiliary subunits, the most common of which are transmembrane AMPA receptor regulatory proteins (TARPs). The association of TARPs with AMPA receptors modulates receptor trafficking and the kinetics of receptor gating and pharmacology. Here we report the cryo-electron microscopy (cryo-EM) structure of the homomeric rat GluA2 AMPA receptor saturated with TARP γ2 subunits, which shows how the TARPs are arranged with four-fold symmetry around the ion channel domain and make extensive interactions with the M1, M2 and M4 transmembrane helices. Poised like partially opened 'hands' underneath the two-fold symmetric ligand-binding domain (LBD) 'clamshells', one pair of TARPs is juxtaposed near the LBD dimer interface, whereas the other pair is near the LBD dimer-dimer interface. The extracellular 'domains' of TARP are positioned to not only modulate LBD clamshell closure, but also affect conformational rearrangements of the LBD layer associated with receptor activation and desensitization, while the TARP transmembrane domains buttress the ion channel pore.


Asunto(s)
Canales de Calcio/metabolismo , Canales de Calcio/ultraestructura , Microscopía por Crioelectrón , Receptores AMPA/metabolismo , Receptores AMPA/ultraestructura , Animales , Canales de Calcio/química , Activación del Canal Iónico , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Ratas , Receptores AMPA/química
12.
Science ; 353(6294): 83-6, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27365450

RESUMEN

AMPA-subtype ionotropic glutamate receptors (AMPARs) mediate fast excitatory neurotransmission and contribute to high cognitive processes such as learning and memory. In the brain, AMPAR trafficking, gating, and pharmacology is tightly controlled by transmembrane AMPAR regulatory proteins (TARPs). Here, we used cryo-electron microscopy to elucidate the structural basis of AMPAR regulation by one of these auxiliary proteins, TARP γ2, or stargazin (STZ). Our structures illuminate the variable interaction stoichiometry of the AMPAR-TARP complex, with one or two TARP molecules binding one tetrameric AMPAR. Analysis of the AMPAR-STZ binding interfaces suggests that electrostatic interactions between the extracellular domains of AMPAR and STZ play an important role in modulating AMPAR function through contact surfaces that are conserved across AMPARs and TARPs. We propose a model explaining how TARPs stabilize the activated state of AMPARs and how the interactions between AMPARs and their auxiliary proteins control fast excitatory synaptic transmission.


Asunto(s)
Encéfalo/metabolismo , Canales de Calcio/química , Receptores AMPA/química , Transmisión Sináptica , Animales , Canales de Calcio/ultraestructura , Microscopía por Crioelectrón , Células HEK293 , Humanos , Modelos Moleculares , Estabilidad Proteica , Estructura Secundaria de Proteína , Ratas , Receptores AMPA/ultraestructura
13.
Science ; 352(6285): aad3873, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-26966189

RESUMEN

AMPA-type glutamate receptors (AMPARs), which are central mediators of rapid neurotransmission and synaptic plasticity, predominantly exist as heteromers of the subunits GluA1 to GluA4. Here we report the first AMPAR heteromer structures, which deviate substantially from existing GluA2 homomer structures. Crystal structures of the GluA2/3 and GluA2/4 N-terminal domains reveal a novel compact conformation with an alternating arrangement of the four subunits around a central axis. This organization is confirmed by cysteine cross-linking in full-length receptors, and it permitted us to determine the structure of an intact GluA2/3 receptor by cryogenic electron microscopy. Two models in the ligand-free state, at resolutions of 8.25 and 10.3 angstroms, exhibit substantial vertical compression and close associations between domain layers, reminiscent of N-methyl-D-aspartate receptors. Model 1 resembles a resting state and model 2 a desensitized state, thus providing snapshots of gating transitions in the nominal absence of ligand. Our data reveal organizational features of heteromeric AMPARs and provide a framework to decipher AMPAR architecture and signaling.


Asunto(s)
Multimerización de Proteína , Receptores AMPA/química , Encéfalo/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Células HEK293 , Humanos , Ligandos , Modelos Moleculares , Estructura Terciaria de Proteína , Receptores AMPA/ultraestructura
14.
J Gen Physiol ; 144(6): 503-12, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25422502

RESUMEN

Transmembrane AMPA receptor (AMPAR) regulatory proteins (TARPs) markedly enhance AMPAR function, altering ligand efficacy and receptor gating kinetics and thereby shaping the postsynaptic response. The structural mechanism underlying TARP effects on gating, however, is unknown. Here we find that the prototypical member of the TARP family, stargazin or γ-2, rescues gating deficits in AMPARs carrying mutations that destabilize the closed-cleft states of the ligand-binding domain (LBD), suggesting that stargazin reverses the effects of these mutations and likely stabilizes closed LBD states. Furthermore, stargazin promotes a more closed conformation of the LBD, as indicated by reduced accessibility to the large antagonist NBQX. Consistent with the functional studies, luminescence resonance energy transfer experiments directly demonstrate that the AMPAR LBD is on average more closed in the presence of stargazin, in both the apo and agonist-bound states. The additional cleft closure and/or stabilization of the more closed-cleft states of the LBD is expected to translate to higher agonist efficacy and could contribute to the structural mechanism for stargazin modulation of AMPAR function.


Asunto(s)
Canales de Calcio/química , Canales de Calcio/metabolismo , Permeabilidad de la Membrana Celular/fisiología , Activación del Canal Iónico/fisiología , Receptores AMPA/química , Receptores AMPA/metabolismo , Canales de Calcio/ultraestructura , Células HEK293 , Humanos , Ligandos , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Receptores AMPA/ultraestructura
15.
Nature ; 514(7522): 328-34, 2014 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-25119039

RESUMEN

Ionotropic glutamate receptors are ligand-gated ion channels that mediate excitatory synaptic transmission in the vertebrate brain. To gain a better understanding of how structural changes gate ion flux across the membrane, we trapped rat AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) and kainate receptor subtypes in their major functional states and analysed the resulting structures using cryo-electron microscopy. We show that transition to the active state involves a 'corkscrew' motion of the receptor assembly, driven by closure of the ligand-binding domain. Desensitization is accompanied by disruption of the amino-terminal domain tetramer in AMPA, but not kainate, receptors with a two-fold to four-fold symmetry transition in the ligand-binding domains in both subtypes. The 7.6 Å structure of a desensitized kainate receptor shows how these changes accommodate channel closing. These findings integrate previous physiological, biochemical and structural analyses of glutamate receptors and provide a molecular explanation for key steps in receptor gating.


Asunto(s)
Microscopía por Crioelectrón , Receptores AMPA/metabolismo , Receptores AMPA/ultraestructura , Receptores de Ácido Kaínico/metabolismo , Receptores de Ácido Kaínico/ultraestructura , Animales , Sitios de Unión , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Activación del Canal Iónico/efectos de los fármacos , Ligandos , Modelos Moleculares , Estructura Terciaria de Proteína/efectos de los fármacos , Ratas , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/química , Receptores de Ácido Kaínico/química , Receptor de Ácido Kaínico GluK2
16.
J Comp Neurol ; 522(17): 3861-84, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25043676

RESUMEN

Nascent zones and active zones are adjacent synaptic regions that share a postsynaptic density, but nascent zones lack the presynaptic vesicles found at active zones. Here dendritic spine synapses were reconstructed through serial section electron microscopy (3DEM) and EM tomography to investigate nascent zone dynamics during long-term potentiation (LTP) in mature rat hippocampus. LTP was induced with theta-burst stimulation, and comparisons were made with control stimulation in the same hippocampal slices at 5 minutes, 30 minutes, and 2 hours post-induction and to perfusion-fixed hippocampus in vivo. Nascent zones were present at the edges of ∼35% of synapses in perfusion-fixed hippocampus and as many as ∼50% of synapses in some hippocampal slice conditions. By 5 minutes, small dense-core vesicles known to transport active zone proteins moved into more presynaptic boutons. By 30 minutes, nascent zone area decreased, without significant change in synapse area, suggesting that presynaptic vesicles were recruited to preexisting nascent zones. By 2 hours, both nascent and active zones were enlarged. Immunogold labeling revealed glutamate receptors in nascent zones; however, average distances from nascent zones to docked presynaptic vesicles ranged from 170 ± 5 nm in perfusion-fixed hippocampus to 251 ± 4 nm at enlarged synapses by 2 hours during LTP. Prior stochastic modeling suggests that decrease in glutamate concentration reduces the probability of glutamate receptor activation from 0.4 at the center of release to 0.1 just 200 nm away. Thus, conversion of nascent zones to functional active zones likely requires the recruitment of presynaptic vesicles during LTP.


Asunto(s)
Hipocampo/citología , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Sinapsis/fisiología , Análisis de Varianza , Animales , Animales Recién Nacidos , Biofisica , Dendritas/metabolismo , Dendritas/ultraestructura , Estimulación Eléctrica , Imagenología Tridimensional , Técnicas In Vitro , Masculino , Microscopía Electrónica de Transmisión , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Ratas , Receptores AMPA/metabolismo , Receptores AMPA/ultraestructura , Vesículas Secretoras/ultraestructura , Sinapsis/ultraestructura , Factores de Tiempo
17.
J Biol Chem ; 288(12): 8647-8657, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23382380

RESUMEN

AMPA receptors (AMPARs) are glutamate-gated ion channels ubiquitous in the vertebrate central nervous system, where they mediate fast excitatory neurotransmission and act as molecular determinants of memory formation and learning. Together with detailed analyses of individual AMPAR domains, structural studies of full-length AMPARs by electron microscopy and x-ray crystallography have provided important insights into channel assembly and function. However, the correlation between the structure and functional states of the channel remains ambiguous particularly because these functional states can be assessed only with the receptor bound within an intact lipid bilayer. To provide a basis for investigating AMPAR structure in a membrane environment, we developed an optimized reconstitution protocol using a receptor whose structure has previously been characterized by electron microscopy. Single-channel recordings of reconstituted homomeric GluA2(flop) receptors recapitulate key electrophysiological parameters of the channels expressed in native cellular membranes. Atomic force microscopy studies of the reconstituted samples provide high-resolution images of membrane-embedded full-length AMPARs at densities comparable to those in postsynaptic membranes. The data demonstrate the effect of protein density on conformational flexibility and dimensions of the receptors and provide the first structural characterization of functional membrane-embedded AMPARs, thus laying the foundation for correlated structure-function analyses of the predominant mediators of excitatory synaptic signals in the brain.


Asunto(s)
Membrana Dobles de Lípidos/química , Liposomas/química , Receptores AMPA/química , Animales , Benzotiadiazinas/química , Ácido Glutámico/química , Activación del Canal Iónico , Lípidos/química , Liposomas/ultraestructura , Potenciales de la Membrana , Microscopía de Fuerza Atómica , Conformación Proteica , Quinoxalinas/química , Ratas , Receptores AMPA/agonistas , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/ultraestructura
18.
Neuron ; 73(6): 1159-72, 2012 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-22445343

RESUMEN

Interneurons are critical for neuronal circuit function, but how their dendritic morphologies and membrane properties influence information flow within neuronal circuits is largely unknown. We studied the spatiotemporal profile of synaptic integration and short-term plasticity in dendrites of mature cerebellar stellate cells by combining two-photon guided electrical stimulation, glutamate uncaging, electron microscopy, and modeling. Synaptic activation within thin (0.4 µm) dendrites produced somatic responses that became smaller and slower with increasing distance from the soma, sublinear subthreshold input-output relationships, and a somatodendritic gradient of short-term plasticity. Unlike most studies showing that neurons employ active dendritic mechanisms, we found that passive cable properties of thin dendrites determine the sublinear integration and plasticity gradient, which both result from large dendritic depolarizations that reduce synaptic driving force. These integrative properties allow stellate cells to act as spatiotemporal filters of synaptic input patterns, thereby biasing their output in favor of sparse presynaptic activity.


Asunto(s)
Cerebelo/citología , Dendritas/fisiología , Interneuronas/ultraestructura , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Benzodiazepinas/farmacología , Biofisica , Cloruro de Cadmio/farmacología , Cesio/farmacología , Cloruros/farmacología , Dendritas/ultraestructura , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/fisiología , Glutamatos/farmacología , Imagenología Tridimensional , Técnicas In Vitro , Indoles/farmacología , Rayos Láser , Ratones , Microscopía Confocal , Microscopía Electrónica de Transmisión , Modelos Neurológicos , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Receptores AMPA/metabolismo , Receptores AMPA/ultraestructura , Bloqueadores de los Canales de Sodio/farmacología , Estadísticas no Paramétricas , Sinapsis/ultraestructura , Tetraetilamonio/farmacología , Tetrodotoxina/farmacología , Factores de Tiempo
19.
Curr Opin Neurobiol ; 22(3): 446-52, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22325858

RESUMEN

To gain insights into structure-function relationship of excitatory synapses, we revisit our quantitative analysis of synaptic AMPAR by highly sensitive freeze-fracture replica labeling in eight different connections. All of these connections showed linear correlation between synapse size and AMPAR number indicating a common intra-synapse-type relationship in CNS synapses. On the contrary, inter-synapse-type relationship is unexpected indicating no correlation between averages of synapse size and AMPAR number. Interestingly, connections with large average synapse size and low AMPAR density showed high variability of AMPAR number and mosaic distribution within the postsynaptic membrane. We propose an idea that these connections may quickly exhibit synaptic plasticity by modifying AMPAR density/number whereas those with high AMPAR density change their efficacy by modifying synapse size.


Asunto(s)
Plasticidad Neuronal/fisiología , Receptores AMPA/metabolismo , Sinapsis/clasificación , Sinapsis/metabolismo , Animales , Sistema Nervioso Central/citología , Sistema Nervioso Central/ultraestructura , Técnica de Fractura por Congelación , Receptores AMPA/ultraestructura , Sinapsis/ultraestructura , Transmisión Sináptica/fisiología
20.
J Neurosci ; 31(17): 6329-38, 2011 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-21525273

RESUMEN

PSD-95, a membrane-associated guanylate kinase, is the major scaffolding protein in the excitatory postsynaptic density (PSD) and a potent regulator of synaptic strength. Here we show that PSD-95 is in an extended configuration and positioned into regular arrays of vertical filaments that contact both glutamate receptors and orthogonal horizontal elements layered deep inside the PSD in rat hippocampal spine synapses. RNA interference knockdown of PSD-95 leads to loss of entire patches of PSD material, and electron microscopy tomography shows that the patchy loss correlates with loss of PSD-95-containing vertical filaments, horizontal elements associated with the vertical filaments, and putative AMPA receptor-type, but not NMDA receptor-type, structures. These observations show that the orthogonal molecular scaffold constructed from PSD-95-containing vertical filaments and their associated horizontal elements is essential for sustaining the three-dimensional molecular organization of the PSD. Our findings provide a structural basis for understanding the functional role of PSD-95 at the PSD.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/citología , Densidad Postsináptica/metabolismo , Densidad Postsináptica/ultraestructura , Sinapsis , Animales , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Homólogo 4 de la Proteína Discs Large , Embrión de Mamíferos , Femenino , Proteínas Fluorescentes Verdes/genética , Hipocampo/citología , Inmunohistoquímica/métodos , Péptidos y Proteínas de Señalización Intracelular/genética , Lentivirus/fisiología , Masculino , Proteínas de la Membrana/genética , Microscopía Electrónica de Transmisión/métodos , Modelos Biológicos , Interferencia de ARN/fisiología , Ratas , Receptores AMPA/metabolismo , Receptores AMPA/ultraestructura , Sinapsis/fisiología , Sinapsis/ultraestructura , Transfección/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...