Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 631(8020): 459-466, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38776963

RESUMEN

Bitter taste receptors, particularly TAS2R14, play central roles in discerning a wide array of bitter substances, ranging from dietary components to pharmaceutical agents1,2. TAS2R14 is also widely expressed in extragustatory tissues, suggesting its extra roles in diverse physiological processes and potential therapeutic applications3. Here we present cryogenic electron microscopy structures of TAS2R14 in complex with aristolochic acid, flufenamic acid and compound 28.1, coupling with different G-protein subtypes. Uniquely, a cholesterol molecule is observed occupying what is typically an orthosteric site in class A G-protein-coupled receptors. The three potent agonists bind, individually, to the intracellular pockets, suggesting a distinct activation mechanism for this receptor. Comprehensive structural analysis, combined with mutagenesis and molecular dynamic simulation studies, elucidate the broad-spectrum ligand recognition and activation of the receptor by means of intricate multiple ligand-binding sites. Our study also uncovers the specific coupling modes of TAS2R14 with gustducin and Gi1 proteins. These findings should be instrumental in advancing knowledge of bitter taste perception and its broader implications in sensory biology and drug discovery.


Asunto(s)
Ácidos Aristolóquicos , Colesterol , Ácido Flufenámico , Receptores Acoplados a Proteínas G , Gusto , Humanos , Ácidos Aristolóquicos/metabolismo , Ácidos Aristolóquicos/química , Ácidos Aristolóquicos/farmacología , Sitios de Unión/efectos de los fármacos , Colesterol/química , Colesterol/metabolismo , Colesterol/farmacología , Microscopía por Crioelectrón , Ácido Flufenámico/química , Ácido Flufenámico/metabolismo , Ácido Flufenámico/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Ligandos , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestructura , Gusto/efectos de los fármacos , Gusto/fisiología , Transducina/química , Transducina/metabolismo
2.
Nature ; 628(8008): 664-671, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38600377

RESUMEN

Bitter taste sensing is mediated by type 2 taste receptors (TAS2Rs (also known as T2Rs)), which represent a distinct class of G-protein-coupled receptors1. Among the 26 members of the TAS2Rs, TAS2R14 is highly expressed in extraoral tissues and mediates the responses to more than 100 structurally diverse tastants2-6, although the molecular mechanisms for recognizing diverse chemicals and initiating cellular signalling are still poorly understood. Here we report two cryo-electron microscopy structures for TAS2R14 complexed with Ggust (also known as gustducin) and Gi1. Both structures have an orthosteric binding pocket occupied by endogenous cholesterol as well as an intracellular allosteric site bound by the bitter tastant cmpd28.1, including a direct interaction with the α5 helix of Ggust and Gi1. Computational and biochemical studies validate both ligand interactions. Our functional analysis identified cholesterol as an orthosteric agonist and the bitter tastant cmpd28.1 as a positive allosteric modulator with direct agonist activity at TAS2R14. Moreover, the orthosteric pocket is connected to the allosteric site via an elongated cavity, which has a hydrophobic core rich in aromatic residues. Our findings provide insights into the ligand recognition of bitter taste receptors and suggest activities of TAS2R14 beyond bitter taste perception via intracellular allosteric tastants.


Asunto(s)
Colesterol , Espacio Intracelular , Receptores Acoplados a Proteínas G , Gusto , Humanos , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico , Colesterol/química , Colesterol/metabolismo , Colesterol/farmacología , Microscopía por Crioelectrón , Interacciones Hidrofóbicas e Hidrofílicas , Espacio Intracelular/química , Espacio Intracelular/metabolismo , Ligandos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestructura , Reproducibilidad de los Resultados , Gusto/efectos de los fármacos , Gusto/fisiología , Transducina/química , Transducina/metabolismo , Transducina/ultraestructura
3.
Nature ; 629(8010): 228-234, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447670

RESUMEN

Animals crave sugars because of their energy potential and the pleasurable sensation of tasting sweetness. Yet all sugars are not metabolically equivalent, requiring mechanisms to detect and differentiate between chemically similar sweet substances. Insects use a family of ionotropic gustatory receptors to discriminate sugars1, each of which is selectively activated by specific sweet molecules2-6. Here, to gain insight into the molecular basis of sugar selectivity, we determined structures of Gr9, a gustatory receptor from the silkworm Bombyx mori (BmGr9), in the absence and presence of its sole activating ligand, D-fructose. These structures, along with structure-guided mutagenesis and functional assays, illustrate how D-fructose is enveloped by a ligand-binding pocket that precisely matches the overall shape and pattern of chemical groups in D-fructose. However, our computational docking and experimental binding assays revealed that other sugars also bind BmGr9, yet they are unable to activate the receptor. We determined the structure of BmGr9 in complex with one such non-activating sugar, L-sorbose. Although both sugars bind a similar position, only D-fructose is capable of engaging a bridge of two conserved aromatic residues that connects the pocket to the pore helix, inducing a conformational change that allows the ion-conducting pore to open. Thus, chemical specificity does not depend solely on the selectivity of the ligand-binding pocket, but it is an emergent property arising from a combination of receptor-ligand interactions and allosteric coupling. Our results support a model whereby coarse receptor tuning is derived from the size and chemical characteristics of the pocket, whereas fine-tuning of receptor activation is achieved through the selective engagement of an allosteric pathway that regulates ion conduction.


Asunto(s)
Bombyx , Proteínas de Insectos , Receptores Acoplados a Proteínas G , Azúcares , Gusto , Animales , Regulación Alostérica , Sitios de Unión , Bombyx/metabolismo , Bombyx/química , Microscopía por Crioelectrón , Fructosa/metabolismo , Fructosa/química , Proteínas de Insectos/química , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/ultraestructura , Ligandos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Unión Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestructura , Sorbosa/química , Sorbosa/metabolismo , Especificidad por Sustrato , Azúcares/metabolismo , Azúcares/química , Gusto/fisiología
4.
Nature ; 624(7992): 672-681, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37935376

RESUMEN

Trace-amine-associated receptors (TAARs), a group of biogenic amine receptors, have essential roles in neurological and metabolic homeostasis1. They recognize diverse endogenous trace amines and subsequently activate a range of G-protein-subtype signalling pathways2,3. Notably, TAAR1 has emerged as a promising therapeutic target for treating psychiatric disorders4,5. However, the molecular mechanisms underlying its ability to recognize different ligands remain largely unclear. Here we present nine cryo-electron microscopy structures, with eight showing human and mouse TAAR1 in a complex with an array of ligands, including the endogenous 3-iodothyronamine, two antipsychotic agents, the psychoactive drug amphetamine and two identified catecholamine agonists, and one showing 5-HT1AR in a complex with an antipsychotic agent. These structures reveal a rigid consensus binding motif in TAAR1 that binds to endogenous trace amine stimuli and two extended binding pockets that accommodate diverse chemotypes. Combined with mutational analysis, functional assays and molecular dynamic simulations, we elucidate the structural basis of drug polypharmacology and identify the species-specific differences between human and mouse TAAR1. Our study provides insights into the mechanism of ligand recognition and G-protein selectivity by TAAR1, which may help in the discovery of ligands or therapeutic strategies for neurological and metabolic disorders.


Asunto(s)
Proteínas de Unión al GTP , Receptores Acoplados a Proteínas G , Animales , Humanos , Ratones , Aminas/metabolismo , Anfetamina/metabolismo , Antipsicóticos/química , Antipsicóticos/metabolismo , Sitios de Unión , Catecolaminas/agonistas , Catecolaminas/química , Catecolaminas/metabolismo , Microscopía por Crioelectrón , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/ultraestructura , Ligandos , Simulación de Dinámica Molecular , Mutación , Polifarmacología , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestructura , Especificidad de la Especie , Especificidad por Sustrato
5.
Nature ; 618(7967): 1085-1093, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37286611

RESUMEN

G protein-coupled receptors (GPCRs) generally accommodate specific ligands in the orthosteric-binding pockets. Ligand binding triggers a receptor allosteric conformational change that leads to the activation of intracellular transducers, G proteins and ß-arrestins. Because these signals often induce adverse effects, the selective activation mechanism for each transducer must be elucidated. Thus, many orthosteric-biased agonists have been developed, and intracellular-biased agonists have recently attracted broad interest. These agonists bind within the receptor intracellular cavity and preferentially tune the specific signalling pathway over other signalling pathways, without allosteric rearrangement of the receptor from the extracellular side1-3. However, only antagonist-bound structures are currently available1,4-6, and there is no evidence to support that biased agonist binding occurs within the intracellular cavity. This limits the comprehension of intracellular-biased agonism and potential drug development. Here we report the cryogenic electron microscopy structure of a complex of Gs and the human parathyroid hormone type 1 receptor (PTH1R) bound to a PTH1R agonist, PCO371. PCO371 binds within an intracellular pocket of PTH1R and directly interacts with Gs. The PCO371-binding mode rearranges the intracellular region towards the active conformation without extracellularly induced allosteric signal propagation. PCO371 stabilizes the significantly outward-bent conformation of transmembrane helix 6, which facilitates binding to G proteins rather than ß-arrestins. Furthermore, PCO371 binds within the highly conserved intracellular pocket, activating 7 out of the 15 class B1 GPCRs. Our study identifies a new and conserved intracellular agonist-binding pocket and provides evidence of a biased signalling mechanism that targets the receptor-transducer interface.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs , Imidazolidinas , Receptores Acoplados a Proteínas G , Humanos , Regulación Alostérica , beta-Arrestinas/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Desarrollo de Medicamentos , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/ultraestructura , Imidazolidinas/química , Imidazolidinas/farmacología , Ligandos , Modelos Moleculares , Conformación Proteica/efectos de los fármacos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/clasificación , Receptores Acoplados a Proteínas G/ultraestructura , Transducción de Señal
6.
Curr Opin Struct Biol ; 79: 102560, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36848776

RESUMEN

G-protein coupled receptors (GPCRs) are important therapeutic targets for the treatment of human disease. Although GPCRs are highly successful drug targets, there are many challenges associated with the discovery and translation of small molecule ligands that target the endogenous ligand-binding site for GPCRs. Allosteric modulators are a class of ligands that target alternative binding sites known as allosteric sites and offer fresh opportunities for the development of new therapeutics. However, only a few allosteric modulators have been approved as drugs. Advances in GPCR structural biology enabled by the cryogenic electron microscopy (cryo-EM) revolution have provided new insights into the molecular mechanism and binding location of small molecule allosteric modulators. This review highlights the latest findings from allosteric modulator-bound structures of Class A, B, and C GPCRs with a focus on small molecule ligands. Emerging methods that will facilitate cryo-EM structures of more difficult ligand-bound GPCR complexes are also discussed. The results of these studies are anticipated to aid future structure-based drug discovery efforts across many different GPCRs.


Asunto(s)
Regulación Alostérica , Microscopía por Crioelectrón , Receptores Acoplados a Proteínas G , Animales , Humanos , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico/efectos de los fármacos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Conformación Proteica/efectos de los fármacos , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/clasificación , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestructura
7.
Nature ; 609(7928): 846-853, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35940205

RESUMEN

Thyroid hormones are vital in metabolism, growth and development1. Thyroid hormone synthesis is controlled by thyrotropin (TSH), which acts at the thyrotropin receptor (TSHR)2. In patients with Graves' disease, autoantibodies that activate the TSHR pathologically increase thyroid hormone activity3. How autoantibodies mimic thyrotropin function remains unclear. Here we determined cryo-electron microscopy structures of active and inactive TSHR. In inactive TSHR, the extracellular domain lies close to the membrane bilayer. Thyrotropin selects an upright orientation of the extracellular domain owing to steric clashes between a conserved hormone glycan and the membrane bilayer. An activating autoantibody from a patient with Graves' disease selects a similar upright orientation of the extracellular domain. Reorientation of the extracellular domain transduces a conformational change in the seven-transmembrane-segment domain via a conserved hinge domain, a tethered peptide agonist and a phospholipid that binds within the seven-transmembrane-segment domain. Rotation of the TSHR extracellular domain relative to the membrane bilayer is sufficient for receptor activation, revealing a shared mechanism for other glycoprotein hormone receptors that may also extend to other G-protein-coupled receptors with large extracellular domains.


Asunto(s)
Microscopía por Crioelectrón , Inmunoglobulinas Estimulantes de la Tiroides , Receptores de Tirotropina , Tirotropina , Membrana Celular/metabolismo , Enfermedad de Graves/inmunología , Enfermedad de Graves/metabolismo , Humanos , Inmunoglobulinas Estimulantes de la Tiroides/química , Inmunoglobulinas Estimulantes de la Tiroides/inmunología , Inmunoglobulinas Estimulantes de la Tiroides/farmacología , Inmunoglobulinas Estimulantes de la Tiroides/ultraestructura , Fosfolípidos/metabolismo , Dominios Proteicos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/ultraestructura , Receptores de Tirotropina/agonistas , Receptores de Tirotropina/química , Receptores de Tirotropina/inmunología , Receptores de Tirotropina/ultraestructura , Rotación , Tirotropina/química , Tirotropina/metabolismo , Tirotropina/farmacología
8.
Structure ; 30(7): 922-924, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35803240

RESUMEN

Oxysterol receptor EBI2 regulates immune responses that mediate the migration of B and T cells and stimulate antibody production. In this issue of Structure, Chen and colleagues present two cryo-EM structures of EBI2 in the inactive and active states that reveal the molecular mechanisms of EBI2 ligand binding and signaling.


Asunto(s)
Estructura Terciaria de Proteína , Receptores Acoplados a Proteínas G , Enfermedades Autoinmunes/terapia , Linfocitos B , Microscopía por Crioelectrón , Humanos , Receptores Acoplados a Proteínas G/ultraestructura , Linfocitos T
9.
FEBS J ; 289(2): 386-393, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33835690

RESUMEN

The C-X-C motif chemokine CXCL8 (interleukin-8, IL-8) and its receptor chemokine receptor 2 (CXCR2) mediate neutrophil migration during cell development and inflammatory responses and thus are related to numerous inflammatory diseases and cancers. We have determined the cryo-electron microscopy structure of CXCL8 bound CXCR2 coupled to Gi protein, as well as the crystal structure of inactive CXCR2 in complex with a designed allosteric antagonist. These results reveal the binding modes between CXCL8 and CXCR2, CXCR2 and G protein, and the detailed binding pattern of the allosteric antagonist, 00767013. Further structural analysis of the inactive- and active- states of CXCR2 reveals the unique shallow-pocket activation mechanism of C-X-C chemokine receptors and promotes our understanding on how a G protein-coupled receptor (GPCR) is activated by an endogenous protein molecule. In addition, the cholesterol molecule is observed in the activated CXCR2 structure, providing the structural basis of the potential allosteric modulation role of cholesterol in chemokine receptors.


Asunto(s)
Proteínas de Unión al GTP/genética , Inflamación/genética , Interleucina-8/genética , Receptores de Interleucina-8B/genética , Regulación Alostérica/genética , Movimiento Celular/genética , Proteínas de Unión al GTP/ultraestructura , Humanos , Inflamación/patología , Interleucina-8/ultraestructura , Neutrófilos/metabolismo , Unión Proteica/genética , Conformación Proteica , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/ultraestructura , Receptores de Interleucina-8B/ultraestructura , Transducción de Señal/genética
10.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34830362

RESUMEN

Arrestins are a small family of proteins that bind G protein-coupled receptors (GPCRs). Arrestin binds to active phosphorylated GPCRs with higher affinity than to all other functional forms of the receptor, including inactive phosphorylated and active unphosphorylated. The selectivity of arrestins suggests that they must have two sensors, which detect receptor-attached phosphates and the active receptor conformation independently. Simultaneous engagement of both sensors enables arrestin transition into a high-affinity receptor-binding state. This transition involves a global conformational rearrangement that brings additional elements of the arrestin molecule, including the middle loop, in contact with a GPCR, thereby stabilizing the complex. Here, we review structural and mutagenesis data that identify these two sensors and additional receptor-binding elements within the arrestin molecule. While most data were obtained with the arrestin-1-rhodopsin pair, the evidence suggests that all arrestins use similar mechanisms to achieve preferential binding to active phosphorylated GPCRs.


Asunto(s)
Arrestina/ultraestructura , Receptores Acoplados a Proteínas G/ultraestructura , Rodopsina/ultraestructura , Arrestina/genética , Sitios de Unión/genética , Humanos , Mutagénesis/genética , Fosforilación , Unión Proteica/genética , Conformación Proteica , Receptores Acoplados a Proteínas G/genética , Rodopsina/genética
11.
Nat Commun ; 12(1): 6805, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34815401

RESUMEN

GPR158, a class C orphan GPCR, functions in cognition, stress-induced mood control, and synaptic development. Among class C GPCRs, GPR158 is unique as it lacks a Venus flytrap-fold ligand-binding domain and terminates Gαi/o protein signaling through the RGS7-Gß5 heterodimer. Here, we report the cryo-EM structures of GPR158 alone and in complex with one or two RGS7-Gß5 heterodimers. GPR158 dimerizes through Per-Arnt-Sim-fold extracellular and transmembrane (TM) domains connected by an epidermal growth factor-like linker. The TM domain (TMD) reflects both inactive and active states of other class C GPCRs: a compact intracellular TMD, conformations of the two intracellular loops (ICLs) and the TMD interface formed by TM4/5. The ICL2, ICL3, TM3, and first helix of the cytoplasmic coiled-coil provide a platform for the DHEX domain of one RGS7 and the second helix recruits another RGS7. The unique features of the RGS7-binding site underlie the selectivity of GPR158 for RGS7.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/ultraestructura , Proteínas RGS/ultraestructura , Receptores Acoplados a Proteínas G/ultraestructura , Microscopía por Crioelectrón , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/aislamiento & purificación , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Células HEK293 , Humanos , Proteínas RGS/genética , Proteínas RGS/aislamiento & purificación , Proteínas RGS/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/aislamiento & purificación , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura
12.
Nature ; 600(7887): 170-175, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34789874

RESUMEN

The MRGPRX family of receptors (MRGPRX1-4) is a family of mas-related G-protein-coupled receptors that have evolved relatively recently1. Of these, MRGPRX2 and MRGPRX4 are key physiological and pathological mediators of itch and related mast cell-mediated hypersensitivity reactions2-5. MRGPRX2 couples to both Gi and Gq in mast cells6. Here we describe agonist-stabilized structures of MRGPRX2 coupled to Gi1 and Gq in ternary complexes with the endogenous peptide cortistatin-14 and with a synthetic agonist probe, respectively, and the development of potent antagonist probes for MRGPRX2. We also describe a specific MRGPRX4 agonist and the structure of this agonist in a complex with MRGPRX4 and Gq. Together, these findings should accelerate the structure-guided discovery of therapeutic agents for pain, itch and mast cell-mediated hypersensitivity.


Asunto(s)
Microscopía por Crioelectrón , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/química , Prurito/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/química , Receptores de Neuropéptido/antagonistas & inhibidores , Receptores de Neuropéptido/química , Agonismo Inverso de Drogas , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/ultraestructura , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/ultraestructura , Humanos , Modelos Moleculares , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/ultraestructura , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestructura , Receptores de Neuropéptido/metabolismo , Receptores de Neuropéptido/ultraestructura
13.
Nature ; 600(7887): 164-169, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34789875

RESUMEN

In the clades of animals that diverged from the bony fish, a group of Mas-related G-protein-coupled receptors (MRGPRs) evolved that have an active role in itch and allergic signals1,2. As an MRGPR, MRGPRX2 is known to sense basic secretagogues (agents that promote secretion) and is involved in itch signals and eliciting pseudoallergic reactions3-6. MRGPRX2 has been targeted by drug development efforts to prevent the side effects induced by certain drugs or to treat allergic diseases. Here we report a set of cryo-electron microscopy structures of the MRGPRX2-Gi1 trimer in complex with polycationic compound 48/80 or with inflammatory peptides. The structures of the MRGPRX2-Gi1 complex exhibited shallow, solvent-exposed ligand-binding pockets. We identified key common structural features of MRGPRX2 and describe a consensus motif for peptidic allergens. Beneath the ligand-binding pocket, the unusual kink formation at transmembrane domain 6 (TM6) and the replacement of the general toggle switch from Trp6.48 to Gly6.48 (superscript annotations as per Ballesteros-Weinstein nomenclature) suggest a distinct activation process. We characterized the interfaces of MRGPRX2 and the Gi trimer, and mapped the residues associated with key single-nucleotide polymorphisms on both the ligand and G-protein interfaces of MRGPRX2. Collectively, our results provide a structural basis for the sensing of cationic allergens by MRGPRX2, potentially facilitating the rational design of therapies to prevent unwanted pseudoallergic reactions.


Asunto(s)
Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Prurito/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropéptido/química , Receptores de Neuropéptido/metabolismo , Alérgenos/inmunología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Secuencia de Consenso , Microscopía por Crioelectrón , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Humanos , Modelos Moleculares , Proteínas del Tejido Nervioso/inmunología , Proteínas del Tejido Nervioso/ultraestructura , Receptores Acoplados a Proteínas G/inmunología , Receptores Acoplados a Proteínas G/ultraestructura , Receptores de Neuropéptido/inmunología , Receptores de Neuropéptido/ultraestructura
14.
Biomolecules ; 11(10)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34680136

RESUMEN

G-protein coupled receptors (GPCRs) are known to form homo- and hetero- oligomers which are considered critical to modulate their function. However, studying the existence and functional implication of these complexes is not straightforward as controversial results are obtained depending on the method of analysis employed. Here, we use a quantitative single molecule super-resolution imaging technique named qPAINT to quantify complex formation within an example GPCR. qPAINT, based upon DNA-PAINT, takes advantage of the binding kinetics between fluorescently labelled DNA imager strands to complementary DNA docking strands coupled to protein targeting antibodies to quantify the protein copy number in nanoscale dimensions. We demonstrate qPAINT analysis via a novel pipeline to study the oligomerization of the purinergic receptor Y2 (P2Y2), a rhodopsin-like GPCR, highly expressed in the pancreatic cancer cell line AsPC-1, under control, agonistic and antagonistic conditions. Results reveal that whilst the density of P2Y2 receptors remained unchanged, antagonistic conditions displayed reduced percentage of oligomers, and smaller numbers of receptors in complexes. Yet, the oligomeric state of the receptors was not affected by agonist treatment, in line with previous reports. Understanding P2Y2 oligomerization under agonistic and antagonistic conditions will contribute to unravelling P2Y2 mechanistic action and therapeutic targeting.


Asunto(s)
Neoplasias Pancreáticas/genética , Multimerización de Proteína/genética , Receptores Acoplados a Proteínas G/genética , Receptores Purinérgicos P2Y2/genética , ADN/genética , Humanos , Cinética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Receptores Acoplados a Proteínas G/ultraestructura , Receptores Purinérgicos P2Y2/ultraestructura , Rodopsina/genética , Rodopsina/ultraestructura , Transducción de Señal/genética
15.
Nat Commun ; 12(1): 4541, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315898

RESUMEN

Wntless (WLS), an evolutionarily conserved multi-pass transmembrane protein, is essential for secretion of Wnt proteins. Wnt-triggered signaling pathways control many crucial life events, whereas aberrant Wnt signaling is tightly associated with many human diseases including cancers. Here, we report the cryo-EM structure of human WLS in complex with Wnt3a, the most widely studied Wnt, at 2.2 Å resolution. The transmembrane domain of WLS bears a GPCR fold, with a conserved core cavity and a lateral opening. Wnt3a interacts with WLS at multiple interfaces, with the lipid moiety on Wnt3a traversing a hydrophobic tunnel of WLS transmembrane domain and inserting into membrane. A ß-hairpin of Wnt3a containing the conserved palmitoleoylation site interacts with WLS extensively, which is crucial for WLS-mediated Wnt secretion. The flexibility of the Wnt3a loop/hairpin regions involved in the multiple binding sites indicates induced fit might happen when Wnts are bound to different binding partners. Our findings provide important insights into the molecular mechanism of Wnt palmitoleoylation, secretion and signaling.


Asunto(s)
Microscopía por Crioelectrón , Receptores Acoplados a Proteínas G/ultraestructura , Proteína Wnt3A/ultraestructura , Receptores Frizzled/metabolismo , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Moleculares , Conformación Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Proteína Wnt3A/química , Proteína Wnt3A/metabolismo
16.
Sci Rep ; 11(1): 12318, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112880

RESUMEN

The characterization of molecular mechanisms underlying the taste-sensing system of chickens will add to our understanding of their feeding behaviors in poultry farming. In the mammalian taste system, the heterodimer of taste receptor type 1 members 1/3 (T1R1/T1R3) functions as an umami (amino acid) taste receptor. Here, we analyzed the expression patterns of T1R1 and T1R3 in the taste cells of chickens, labeled by the molecular markers for chicken taste buds (vimentin and α-gustducin). We observed that α-gustducin was expressed in some of the chicken T1R3-positive taste bud cells but rarely expressed in the T1R1-positive and T2R7-positive taste bud cells. These results raise the possibility that there is another second messenger signaling system in chicken taste sensory cells. We also observed that T1R3 and α-gustducin were expressed mostly in the vimentin-positive taste bud cells, whereas T1R1 and bitter taste receptor (i.e., taste receptor type 2 member 7, T2R7) were expressed largely in the vimentin-negative taste bud cells in chickens. In addition, we observed that T1R1 and T1R3 were co-expressed in about 5% of chickens' taste bud cells, which express T1R1 or T1R3. These results suggest that the heterodimer of T1R1 and T1R3 is rarely formed in chickens' taste bud cells, and they provide comparative insights into the expressional regulation of taste receptors in the taste bud cells of vertebrates.


Asunto(s)
Multimerización de Proteína/genética , Receptores Acoplados a Proteínas G/genética , Papilas Gustativas/metabolismo , Animales , Pollos/genética , Pollos/fisiología , Receptores Acoplados a Proteínas G/ultraestructura , Transducción de Señal/genética , Papilas Gustativas/patología , Transducina/genética , Vimentina/genética
17.
Commun Biol ; 4(1): 635, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34045638

RESUMEN

G protein-coupled receptors (GPCRs) selectively couple to specific heterotrimeric G proteins comprised of four subfamilies in order to induce appropriate physiological responses. However, structural determinants in Gα subunits responsible for selective recognition by approximately 800 human GPCRs have remained elusive. Here, we directly compare the influence of subtype-specific Gα structures on the stability of GPCR-G protein complexes and the activation by two Gq-coupled receptors. We used FRET-assays designed to distinguish multiple Go and Gq-based Gα chimeras in their ability to be selectively bound and activated by muscarinic M3 and histaminic H1 receptors. We identify the N-terminus including the αN/ß1-hinge, the ß2/ß3-loop and the α5 helix of Gα to be key selectivity determinants which differ in their impact on selective binding to GPCRs and subsequent activation depending on the specific receptor. Altogether, these findings provide new insights into the molecular basis of G protein-coupling selectivity even beyond the Gα C-terminus.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/ultraestructura , Receptores Acoplados a Proteínas G/metabolismo , Animales , Subunidades alfa de la Proteína de Unión al GTP/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/ultraestructura , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/fisiología , Proteínas de Unión al GTP/ultraestructura , Humanos , Ratones , Unión Proteica , Ratas , Receptores Acoplados a Proteínas G/fisiología , Receptores Acoplados a Proteínas G/ultraestructura , Transducción de Señal
18.
FEBS J ; 288(8): 2562-2569, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33605032

RESUMEN

G protein-coupled receptors (GPCRs) are a large class of cell-surface receptor involved in cellular signaling that are currently the target of over one third of all clinically approved therapeutics. Classically, an agonist-bound, active GPCR couples to and activates G proteins through the receptor intracellular core. To attenuate G protein signaling, the GPCR is phosphorylated at its C-terminal tail and/or relevant intracellular loops, allowing for the recruitment of ß-arrestins (ßarrs). ßarrs then couple to the receptor intracellular core in order to mediate receptor desensitization and internalization. However, our laboratory and others have observed that some GPCRs are capable of continuously signaling through G protein even after internalization. This mode of sustained signaling stands in contrast with our previous understanding of GPCR signaling, and its molecular mechanism is still not well understood. Recently, we have solved the structure of a GPCR-G protein-ßarr megacomplex by cryo-electron microscopy. This 'megaplex' structure illustrates the independent and simultaneous coupling of a G protein to the receptor intracellular core, and binding of a ßarr to a phosphorylated receptor C-terminal tail, with all three components maintaining their respective canonically active conformations. The structure provides evidence for the ability of a GPCR to activate G protein even while being bound to and internalized by ßarr. It also reveals that the binding of G protein and ßarr to the same GPCR is not mutually exclusive, and raises a number of future questions to be answered regarding the mechanism of sustained signaling.


Asunto(s)
Endosomas/genética , Proteínas de Unión al GTP/genética , Receptores Acoplados a Proteínas G/genética , beta-Arrestinas/genética , Arrestinas/genética , Arrestinas/ultraestructura , Microscopía por Crioelectrón , Endocitosis/genética , Endosomas/ultraestructura , Proteínas de Unión al GTP/ultraestructura , Humanos , Conformación Molecular , Fosforilación , Unión Proteica/genética , Receptores Acoplados a Proteínas G/ultraestructura , Transducción de Señal/genética
19.
J Mol Biol ; 433(7): 166843, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33539880

RESUMEN

Kisspeptin receptor (Kiss1R) is an important receptor that plays central regulatory roles in reproduction by regulating hormone release in the hypothalamus. We hypothesize that the formation of heterocomplexes between Kiss1R and other hypothalamus G protein-coupled receptors (GPCRs) affects their cellular signaling. Through screening of potential interactions between Kiss1R and hypothalamus GPCRs, we identified G protein-coupled estrogen receptor (GPER) as one interaction partner of Kiss1R. Based on the recognised function of kisspeptin and estrogen in regulating the reproductive system, we investigated the Kiss1R/GPER heterocomplex in more detail and revealed that complex formation significantly reduced Kiss1R-mediated signaling. GPER did not directly antagonize Kiss1R conformational changes upon ligand binding, but it rather reduced the cell surface expression of Kiss1R. These results therefore demonstrate a regulatory mechanism of hypothalamic hormone receptors via receptor cooperation in the reproductive system and modulation of receptor sensitivity.


Asunto(s)
Hipotálamo/metabolismo , Complejos Multiproteicos/genética , Receptores de Estrógenos/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Kisspeptina-1/genética , Animales , Hormonas/biosíntesis , Hormonas/genética , Humanos , Complejos Multiproteicos/ultraestructura , Unión Proteica/genética , Receptores de Superficie Celular/genética , Receptores de Estrógenos/ultraestructura , Receptores Acoplados a Proteínas G/ultraestructura , Receptores de Kisspeptina-1/ultraestructura , Transducción de Señal/genética
20.
Nature ; 589(7843): 620-626, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33408414

RESUMEN

Adhesion G-protein-coupled receptors (GPCRs) are a major family of GPCRs, but limited knowledge of their ligand regulation or structure is available1-3. Here we report that glucocorticoid stress hormones activate adhesion G-protein-coupled receptor G3 (ADGRG3; also known as GPR97)4-6, a prototypical adhesion GPCR. The cryo-electron microscopy structures of GPR97-Go complexes bound to the anti-inflammatory drug beclomethasone or the steroid hormone cortisol revealed that glucocorticoids bind to a pocket within the transmembrane domain. The steroidal core of glucocorticoids is packed against the 'toggle switch' residue W6.53, which senses the binding of a ligand and induces activation of the receptor. Active GPR97 uses a quaternary core and HLY motif to fasten the seven-transmembrane bundle and to mediate G protein coupling. The cytoplasmic side of GPR97 has an open cavity, where all three intracellular loops interact with the Go protein, contributing to the high basal activity of GRP97. Palmitoylation at the cytosolic tail of the Go protein was found to be essential for efficient engagement with GPR97 but is not observed in other solved GPCR complex structures. Our work provides a structural basis for ligand binding to the seven-transmembrane domain of an adhesion GPCR and subsequent G protein coupling.


Asunto(s)
Microscopía por Crioelectrón , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Glucocorticoides/química , Glucocorticoides/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/ultraestructura , Sitios de Unión , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/ultraestructura , Humanos , Ligandos , Lipoilación , Modelos Moleculares , Unión Proteica , Receptores Acoplados a Proteínas G/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...