Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.886
Filtrar
1.
Biomaterials ; 312: 122731, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39153324

RESUMEN

Tumor-associated inflammation drives cancer progression and therapy resistance, often linked to the infiltration of monocyte-derived tumor-associated macrophages (TAMs), which are associated with poor prognosis in various cancers. To advance immunotherapies, testing on immunocompetent pre-clinical models of human tissue is crucial. We have developed an in vitro model of microvascular networks with tumor spheroids or patient tissues to assess monocyte trafficking into tumors and evaluate immunotherapies targeting the human tumor microenvironment. Our findings demonstrate that macrophages in vascularized breast and lung tumor models can enhance monocyte recruitment via CCL7 and CCL2, mediated by CSF-1R. Additionally, a multispecific antibody targeting CSF-1R, CCR2, and neutralizing TGF-ß (CSF1R/CCR2/TGF-ß Ab) repolarizes TAMs towards an anti-tumoral M1-like phenotype, reduces monocyte chemoattractant protein secretion, and blocks monocyte migration. This antibody also inhibits monocyte recruitment in patient-specific vascularized tumor models. In summary, this vascularized tumor model recapitulates the monocyte recruitment cascade, enabling functional testing of innovative therapeutic antibodies targeting TAMs in the tumor microenvironment.


Asunto(s)
Monocitos , Receptor de Factor Estimulante de Colonias de Macrófagos , Receptores CCR2 , Microambiente Tumoral , Humanos , Receptores CCR2/metabolismo , Receptores CCR2/antagonistas & inhibidores , Monocitos/metabolismo , Monocitos/inmunología , Receptor de Factor Estimulante de Colonias de Macrófagos/antagonistas & inhibidores , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Microambiente Tumoral/inmunología , Animales , Línea Celular Tumoral , Femenino , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Ratones , Movimiento Celular/efectos de los fármacos , Neoplasias/inmunología , Neoplasias/patología
2.
Sci Adv ; 10(38): eadq1476, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39292787

RESUMEN

Cross-talk between hematopoietic stem and progenitor cells (HSPCs) and bone marrow (BM) cells is critical for homing and sustained engraftment after transplantation. In particular, molecular and physical adaptation of sinusoidal endothelial cells (ECs) promote HSPC BM occupancy; however, signals that govern these events are not well understood. Extracellular vesicles (EVs) are mediators of cell-cell communication crucial in shaping tissue microenvironments. Here, we demonstrate that integrin α4ß7 on murine HSPC EVs targets uptake into ECs. In BM ECs, HSPC EVs induce up-regulation of C-C motif chemokine receptor 2 (CCR2) ligands that synergize with CXCL12-CXCR4 signaling to promote BM homing. In nonirradiated murine models, marrow preconditioning with HSPC EVs or recombinant CCR2 ligands improves homing and early graft occupancy after transplantation. These findings identify a role for HSPC EVs in remodeling ECs, newly define CCR2-dependent graft homing, and inform novel translational conditioning strategies to improve HSPC transplantation.


Asunto(s)
Médula Ósea , Vesículas Extracelulares , Células Madre Hematopoyéticas , Receptores CCR2 , Animales , Ratones , Médula Ósea/metabolismo , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/citología , Movimiento Celular , Quimiocina CXCL12/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/citología , Vesículas Extracelulares/metabolismo , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Ratones Endogámicos C57BL , Receptores CCR2/metabolismo , Receptores CXCR4/metabolismo , Transducción de Señal , Humanos
3.
J Mol Neurosci ; 74(3): 86, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264476

RESUMEN

Chemokine ligands and their receptors have acquired less attention than pro- and anti-inflammatory cytokines in schizophrenia (SCZ). Thus, we aimed to examine the impact of functional polymorphisms of the chemokine genes CXCL10, CXCL16, CXCR4, and CCR2 in the development of SCZ. Using PCR-RFLP, we analyzed the selected polymorphisms in a Tunisian cohort composed of 200 patients with SCZ and 200 healthy controls. Our preliminary data suggest that the minor allele A of CXCL10 rs4256246 is significantly associated with likelihood of SCZ (PAdjusted = 0.00002) and more precisely to paranoid patients with late-onset SCZ (PAdjusted = 0.0007). However, the mutated allele T of CXCR4 rs2228014 showed a significant protective impact against SCZ (PAdjusted = 0.000007) and especially to male sex (PAdjusted = 0.000003). This effect persists among the undifferentiated patients with early-onset SCZ (PAdjusted = 0.002). Following the stratified analyses, CCR2 rs1799864 and CXCL16 rs2277680 were significantly correlated with the clinical symptoms among disorganized patients. As regards haplotype analysis, we noted that GATG haplotype was associated with protection against SCZ (PAdjusted = 0.0087) but the AGCG haplotype was correlated with susceptibility to this disease (PAdjusted = 0.014). Our preliminary results suggested that CXCL10 rs4256246 enhanced susceptibility to SCZ, while CXCR4 rs2228014 seemed to be protective factor. Furthermore, we identified a substantial correlation between CCR2 rs1799864 and CXCL16 rs2277680 with the clinical signs of the disorder. To validate these results and clarify the functional significance of the targeted polymorphisms in SCZ, more independent research is needed.


Asunto(s)
Quimiocina CXCL10 , Quimiocina CXCL16 , Polimorfismo de Nucleótido Simple , Receptores CCR2 , Receptores CXCR4 , Esquizofrenia , Humanos , Masculino , Esquizofrenia/genética , Femenino , Receptores CXCR4/genética , Receptores CCR2/genética , Adulto , Quimiocina CXCL16/genética , Quimiocina CXCL10/genética , Persona de Mediana Edad , Estudios de Casos y Controles
4.
Immunohorizons ; 8(9): 688-694, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39264736

RESUMEN

Chronic suppurative otitis media (CSOM) is a neglected disease that afflicts 330 million people worldwide and is the most common cause of permanent hearing loss among children in the developing world. Previously, we discovered that outer hair cell (OHC) loss occurred in the basal turn of the cochlea and that macrophages are the major immune cells associated with OHC loss in CSOM. Macrophage-associated cytokines are upregulated. Specifically, CCL-2, an important member of the MCP family, is elevated over time following middle ear infection. CCR2 is a common receptor of the MCP family and the unique receptor of CCL2. CCR2 knockout mice (CCR2-/-) have been used extensively in studies of monocyte activation in neurodegenerative diseases. In the present study, we investigated the effect of CCR2 deletion on the cochlear immune response and OHC survival in CSOM. The OHC survival rate was 84 ± 12.5% in the basal turn of CCR2+/+ CSOM cochleae, compared with was 63 ± 19.9% in the basal turn of CCR2-/- CSOM cochleae (p ≤ 0.05). Macrophage numbers were significantly reduced in CCR2-/- CSOM cochleae compared with CCR2+/+ CSOM cochleae (p ≤ 0.001). In addition, CCL7 was upregulated, whereas IL-33 was downregulated, in CCR2-/- CSOM cochleae. Finally, the permeability of the blood-labyrinth barrier in the stria vascularis remained unchanged in CCR2-/- CSOM compared with CCR2+/+ CSOM. Taken together, the data suggest that CCR2 plays a protective role through cochlear macrophages in the CSOM cochlea.


Asunto(s)
Células Ciliadas Auditivas Externas , Otitis Media Supurativa , Receptores CCR2 , Animales , Femenino , Masculino , Ratones , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Enfermedad Crónica , Cóclea/metabolismo , Cóclea/patología , Cóclea/inmunología , Modelos Animales de Enfermedad , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Otitis Media Supurativa/inmunología , Receptores CCR2/metabolismo , Receptores CCR2/genética
5.
Cell Rep Methods ; 4(9): 100846, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39241776

RESUMEN

Monocytes are critical to innate immunity, participating in chemotaxis during tissue injury, infection, and inflammatory conditions. However, the migration dynamics of human monocytes under different guidance cues are not well characterized. Here, we developed a microfluidic device to profile the migration characteristics of human monocytes under chemotactic and barotactic guidance cues while also assessing the effects of age and cytokine stimulation. Human monocytes preferentially migrated toward the CCL2 gradient through confined microchannels, regardless of donor age and migration pathway. Stimulation with interferon (IFN)-γ, but not granulocyte-macrophage colony-stimulating factor (GM-CSF), disrupted monocyte navigation through complex paths and decreased monocyte CCL2 chemotaxis, velocity, and CCR2 expression. Additionally, monocytes exhibited a bias toward low-hydraulic-resistance pathways in asymmetric environments, which remained consistent across donor ages, cytokine stimulation, and chemoattractants. This microfluidic system provides insights into the unique migratory behaviors of human monocytes and is a valuable tool for studying peripheral immune cell migration in health and disease.


Asunto(s)
Movimiento Celular , Quimiotaxis , Monocitos , Humanos , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Quimiotaxis/efectos de los fármacos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Quimiocina CCL2/metabolismo , Interferón gamma/farmacología , Interferón gamma/metabolismo , Receptores CCR2/metabolismo , Adulto
6.
NPJ Biofilms Microbiomes ; 10(1): 79, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227647

RESUMEN

Alcohol use is an independent risk factor for the development of bacterial pneumonia due, in part, to impaired mucus-facilitated clearance, macrophage phagocytosis, and recruitment of neutrophils. Alcohol consumption is also known to reduce peripheral natural killer (NK) cell numbers and compromise NK cell cytolytic activity, especially NK cells with a mature phenotype. However, the role of innate lymphocytes, such as NK cells during host defense against alcohol-associated bacterial pneumonia is essentially unknown. We have previously shown that indole supplementation mitigates increases in pulmonary bacterial burden and improves pulmonary NK cell recruitment in alcohol-fed mice, which were dependent on aryl hydrocarbon receptor (AhR) signaling. Employing a binge-on-chronic alcohol-feeding model we sought to define the role and interaction of indole and NK cells during pulmonary host defense against alcohol-associated pneumonia. We demonstrate that alcohol dysregulates NK cell effector function and pulmonary recruitment via alterations in two key signaling pathways. We found that alcohol increases transforming growth factor beta (TGF-ß) signaling while suppressing AhR signaling. We further demonstrated that NK cells isolated from alcohol-fed mice have a reduced ability to kill Klebsiella pneumoniae. NK cell migratory capacity to chemokines was also significantly altered by alcohol, as NK cells isolated from alcohol-fed mice exhibited preferential migration in response to CXCR3 chemokines but exhibited reduced migration in response to CCR2, CXCR4, and CX3CR1 chemokines. Together this data suggests that alcohol disrupts NK cell-specific TGF-ß and AhR signaling pathways leading to decreased pulmonary recruitment and cytolytic activity thereby increasing susceptibility to alcohol-associated bacterial pneumonia.


Asunto(s)
Células Asesinas Naturales , Ratones Endogámicos C57BL , Neumonía Bacteriana , Receptores de Hidrocarburo de Aril , Transducción de Señal , Animales , Células Asesinas Naturales/inmunología , Neumonía Bacteriana/inmunología , Neumonía Bacteriana/microbiología , Ratones , Receptores de Hidrocarburo de Aril/metabolismo , Pulmón/inmunología , Pulmón/microbiología , Factor de Crecimiento Transformador beta/metabolismo , Etanol , Receptores CCR2/metabolismo , Receptores CCR2/genética , Modelos Animales de Enfermedad , Indoles/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Masculino , Klebsiella pneumoniae , Receptores CXCR3/metabolismo
7.
Nature ; 633(8028): 174-181, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39198639

RESUMEN

Sterile inflammation after myocardial infarction is classically credited to myeloid cells interacting with dead cell debris in the infarct zone1,2. Here we show that cardiomyocytes are the dominant initiators of a previously undescribed type I interferon response in the infarct borderzone. Using spatial transcriptomics analysis in mice and humans, we find that myocardial infarction induces colonies of interferon-induced cells (IFNICs) expressing interferon-stimulated genes decorating the borderzone, where cardiomyocytes experience mechanical stress, nuclear rupture and escape of chromosomal DNA. Cardiomyocyte-selective deletion of Irf3 abrogated IFNIC colonies, whereas mice lacking Irf3 in fibroblasts, macrophages, neutrophils or endothelial cells, Ccr2-deficient mice or plasmacytoid-dendritic-cell-depleted mice did not. Interferons blunted the protective matricellular programs and contractile function of borderzone fibroblasts, and increased vulnerability to pathological remodelling. In mice that died after myocardial infarction, IFNIC colonies were immediately adjacent to sites of ventricular rupture, while mice lacking IFNICs were protected from rupture and exhibited improved survival3. Together, these results reveal a pathological borderzone niche characterized by a cardiomyocyte-initiated innate immune response. We suggest that selective inhibition of IRF3 activation in non-immune cells could limit ischaemic cardiomyopathy while avoiding broad immunosuppression.


Asunto(s)
Inmunidad Innata , Factor 3 Regulador del Interferón , Interferón Tipo I , Infarto del Miocardio , Miocitos Cardíacos , Animales , Ratones , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/deficiencia , Infarto del Miocardio/inmunología , Infarto del Miocardio/patología , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Humanos , Masculino , Femenino , Fibroblastos/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Receptores CCR2/metabolismo , Receptores CCR2/deficiencia , Receptores CCR2/genética , Ratones Endogámicos C57BL , Células Endoteliales/metabolismo
8.
ACS Chem Biol ; 19(9): 2070-2080, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39186040

RESUMEN

Interest in affinity-based probes (AfBPs) as novel tools to interrogate G protein-coupled receptors (GPCRs) has gained traction in recent years. AfBPs represent an interesting and more versatile alternative to antibodies. In the present study, we report the development and validation of AfBPs that target the intracellular allosteric pocket of CCR2, a GPCR of interest for the development of therapies targeting autoimmune and inflammatory diseases and also cancer. Owing to the two-step labeling process of these CCR2 AfBPs through the incorporation of a click handle, we were successful in applying our most efficient probe in a variety of in vitro experiments and making use of multiple different detection techniques, such as SDS-PAGE and LC/MS-based proteomics. Collectively, this novel probe shows high selectivity, versatility, and applicability. Hence, this is a valuable alternative for CCR2-targeting antibodies and other traditional tool compounds and could aid in target validation and engagement in drug discovery.


Asunto(s)
Receptores CCR2 , Receptores CCR2/metabolismo , Receptores CCR2/química , Humanos , Regulación Alostérica , Sitio Alostérico , Células HEK293 , Marcadores de Afinidad/química , Sondas Moleculares/química
9.
Int J Mol Sci ; 25(16)2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39201670

RESUMEN

CC chemokine receptor 2 (CCR2) has been linked to many inflammatory and immune diseases, making it a relevant drug target. Yet, all CCR2 antagonists developed so far have failed in clinical trials; thus, novel strategies are needed to target this receptor. Targeted protein degradation represents a novel approach to inhibit protein function by hijacking the cellular degradation machinery, such as the proteasome, to degrade the protein of interest. Here, we aimed to determine the amenability of CCR2 to chemically induced degradation by using a CCR2 fusion protein containing a HaloTag7 and HiBiT tag (CCR2-HaloTag-HiBiT). After characterization of the CCR2 construct, we used luminescence-based assays and immunofluorescence to quantify CCR2 levels, as well as a label-free, phenotypic assay to investigate the functional effect of CCR2 degradation. Treatment with HaloPROTAC3, which selectively degrades HaloTag fusion proteins, led to concentration- and time-dependent degradation of CCR2-HaloTag-HiBiT. HaloPROTAC3 induced degradation via the proteasome, as degradation was fully blocked with proteasomal inhibitors. Finally, functional assays showed that degradation of CCR2-HaloTag-HiBiT leads to a reduced functional response after agonist stimulation. Overall, our results indicate that CCR2 is amenable to targeted degradation, paving the way for the future development of CCR2 chemical degraders.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteolisis , Receptores CCR2 , Receptores CCR2/metabolismo , Humanos , Proteolisis/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Células HEK293 , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética
10.
PeerJ ; 12: e17862, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135956

RESUMEN

Background: Chemotactic cytokines play a crucial role in the development of acute myeloid leukemia (AML). Thus, investigating the mechanisms of chemotactic cytokine-related genes (CCRGs) in AML is of paramount importance. Methods: Using the TCGA-AML, GSE114868, and GSE12417 datasets, differential expression analysis identified differentially expressed CCRGs (DE-CCRGs). These genes were screened by overlapping differentially expressed genes (DEGs) between AML and control groups with CCRGs. Subsequently, functional enrichment analysis and the construction of a protein-protein interaction (PPI) network were conducted to explore the functions of the DE-CCRGs. Univariate Cox regression, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses identified relevant prognostic genes and developed a prognostic model. Survival analysis of the prognostic gene was performed, followed by functional similarity analysis, immune analysis, enrichment analysis, and drug prediction analysis. Results: Differential expression analysis revealed 6,743 DEGs, of which 29 DE-CCRGs were selected for this study. Functional enrichment analysis indicated that DE-CCRGs were primarily involved in chemotactic cytokine-related functions and pathways. Six prognostic genes (CXCR3, CXCR2, CXCR6, CCL20, CCL4, and CCR2) were identified and incorporated into the risk model. The model's performance was validated using the GSE12417 dataset. Survival analysis showed significant differences in AML overall survival (OS) between prognostic gene high and low expression groups, indicating that prognostic gene might be significantly associated with patient survival. Additionally, nine different immune cells were identified between the two risk groups. Correlation analysis revealed that CCR2 had the most significant positive correlation with monocytes and the most significant negative correlation with resting mast cells. The tumor immune dysfunction and exclusion score was lower in the high-risk group. Conclusion: CXCR3, CXCR2, CXCR6, CCL20, CCL4, and CCR2 were identified as prognostic genes correlated to AML and the tumor immune microenvironment. These findings offerred novel insights into the prevention and treatment of AML.


Asunto(s)
Leucemia Mieloide Aguda , Mapas de Interacción de Proteínas , Receptores CCR2 , Receptores de Interleucina-8B , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidad , Pronóstico , Receptores de Interleucina-8B/genética , Receptores CCR2/genética , Mapas de Interacción de Proteínas/genética , Quimiocina CCL4/genética , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Femenino , Masculino , Quimiocinas/genética , Perfilación de la Expresión Génica , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Receptores CXCR3
11.
Rev Med Virol ; 34(5): e2578, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39192485

RESUMEN

A wide variety of inflammatory mediators, mainly cytokines and chemokines, are induced during SARS CoV-2 infection. Among these proinflammatory mediators, chemokines tend to play a pivotal role in virus-mediated immunopathology. The C-C chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1 (MCP-1) is a potent proinflammatory cytokine and strong chemoattractant of monocytes, macrophages and CD4+ T cells bearing C-C chemokine receptor type-2 (CCR2). Besides controlling immune cell trafficking, CCL2 is also involved in multiple pathophysiological processes including systemic hyperinflammation associated cytokine release syndrome (CRS), organ fibrosis and blood coagulation. These pathological features are commonly manifested in severe and fatal cases of COVID-19. Given the crucial role of CCL2 in COVID-19 pathogenesis, the CCL2:CCR2 axis may constitute a potential therapeutic target to control virus-induced hyperinflammation and multi-organ dysfunction. Herein we describe recent advances on elucidating the role of CCL2 in COVID-19 pathogenesis, prognosis, and a potential target of anti-inflammatory interventions.


Asunto(s)
COVID-19 , Quimiocina CCL2 , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/virología , COVID-19/patología , Quimiocina CCL2/metabolismo , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Pronóstico , Receptores CCR2/metabolismo , Biomarcadores , Antiinflamatorios/uso terapéutico , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/virología
12.
Front Biosci (Landmark Ed) ; 29(8): 303, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39206918

RESUMEN

BACKGROUND: Rheumatic heart disease (RHD) is an autoimmune disease caused by recurrent infections of Group A streptococcus (GAS), ultimately leading to inflammation and the fibrosis of heart valves. Recent studies have highlighted the crucial role of C-C chemokine receptor type 2-positive (CCR2+) macrophages in autoimmune diseases and tissue fibrosis. However, the specific involvement of CCR2+ macrophages in RHD remains unclear. METHODS: This study established an RHD rat model using inactivated GAS and complete Freund's adjuvant, demonstrating a correlation between CCR2+ macrophages and fibrosis in the mitral valves of these rats. RESULTS: Intraperitoneal injection of the CCR2 antagonist Rs-504393 significantly reduced macrophage infiltration, inflammation, and fibrosis in valve tissues of RHD rats compared to the solvent-treated group . Existing evidence suggests that C-C motif chemokine ligand 2 (CCL2) acts as the primary recruiting factor for CCR2+ cells. To validate this, human monocytic leukemia cells (THP-1) were cultured in vitro to assess the impact of recombinant CCL2 protein on macrophages. CCL2 exhibited pro-inflammatory effects similar to lipopolysaccharide (LPS), promoting M1 polarization in macrophages. Moreover, the combined effect of LPS and CCL2 was more potent than either alone. Knocking down CCR2 expression in THP-1 cells using small interfering RNA suppressed the pro-inflammatory response and M1 polarization induced by CCL2. CONCLUSIONS: The findings from this study indicate that CCR2+ macrophages are pivotal in the valvular remodeling process of RHD. Targeting the CCL2/CCR2 signaling pathway may therefore represent a promising therapeutic strategy to alleviate valve fibrosis in RHD.


Asunto(s)
Inflamación , Macrófagos , Receptores CCR2 , Cardiopatía Reumática , Animales , Humanos , Masculino , Ratas , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Modelos Animales de Enfermedad , Ácido Eicosapentaenoico/análogos & derivados , Fibrosis , Válvulas Cardíacas/patología , Inflamación/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Ratas Endogámicas Lew , Receptores CCR2/metabolismo , Receptores CCR2/genética , Cardiopatía Reumática/inmunología , Cardiopatía Reumática/microbiología , Cardiopatía Reumática/metabolismo , Cardiopatía Reumática/patología , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/metabolismo , Streptococcus pyogenes , Células THP-1
13.
Neuroscience ; 557: 51-55, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39137869

RESUMEN

Subarachnoid hemorrhage due to rupture of intracranial aneurysms has a poor outcome, making this disease being the social problem. Inflammation evoked by the increase in intracranial pressure and the clot in the subarachnoid space after the onset of SAH exacerbates neuronal death and vasospasm, resulting in the poor outcome and severe aftereffects. Here, FROUNT mediates CCR2 and CCR5 signaling as an intracellular molecule binding to these chemoattractant receptors which facilitate the migration of inflammatory cells, such as macrophages, in situ to trigger inflammation there. Animal model of subarachnoid hemorrhage was established in rats through intrathecal injection of autologous blood. The effect of the FROUNT inhibitor, disulfiram, on survival rate, neuronal death in hippocampus or vasospasm was then examined. The intrathecal administration of disulfiram significantly suppressed the infiltration of CD68-positive macrophages and myeloperoxidase-positive neutrophils toward the clot in the cistern in situ. In this condition, disulfiram ameliorated the death of animals after the onset of subarachnoid hemorrhage in rats. In addition, disulfiram suppressed both the two major events after subarachnoid hemorrhage, the neuronal death in hippocampus and vasospasm. The pharmacological inhibition of CCR2 and CCR5 signaling by disulfiram could thus be the therapeutic strategy to improve the outcome of subarachnoid hemorrhage.


Asunto(s)
Disulfiram , Ratas Sprague-Dawley , Hemorragia Subaracnoidea , Animales , Disulfiram/farmacología , Hemorragia Subaracnoidea/tratamiento farmacológico , Hemorragia Subaracnoidea/metabolismo , Masculino , Vasoespasmo Intracraneal/tratamiento farmacológico , Vasoespasmo Intracraneal/metabolismo , Receptores CCR2/metabolismo , Receptores CCR2/antagonistas & inhibidores , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Receptores CCR5/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratas , Pronóstico , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Antígenos de Diferenciación Mielomonocítica/metabolismo
14.
Int J Mol Sci ; 25(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39201480

RESUMEN

Aging is a prominent risk factor for numerous chronic diseases. Understanding the shared mechanisms of aging can aid in pinpointing therapeutic targets for age-related disorders. Chronic inflammation has emerged as a pivotal mediator of aging and a determinant in various age-related chronic conditions. Recent findings indicate that C-C motif chemokine ligand 2 and receptor 2 (CCL2-CCR2) signaling, an important physiological modulator in innate immune response and inflammatory defense, plays a crucial role in aging-related disorders and is increasingly recognized as a promising therapeutic target, highlighting its significance. This review summarizes recent advances in the investigation of CCL2-CCR2 signaling in cardiovascular and neural aging, as well as in various aging-related disorders. It also explores the underlying mechanisms and therapeutic potentials in these contexts. These insights aim to deepen our understanding of aging pathophysiology and the development of aging-related diseases.


Asunto(s)
Envejecimiento , Enfermedades Cardiovasculares , Quimiocina CCL2 , Receptores CCR2 , Humanos , Envejecimiento/metabolismo , Receptores CCR2/metabolismo , Animales , Enfermedades Cardiovasculares/metabolismo , Quimiocina CCL2/metabolismo , Transducción de Señal , Inflamación/metabolismo
15.
Radiat Res ; 202(3): 552-564, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39048109

RESUMEN

Inflammation is a key factor in both influenza and radiation-induced lung pathophysiology. This implies a commonality of response to pulmonary damage from these insults and suggests exacerbated pathology may occur after combined exposure. We therefore tested the hypothesis that past inflammation from viral infection alters the lung microenvironment and lowers tolerance for radiation injury. Mice were inoculated with influenza A virus (IAV) and three weeks later, after virus clearance, mice received total-body irradiation (TBI). Survival as well as systemic and local lung inflammation were assessed, and strategies to mitigate pulmonary injury were investigated. After IAV infection alone, body condition recovered within 3 weeks, however inflammatory pathways remained active for 15 weeks. IAV infection exacerbated subsequent TBI responses, evident by increased lethality, enhanced histologically evident lung injury and an altered lung macrophage phenotype. To mitigate this enhanced sensitivity, captopril [an angiotensin converting enzyme inhibitor (ACEi)] was administered to limit tissue inflammation, or inflammatory monocyte-derived macrophage recruitment was blocked with a C-C chemokine receptor type 2 (CCR2) inhibitor. Both treatments abrogated the changes in circulating immune cells observed 4 weeks after TBI, and attenuated pro-inflammatory phenotypes in lung alveolar macrophages, appearing to shift immune cell dynamics towards recovery. Histologically apparent lung injury was not improved by either treatment. We show that latent lung injury from viral infection exacerbates radiation morbidity and mortality. Although strategies that attenuate proinflammatory immune cell phenotypes can normalize macrophage dynamics, this does not fully mitigate lung injury. Recognizing that past viral infections can enhance lung radiosensitivity is of critical importance for patients receiving TBI, as it could increase the incidence of adverse outcomes.


Asunto(s)
Pulmón , Animales , Ratones , Pulmón/efectos de la radiación , Pulmón/virología , Pulmón/patología , Irradiación Corporal Total , Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/inmunología , Ratones Endogámicos C57BL , Receptores CCR2 , Femenino , Lesión Pulmonar/virología , Lesión Pulmonar/patología , Lesión Pulmonar/etiología , Captopril/farmacología , Captopril/uso terapéutico , Inflamación/virología , Inflamación/patología
16.
J Pathol ; 264(2): 174-185, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39056146

RESUMEN

The CCL2-CCR2 axis is involved in lupus nephritis, however the precise roles in the mechanisms by which different pathological lesions develop after glomerular immune complex deposition remain elusive. Previously, we demonstrated that genetic CCR2 inhibition induced a histological switch from glomerular endocapillary hypercellularity to wire-loop lesions in murine lupus nephritis. This study aimed to clarify the CCL2-CCR2 axis-mediated cellular mechanism in the formation of these different pathological lesions. We injected MRL/lpr mouse-derived monoclonal IgG3 antibody-producing hybridomas, 2B11.3 or B1, into wild-type (WT) mice to selectively induce glomerular endocapillary hypercellularity or wire-loop lesions. The expression of chemokine and chemokine receptors was analyzed using RT-quantitative PCR and/or immunofluorescence. We found 2B11.3 caused glomerular endocapillary hypercellularity in WT mice with glomerular infiltration of larger numbers of CCR2-expressing macrophages and neutrophils phagocyting immune complex, whereas B1 induced wire-loop lesions. In glomerular endocapillary hypercellularity, CCL2 was identified as the ligand involved in the CCR2-positive cell infiltration; it was expressed by glomerular endothelial cells and macrophages. Notably, 2B11.3-induced glomerular endocapillary hypercellularity converted to wire-loop lesions with reduced glomerular macrophage and neutrophil infiltration in CCL2-deficient (Ccl2-/-) mice similarly observed in Ccr2-/- mice. Moreover, this histological conversion was also observed when both glomerular macrophage and neutrophil infiltration were inhibited in anti-Ly6G antibody-treated Ccr5-/- mice but not when only glomerular macrophage infiltration was inhibited in Ccr5-/- mice or when only glomerular neutrophil infiltration was inhibited in anti-Ly6G antibody-treated WT mice. In contrast, B1 injection caused wire-loop lesions in Ccl2-/- and Ccr2-/- mice, as observed in WT mice. Moreover, 2B11.3 induced CCL2 from glomerular endothelial cells to a larger extent than B1 when injected into Ccr2-/- mice. In conclusion, the CCL2-CCR2 axis determines whether glomerular endocapillary hypercellularity or wire-loop lesions develop by regulating glomerular infiltration of phagocytic cells: macrophages and neutrophils. © 2024 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Quimiocina CCL2 , Glomérulos Renales , Nefritis Lúpica , Macrófagos , Receptores CCR2 , Animales , Nefritis Lúpica/patología , Nefritis Lúpica/inmunología , Nefritis Lúpica/metabolismo , Quimiocina CCL2/metabolismo , Receptores CCR2/metabolismo , Receptores CCR2/genética , Glomérulos Renales/patología , Glomérulos Renales/metabolismo , Glomérulos Renales/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Infiltración Neutrófila , Ratones Endogámicos MRL lpr , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/patología , Femenino , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
17.
Dis Model Mech ; 17(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38973385

RESUMEN

Despite advancements in treatment, approximately 25% of patients with breast cancer experience long-term skeletal muscle wasting (SMW), which limits mobility, reduces drug tolerance and adversely impacts survival. By understanding the underlying molecular mechanisms of SMW, we may be able to develop new strategies to alleviate this condition and improve the lives of patients with breast cancer. Chemokines are small soluble factors that regulate homing of immune cells to tissues during inflammation. In breast cancers, overexpression of C-C chemokine ligand 2 (CCL2) correlates with unfavorable prognosis. Elevated levels of CCL2 in peripheral blood indicate possible systemic effects of this chemokine in patients with breast cancer. Here, we investigated the role of CCL2 signaling on SMW in tumor and non-tumor contexts. In vitro, increasing concentrations of CCL2 inhibited myoblast and myotube function through C-C chemokine receptor 2 (CCR2)-dependent mechanisms involving JNK, SMAD3 and AMPK signaling. In healthy mice, delivery of recombinant CCL2 protein promoted SMW in a dose-dependent manner. In vivo knockdown of breast tumor-derived CCL2 partially protected against SMW. Overall, chronic, upregulated CCL2-CCR2 signaling positively regulates SMW, with implications for therapeutic targeting.


Asunto(s)
Neoplasias de la Mama , Quimiocina CCL2 , Músculo Esquelético , Transducción de Señal , Animales , Quimiocina CCL2/metabolismo , Femenino , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Humanos , Receptores CCR2/metabolismo , Ratones , Línea Celular Tumoral , Modelos Animales de Enfermedad , Atrofia Muscular/patología , Atrofia Muscular/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/efectos de los fármacos , Mioblastos/metabolismo , Ratones Endogámicos C57BL
18.
Cell ; 187(17): 4637-4655.e26, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39043180

RESUMEN

The medical burden of stroke extends beyond the brain injury itself and is largely determined by chronic comorbidities that develop secondarily. We hypothesized that these comorbidities might share a common immunological cause, yet chronic effects post-stroke on systemic immunity are underexplored. Here, we identify myeloid innate immune memory as a cause of remote organ dysfunction after stroke. Single-cell sequencing revealed persistent pro-inflammatory changes in monocytes/macrophages in multiple organs up to 3 months after brain injury, notably in the heart, leading to cardiac fibrosis and dysfunction in both mice and stroke patients. IL-1ß was identified as a key driver of epigenetic changes in innate immune memory. These changes could be transplanted to naive mice, inducing cardiac dysfunction. By neutralizing post-stroke IL-1ß or blocking pro-inflammatory monocyte trafficking with a CCR2/5 inhibitor, we prevented post-stroke cardiac dysfunction. Such immune-targeted therapies could potentially prevent various IL-1ß-mediated comorbidities, offering a framework for secondary prevention immunotherapy.


Asunto(s)
Lesiones Encefálicas , Inmunidad Innata , Memoria Inmunológica , Inflamación , Interleucina-1beta , Ratones Endogámicos C57BL , Monocitos , Animales , Ratones , Interleucina-1beta/metabolismo , Lesiones Encefálicas/inmunología , Humanos , Masculino , Monocitos/metabolismo , Monocitos/inmunología , Inflamación/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/inmunología , Cardiopatías/inmunología , Femenino , Receptores CCR2/metabolismo , Fibrosis , Epigénesis Genética , Inmunidad Entrenada
19.
Circ Res ; 135(5): 596-613, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39056179

RESUMEN

BACKGROUND: Macrophages are key players in obesity-associated cardiovascular diseases, which are marked by inflammatory and immune alterations. However, the pathophysiological mechanisms underlying macrophage's role in obesity-induced cardiac inflammation are incompletely understood. Our study aimed to identify the key macrophage population involved in obesity-induced cardiac dysfunction and investigate the molecular mechanism that contributes to the inflammatory response. METHODS: In this study, we used single-cell RNA-sequencing analysis of Cd45+CD11b+F4/80+ cardiac macrophages to explore the heterogeneity of cardiac macrophages. The CCR2+ (C-C chemokine receptor 2) macrophages were specifically removed by a dual recombinase approach, and the macrophage CCR2 was deleted to investigate their functions. We also performed cleavage under target and tagmentation analysis, chromatin immunoprecipitation-polymerase chain reaction, luciferase assay, and macrophage-specific lentivirus transfection to define the impact of lysozyme C in macrophages on obesity-induced inflammation. RESULTS: We find that the Ccr2 cluster undergoes a functional transition from homeostatic maintenance to proinflammation. Our data highlight specific changes in macrophage behavior during cardiac dysfunction under metabolic challenge. Consistently, inducible ablation of CCR2+CX3CR1+ macrophages or selective deletion of macrophage CCR2 prevents obesity-induced cardiac dysfunction. At the mechanistic level, we demonstrate that the obesity-induced functional shift of CCR2-expressing macrophages is mediated by the CCR2/activating transcription factor 3/lysozyme 1/NF-κB (nuclear factor kappa B) signaling. Finally, we uncover a noncanonical role for lysozyme 1 as a transcription activator, binding to the RelA promoter, driving NF-κB signaling, and strongly promoting inflammation and cardiac dysfunction in obesity. CONCLUSIONS: Our findings suggest that lysozyme 1 may represent a potential target for the diagnosis of obesity-induced inflammation and the treatment of obesity-induced heart disease.


Asunto(s)
Macrófagos , Muramidasa , Obesidad , Receptores CCR2 , Animales , Obesidad/complicaciones , Obesidad/metabolismo , Macrófagos/metabolismo , Receptores CCR2/metabolismo , Receptores CCR2/genética , Ratones , Muramidasa/metabolismo , Muramidasa/genética , Ratones Endogámicos C57BL , Masculino , Ratones Noqueados , Transducción de Señal , Inflamación/metabolismo , Inflamación/genética , Cardiopatías/etiología , Cardiopatías/metabolismo , Cardiopatías/genética
20.
Cell Commun Signal ; 22(1): 364, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39014433

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) remains a leading cause of morbidity and mortality worldwide, characterized by persistent respiratory symptoms and airflow limitation. The involvement of C-C motif chemokine ligand 2 (CCL2) in COPD pathogenesis, particularly in macrophage regulation and activation, is poorly understood despite its recognized role in chronic inflammation. Our study aims to elucidate the regulatory role and molecular mechanisms of CCL2 in the pathogenesis of COPD, providing new insights for therapeutic strategies. METHODS: This study focused on the CCL2-CCR2 signaling pathway, exploring its role in COPD pathogenesis using both Ccl2 knockout (KO) mice and pharmacological inhibitors. To dissect the underlying mechanisms, we employed various in vitro and in vivo methods to analyze the secretion patterns and pathogenic effects of CCL2 and its downstream molecular signaling through the CCL2-CCR2 axis. RESULTS: Elevated Ccl2 expression was confirmed in the lungs of COPD mice and was associated with enhanced recruitment and activation of macrophages. Deletion of Ccl2 in knockout mice, as well as treatment with a Ccr2 inhibitor, resulted in protection against CS- and LPS-induced alveolar injury and airway remodeling. Mechanistically, CCL2 was predominantly secreted by bronchial epithelial cells in a process dependent on STAT1 phosphorylation and acted through the CCR2 receptor on macrophages. This interaction activated the PI3K-AKT signaling pathway, which was pivotal for macrophage activation and the secretion of inflammatory cytokines, further influencing the progression of COPD. CONCLUSIONS: The study highlighted the crucial role of CCL2 in mediating inflammatory responses and remodeling in COPD. It enhanced our understanding of COPD's molecular mechanisms, particularly how CCL2's interaction with the CCR2 activates critical signaling pathways. Targeting the CCL2-CCR2 axis emerged as a promising strategy to alleviate COPD pathology.


Asunto(s)
Quimiocina CCL2 , Macrófagos , Ratones Noqueados , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Enfermedad Pulmonar Obstructiva Crónica , Receptores CCR2 , Transducción de Señal , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Animales , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Receptores CCR2/metabolismo , Receptores CCR2/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Humanos , Ratones Endogámicos C57BL , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...