RESUMEN
PURPOSE: Clinical efficacy of chimeric antigen receptor (CAR) T cells against pediatric osteosarcoma (OS) has been limited. One strategy to improve efficacy may be to drive chemokine-mediated homing of CAR T cells to tumors. We sought to determine the primary chemokines secreted by OS and evaluate the efficacy of B7-H3.CAR T cells expressing the cognate receptors. EXPERIMENTAL DESIGN: We developed a pipeline to identify chemokines secreted by OS by correlating RNA-seq data with chemokine protein detected in media from fresh surgical specimens. We identified CXCR2 and CXCR6 as promising receptors for enhancing CAR T-cell homing against OS. We evaluated the homing kinetics and efficiency of CXCR2- and CXCR6.T cells and homing, cytokine production, and antitumor activity of CXCR2- and CXCR6.B7-H3.CAR T cells in vitro and in vivo. RESULTS: T cells transgenically expressing CXCR2 or CXCR6 exhibited ligand-specific enhanced migration over T cells modified with nonfunctional control receptors. Differential homing kinetics were observed, with CXCR2.T-cell homing quickly and plateauing early, whereas CXCR6.T cells took longer to home but achieved a similar plateau. When expressed in B7-H3.CAR T cells, CXCR2- and CXCR6 modification conferred enhanced homing toward OS in vitro and in vivo. CXCR2- and CXCR6-B7-H3.CAR-treated mice experienced prolonged survival in a metastatic model compared with B7-H3.CAR T-cell-treated mice. CONCLUSIONS: Our patient-based pipeline identified targets for chemokine receptor modification of CAR T cells targeting OS. CXCR2 and CXCR6 expression enhanced the homing and anti-OS activity of B7-H3.CAR T cells. These findings support clinical evaluation of CXCR-modified CAR T cells to improve adoptive cell therapy for patients with OS.
Asunto(s)
Antígenos B7 , Quimiocinas , Inmunoterapia Adoptiva , Osteosarcoma , Receptores CXCR6 , Receptores Quiméricos de Antígenos , Ensayos Antitumor por Modelo de Xenoinjerto , Osteosarcoma/inmunología , Osteosarcoma/terapia , Osteosarcoma/patología , Osteosarcoma/genética , Animales , Humanos , Ratones , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Receptores CXCR6/genética , Receptores CXCR6/metabolismo , Receptores CXCR6/inmunología , Antígenos B7/genética , Antígenos B7/metabolismo , Quimiocinas/metabolismo , Línea Celular Tumoral , Linfocitos T/inmunología , Linfocitos T/metabolismo , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Neoplasias Óseas/inmunología , Neoplasias Óseas/patología , Neoplasias Óseas/terapia , Movimiento CelularRESUMEN
The nasal mucosa is often the initial site of respiratory viral infection, replication, and transmission. Understanding how infection shapes tissue-scale primary and memory responses is critical for designing mucosal therapeutics and vaccines. We generated a single-cell RNA-sequencing atlas of the murine nasal mucosa, sampling three regions during primary influenza infection and rechallenge. Compositional analysis revealed restricted infection to the respiratory mucosa with stepwise changes in immune and epithelial cell subsets and states. We identified and characterized a rare subset of Krt13+ nasal immune-interacting floor epithelial (KNIIFE) cells, which concurrently increased with tissue-resident memory T (TRM)-like cells. Proportionality analysis, cell-cell communication inference, and microscopy underscored the CXCL16-CXCR6 axis between KNIIFE and TRM cells. Secondary influenza challenge induced accelerated and coordinated myeloid and lymphoid responses without epithelial proliferation. Together, this atlas serves as a reference for viral infection in the upper respiratory tract and highlights the efficacy of local coordinated memory responses.
Asunto(s)
Memoria Inmunológica , Células T de Memoria , Mucosa Nasal , Infecciones por Orthomyxoviridae , Animales , Memoria Inmunológica/inmunología , Ratones , Mucosa Nasal/virología , Mucosa Nasal/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Células T de Memoria/inmunología , Células Epiteliales/inmunología , Células Epiteliales/virología , Ratones Endogámicos C57BL , Humanos , Análisis de la Célula Individual , Gripe Humana/inmunología , Gripe Humana/virología , Femenino , Receptores CXCR6/metabolismo , Receptores CXCR6/inmunología , Virus de la Influenza A/inmunología , Virus de la Influenza A/fisiologíaRESUMEN
Group 3 innate lymphoid cells (ILC3s) regulate inflammation and tissue repair at mucosal sites, but whether these functions pertain to other tissues-like the kidneys-remains unclear. Here, we observed that renal fibrosis in humans was associated with increased ILC3s in the kidneys and blood. In mice, we showed that CXCR6+ ILC3s rapidly migrated from the intestinal mucosa and accumulated in the kidney via CXCL16 released from the injured tubules. Within the fibrotic kidney, ILC3s increased the expression of programmed cell death-1 (PD-1) and subsequent IL-17A production to directly activate myofibroblasts and fibrotic niche formation. ILC3 expression of PD-1 inhibited IL-23R endocytosis and consequently amplified the JAK2/STAT3/RORγt/IL-17A pathway that was essential for the pro-fibrogenic effect of ILC3s. Thus, we reveal a hitherto unrecognized migration pathway of ILC3s from the intestine to the kidney and the PD-1-dependent function of ILC3s in promoting renal fibrosis.
Asunto(s)
Movimiento Celular , Fibrosis , Riñón , Linfocitos , Receptor de Muerte Celular Programada 1 , Receptores CXCR6 , Receptores de Interleucina , Transducción de Señal , Animales , Fibrosis/inmunología , Ratones , Receptores CXCR6/metabolismo , Receptores CXCR6/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Transducción de Señal/inmunología , Movimiento Celular/inmunología , Humanos , Riñón/patología , Riñón/inmunología , Riñón/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Receptores de Interleucina/metabolismo , Receptores de Interleucina/inmunología , Ratones Endogámicos C57BL , Enfermedades Renales/inmunología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Inmunidad Innata/inmunología , Ratones Noqueados , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Intestinos/inmunología , Intestinos/patologíaRESUMEN
Genome-wide association studies have recently identified 3p21.31, with lead variant pointing to the CXCR6 gene, as the strongest thus far reported susceptibility risk locus for severe manifestation of COVID-19. In order the determine its role, we measured plasma levels of Chemokine (C-X-C motif) ligand 16 (CXCL16) in the plasma of COVID-19 hospitalized patients. CXCL16 interacts with CXCR6 promoting chemotaxis or cell adhesion. The CXCR6/CXCL16 axis mediates homing of T cells to the lungs in disease and hyper-expression is associated with localised cellular injury. To characterize the CXCR6/CXCL16 axis in the pathogenesis of severe COVID-19, plasma concentrations of CXCL16 collected at baseline from 115 hospitalized COVID-19 patients participating in ODYSSEY COVID-19 clinical trial were assessed together with a set of controls. We report elevated levels of CXCL16 in a cohort of COVID-19 hospitalized patients. Specifically, we report significant elevation of CXCL16 plasma levels in association with severity of COVID-19 (as defined by WHO scale) (P-value < 0.02). Our current study is the largest thus far study reporting CXCL16 levels in COVID-19 hospitalized patients (with whole-genome sequencing data available). The results further support the significant role of the CXCR6/CXCL16 axis in the immunopathogenesis of severe COVID-19 and warrants further studies to understand which patients would benefit most from targeted treatments.
Asunto(s)
COVID-19/sangre , Quimiocina CXCL16/sangre , SARS-CoV-2/metabolismo , Anciano , COVID-19/genética , COVID-19/inmunología , Quimiocina CXCL16/genética , Quimiocina CXCL16/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Gravedad del Paciente , Receptores CXCR6/sangre , Receptores CXCR6/genética , Receptores CXCR6/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunologíaRESUMEN
BACKGROUND: Understanding the host genetic architecture and viral immunity contributes to the development of effective vaccines and therapeutics for controlling the COVID-19 pandemic. Alterations of immune responses in peripheral blood mononuclear cells play a crucial role in the detrimental progression of COVID-19. However, the effects of host genetic factors on immune responses for severe COVID-19 remain largely unknown. METHODS: We constructed a computational framework to characterize the host genetics that influence immune cell subpopulations for severe COVID-19 by integrating GWAS summary statistics (N = 969,689 samples) with four independent scRNA-seq datasets containing healthy controls and patients with mild, moderate, and severe symptom (N = 606,534 cells). We collected 10 predefined gene sets including inflammatory and cytokine genes to calculate cell state score for evaluating the immunological features of individual immune cells. RESULTS: We found that 34 risk genes were significantly associated with severe COVID-19, and the number of highly expressed genes increased with the severity of COVID-19. Three cell subtypes that are CD16+monocytes, megakaryocytes, and memory CD8+T cells were significantly enriched by COVID-19-related genetic association signals. Notably, three causal risk genes of CCR1, CXCR6, and ABO were highly expressed in these three cell types, respectively. CCR1+CD16+monocytes and ABO+ megakaryocytes with significantly up-regulated genes, including S100A12, S100A8, S100A9, and IFITM1, confer higher risk to the dysregulated immune response among severe patients. CXCR6+ memory CD8+ T cells exhibit a notable polyfunctionality including elevation of proliferation, migration, and chemotaxis. Moreover, we observed an increase in cell-cell interactions of both CCR1+ CD16+monocytes and CXCR6+ memory CD8+T cells in severe patients compared to normal controls among both PBMCs and lung tissues. The enhanced interactions of CXCR6+ memory CD8+T cells with epithelial cells facilitate the recruitment of this specific population of T cells to airways, promoting CD8+T cell-mediated immunity against COVID-19 infection. CONCLUSIONS: We uncover a major genetics-modulated immunological shift between mild and severe infection, including an elevated expression of genetics-risk genes, increase in inflammatory cytokines, and of functional immune cell subsets aggravating disease severity, which provides novel insights into parsing the host genetic determinants that influence peripheral immune cells in severe COVID-19.
Asunto(s)
Linfocitos T CD8-positivos/virología , COVID-19/genética , COVID-19/patología , Monocitos/virología , Análisis de la Célula Individual/métodos , COVID-19/inmunología , Biología Computacional/métodos , Proteínas Ligadas a GPI/metabolismo , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Células Progenitoras de Megacariocitos/inmunología , Células Progenitoras de Megacariocitos/virología , Monocitos/metabolismo , Sitios de Carácter Cuantitativo , Receptores CCR1/inmunología , Receptores CCR1/metabolismo , Receptores CXCR6/inmunología , Receptores CXCR6/metabolismo , Receptores de IgG/metabolismo , Análisis de Secuencia de ARN , Índice de Severidad de la EnfermedadRESUMEN
Due to the plasticity of IL-17-producing CD4 T cells (Th17 cells), a long-standing challenge in studying Th17-driven autoimmune is the lack of specific surface marker to identify the pathogenic Th17 cells in vivo. Recently, we discovered that pathogenic CD4 T cells were CXCR6 positive in experimental autoimmune encephalomyelitis (EAE), a commonly used Th17-driven autoimmune model. Herein, we further revealed that peripheral CXCR6+CD4 T cells contain a functionally distinct subpopulation, which is CCR6 positive and enriched for conventional Th17 molecules (IL-23R and RORγt) and cytotoxic signatures. Additionally, spinal cord-infiltrating CD4 T cells were highly cytotoxic by expressing Granzyme(s) along with IFNγ and GM-CSF. Collectively, this study suggested that peripheral CCR6+CXCR6+CD4 T cells were Th17 cells with cytotoxic property in EAE model, and highlighted the cytotoxic granzymes for EAE pathology.
Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Receptores CCR6/inmunología , Receptores CXCR6/inmunología , Células Th17/inmunología , Animales , Encefalomielitis Autoinmune Experimental/patología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Interferón gamma/inmunología , Ratones , Ratones Endogámicos C57BL , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Receptores de Interleucina/inmunología , Células Th17/patologíaRESUMEN
Liver macrophages internalize circulating bloodborne parasites. It remains poorly understood how this process affects the fate of the macrophages and T cell responses in the liver. Here, we report that infection by Trypanosoma brucei induced depletion of macrophages in the liver, leading to the repopulation of CXCL16-secreting intrahepatic macrophages, associated with substantial accumulation of CXCR6+CD4+ T cells in the liver. Interestingly, disruption of CXCR6 signaling did not affect control of the parasitemia, but significantly enhanced the survival of infected mice, associated with reduced inflammation and liver injury. Infected CXCR6 deficient mice displayed a reduced accumulation of CD4+ T cells in the liver; adoptive transfer experiments suggested that the reduction of CD4+ T cells in the liver was attributed to a cell intrinsic property of CXCR6 deficient CD4+ T cells. Importantly, infected CXCR6 deficient mice receiving wild-type CD4+ T cells survived significantly shorter than those receiving CXCR6 deficient CD4+ T cells, demonstrating that CXCR6+CD4+ T cells promote the mortality. We conclude that infection of T. brucei leads to depletion and repopulation of liver macrophages, associated with a substantial influx of CXCR6+CD4+ T cells that mediates mortality.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Hígado/inmunología , Macrófagos/inmunología , Tripanosomiasis Africana/inmunología , Animales , Ratones , Receptores CXCR6/inmunología , Trypanosoma brucei brucei/inmunologíaRESUMEN
BACKGROUND: Increasing infiltration of CD8+ T cells within tumor tissue predicts a better prognosis and is essential for response to checkpoint blocking therapy. Furthermore, current clinical protocols use unfractioned T cell populations as the starting point for transduction of chimeric antigen receptors (CARs)-modified T cells, but the optimal T cell subtype of CAR-modified T cells remains unclear. Thus, accurately identifying a group of cytotoxic T lymphocytes with high antitumor efficacy is imperative. Inspired by the theory of yin and yang, we explored a subset of CD8+ T cell in cancer with the same phenotypic characteristics as highly activated inflammatory T cells in autoimmune diseases. METHODS: Combination of single-cell RNA sequencing, general transcriptome sequencing data and multiparametric cytometric techniques allowed us to map CXCR6 expression on specific cell type and tissue. We applied Cxcr6-/- mice, immune checkpoint therapies and bone marrow chimeras to identify the function of CXCR6+CD8+ T cells. Transgenic Cxcr6-/- OT-I mice were employed to explore the functional role of CXCR6 in antigen-specific antitumor response. RESULTS: We identified that CXCR6 was exclusively expressed on intratumoral CD8+ T cell. CXCR6+CD8+ T cells were more immunocompetent, and chimeras with specific deficiency on CD8+ T cells showed weaker antitumor activity. In addition, Cxcr6-/- mice could not respond to anti-PD-1 treatment effectively. High tumor expression of CXCR6 was not mainly caused by ligand-receptor chemotaxis of CXCL16/CXCR6 but induced by tumor tissue self. Induced CXCR6+CD8+ T cells possessed tumor antigen specificity and could enhance the effect of anti-PD-1 blockade to retard tumor progression. CONCLUSIONS: This study may contribute to the rational design of combined immunotherapy. Alternatively, CXCR6 may be used as a biomarker for effective CD8+ T cell state before adoptive cell therapy, providing a basis for tumor immunotherapy.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inmunoterapia/métodos , Receptores CXCR6/inmunología , Linfocitos T/inmunología , Animales , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/inmunología , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/inmunología , Ratones , Ratones Endogámicos C57BLRESUMEN
Trial data support an absence of an exposure-survival relationship for pembrolizumab. As these relationships remain unexamined in a real-world setting, we determined them in metastatic melanoma prospectively in an observational study. Translational objectives included identifying biomarkers of progressive disease (PD). Checkpoint blockade naïve patients receiving 2 mg/kg Q3W pembrolizumab had pharmacokinetic and clinical outcome data collected. Trough, a valid surrogate for drug exposure, was assessed using ELISA. T-cell exhaustion and chemokine markers were determined using flow cytometry. Geometric means of exposures and biomarkers were tested against objective response groups using one-way ANOVA. The cohort was split by the median into high versus low pembrolizumab exposure groups. Kaplan-Meier progression-free survival (PFS) and overall survival (OS) curves were estimated for high versus low exposure, compared using the log rank test. The high pembrolizumab exposure group (n = 14) experienced substantially longer median OS (not reached vs. 48 months, p = .014), than the low exposure group (n = 14). A similar positive exposure PFS relationship was found (median not reached vs. 48 months, p = .045). The frequency of TIM-3 expression on CD4+ T cells was significantly higher in PD (mean 27.8%) than complete response (CR) (13.38%, p = .01) and partial response (12.4%, p = .05). There was a near doubling of CXCR6 and TIM-3 co-expression on CD4+ T cells in PD (mean 23.3%) versus CR (mean 11.4, p = .003) and partial response (9.8%, p = .0001). We describe positive exposure-PFS and exposure-OS relationships for pembrolizumab in metastatic melanoma. TIM-3, alongside co-expression of CXCR6 and TIM-3 on circulating CD4+ T cells are potential bio markers of treatment failure.
Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Melanoma/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales Humanizados/sangre , Anticuerpos Monoclonales Humanizados/farmacología , Receptor 2 Celular del Virus de la Hepatitis A/inmunología , Humanos , Inhibidores de Puntos de Control Inmunológico/sangre , Inhibidores de Puntos de Control Inmunológico/farmacología , Estimación de Kaplan-Meier , Melanoma/inmunología , Melanoma/mortalidad , Melanoma/patología , Persona de Mediana Edad , Supervivencia sin Progresión , Receptores CXCR6/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunologíaRESUMEN
The coronavirus disease 2019 (COVID-19) is an infectious disease that mainly affects the host respiratory system with ~ 80% asymptomatic or mild cases and ~ 5% severe cases. Recent genome-wide association studies (GWAS) have identified several genetic loci associated with the severe COVID-19 symptoms. Delineating the genetic variants and genes is important for better understanding its biological mechanisms. We implemented integrative approaches, including transcriptome-wide association studies (TWAS), colocalization analysis, and functional element prediction analysis, to interpret the genetic risks using two independent GWAS datasets in lung and immune cells. To understand the context-specific molecular alteration, we further performed deep learning-based single-cell transcriptomic analyses on a bronchoalveolar lavage fluid (BALF) dataset from moderate and severe COVID-19 patients. We discovered and replicated the genetically regulated expression of CXCR6 and CCR9 genes. These two genes have a protective effect on lung, and a risk effect on whole blood, respectively. The colocalization analysis of GWAS and cis-expression quantitative trait loci highlighted the regulatory effect on CXCR6 expression in lung and immune cells. In the lung-resident memory CD8+ T (TRM) cells, we found a 2.24-fold decrease of cell proportion among CD8+ T cells and lower expression of CXCR6 in the severe patients than moderate patients. Pro-inflammatory transcriptional programs were highlighted in the TRM cellular trajectory from moderate to severe patients. CXCR6 from the 3p21.31 locus is associated with severe COVID-19. CXCR6 tends to have a lower expression in lung TRM cells of severe patients, which aligns with the protective effect of CXCR6 from TWAS analysis.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , COVID-19 , Memoria Inmunológica/genética , Pulmón/inmunología , Sitios de Carácter Cuantitativo/inmunología , Receptores CXCR6 , SARS-CoV-2/inmunología , Transcriptoma/inmunología , COVID-19/genética , COVID-19/inmunología , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Pulmón/virología , Masculino , Receptores CCR/genética , Receptores CCR/inmunología , Receptores CXCR6/genética , Receptores CXCR6/inmunología , Factores de Riesgo , Índice de Severidad de la EnfermedadRESUMEN
Distinct T cell infiltration patterns, i.e., immune infiltrated, excluded, and desert, result in different responses to cancer immunotherapies. However, the key determinants and biology underpinning these tumor immune phenotypes remain elusive. Here, we provide a high-resolution dissection of the entire tumor ecosystem through single-cell RNA-sequencing analysis of 15 ovarian tumors. Immune-desert tumors are characterized by unique tumor cell-intrinsic features, including metabolic pathways and low antigen presentation, and an enrichment of monocytes and immature macrophages. Immune-infiltrated and -excluded tumors differ markedly in their T cell composition and fibroblast subsets. Furthermore, our study reveals chemokine receptor-ligand interactions within and across compartments as potential mechanisms mediating immune cell infiltration, exemplified by the tumor cell-T cell cross talk via CXCL16-CXCR6 and stromal-immune cell cross talk via CXCL12/14-CXCR4. Our data highlight potential molecular mechanisms that shape the tumor immune phenotypes and may inform therapeutic strategies to improve clinical benefit from cancer immunotherapies.
Asunto(s)
Biomarcadores de Tumor/genética , Fibroblastos/inmunología , Neoplasias Ováricas/inmunología , Análisis de la Célula Individual/métodos , Células del Estroma/inmunología , Linfocitos T/inmunología , Microambiente Tumoral , Biomarcadores de Tumor/inmunología , Quimiocina CXCL12/genética , Quimiocina CXCL12/inmunología , Quimiocina CXCL16/genética , Quimiocina CXCL16/inmunología , Quimiocinas CXC/genética , Quimiocinas CXC/inmunología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , RNA-Seq , Receptores CXCR4/genética , Receptores CXCR4/inmunología , Receptores CXCR6/genética , Receptores CXCR6/inmunología , Células del Estroma/metabolismo , Células del Estroma/patología , Linfocitos T/metabolismo , Linfocitos T/patologíaRESUMEN
Nonalcoholic steatohepatitis (NASH) is a manifestation of systemic metabolic disease related to obesity, and causes liver disease and cancer1,2. The accumulation of metabolites leads to cell stress and inflammation in the liver3, but mechanistic understandings of liver damage in NASH are incomplete. Here, using a preclinical mouse model that displays key features of human NASH (hereafter, NASH mice), we found an indispensable role for T cells in liver immunopathology. We detected the hepatic accumulation of CD8 T cells with phenotypes that combined tissue residency (CXCR6) with effector (granzyme) and exhaustion (PD1) characteristics. Liver CXCR6+ CD8 T cells were characterized by low activity of the FOXO1 transcription factor, and were abundant in NASH mice and in patients with NASH. Mechanistically, IL-15 induced FOXO1 downregulation and CXCR6 upregulation, which together rendered liver-resident CXCR6+ CD8 T cells susceptible to metabolic stimuli (including acetate and extracellular ATP) and collectively triggered auto-aggression. CXCR6+ CD8 T cells from the livers of NASH mice or of patients with NASH had similar transcriptional signatures, and showed auto-aggressive killing of cells in an MHC-class-I-independent fashion after signalling through P2X7 purinergic receptors. This killing by auto-aggressive CD8 T cells fundamentally differed from that by antigen-specific cells, which mechanistically distinguishes auto-aggressive and protective T cell immunity.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Hígado/inmunología , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/patología , Receptores CXCR6/inmunología , Acetatos/farmacología , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/patología , Muerte Celular/efectos de los fármacos , Muerte Celular/inmunología , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Humanos , Interleucina-15/inmunología , Interleucina-15/farmacología , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
Brain CD8+ CD69+ tissue-resident memory T (TRM ) cells comprise a CD20dim subset, which is proportionally larger in CD103-negative TRM cells. In multiple sclerosis (MS) lesions, CD20dim TRM -cell proportions are increased. CD20-expression is associated with higher levels of CXCR6, Ki-67, and granzyme B, supporting CD20dim TRM cells as a relevant subset in MS.
Asunto(s)
Antígenos CD20/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Sustancia Blanca/inmunología , Sustancia Blanca/patología , Granzimas/inmunología , Humanos , Antígeno Ki-67/inmunología , Receptores CXCR6/inmunologíaRESUMEN
Chimpanzees, humans' closest relatives, are in danger of extinction. Aside from direct human impacts such as hunting and habitat destruction, a key threat is transmissible disease. As humans continue to encroach upon their habitats, which shrink in size and grow in density, the risk of inter-population and cross-species viral transmission increases, a point dramatically made in the reverse with the global HIV/AIDS pandemic. Inhabiting central Africa, the four subspecies of chimpanzees differ in demographic history and geographical range, and are likely differentially adapted to their particular local environments. To quantitatively explore genetic adaptation, we investigated the genic enrichment for SNPs highly differentiated between chimpanzee subspecies. Previous analyses of such patterns in human populations exhibited limited evidence of adaptation. In contrast, chimpanzees show evidence of recent positive selection, with differences among subspecies. Specifically, we observe strong evidence of recent selection in eastern chimpanzees, with highly differentiated SNPs being uniquely enriched in genic sites in a way that is expected under recent adaptation but not under neutral evolution or background selection. These sites are enriched for genes involved in immune responses to pathogens, and for genes inferred to differentiate the immune response to infection by simian immunodeficiency virus (SIV) in natural vs. non-natural host species. Conversely, central chimpanzees exhibit an enrichment of signatures of positive selection only at cytokine receptors, due to selective sweeps in CCR3, CCR9 and CXCR6 -paralogs of CCR5 and CXCR4, the two major receptors utilized by HIV to enter human cells. Thus, our results suggest that positive selection has contributed to the genetic and phenotypic differentiation of chimpanzee subspecies, and that viruses likely play a predominate role in this differentiation, with SIV being a likely selective agent. Interestingly, our results suggest that SIV has elicited distinctive adaptive responses in these two chimpanzee subspecies.
Asunto(s)
Adaptación Fisiológica/genética , Inmunidad Innata/genética , Pan troglodytes/genética , Selección Genética/genética , Adaptación Fisiológica/inmunología , Animales , Demografía , Flujo Genético , Especiación Genética , VIH/genética , VIH/inmunología , VIH/patogenicidad , Humanos , Pan troglodytes/inmunología , Pan troglodytes/virología , Polimorfismo de Nucleótido Simple/genética , Receptores CCR/genética , Receptores CCR3/genética , Receptores CCR5/genética , Receptores CXCR4/genética , Receptores CXCR6/inmunología , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/inmunología , Virus de la Inmunodeficiencia de los Simios/patogenicidadRESUMEN
Recent evidence suggests that the primary progressive form of multiple sclerosis (PP-MS) may present with specific immunological alterations. In this study we focused our attention on CD161, an NK and T cell marker upregulated in relapsing-remitting MS, and investigated its transcript and protein levels in blood cells from PP-MS and healthy individuals. We demonstrated transcriptional downregulation of CD161 in PP-MS and described concomitant mRNA reduction for RORgt, CCR6, CXCR6, KLRK1/NKG2D and many other markers typical of mucosa associated invariant T (MAIT) cells. Targeted multiparametric flow cytometry on fresh blood cells from an independent cohort of case-control subjects confirmed the selective loss of circulating CD8 CD161high T cells, which consist mainly of MAIT cells, and not of CD8 CD161int T cells in PP-MS. These data demonstrate alterations in a specific circulating immune cell subset in MS patients with progressive onset.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Células T Invariantes Asociadas a Mucosa/inmunología , Esclerosis Múltiple Crónica Progresiva/inmunología , Subfamilia B de Receptores Similares a Lectina de Células NK/inmunología , Adulto , Linfocitos T CD8-positivos/metabolismo , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Persona de Mediana Edad , Células T Invariantes Asociadas a Mucosa/metabolismo , Esclerosis Múltiple Crónica Progresiva/sangre , Esclerosis Múltiple Crónica Progresiva/genética , Subfamilia B de Receptores Similares a Lectina de Células NK/genética , Subfamilia B de Receptores Similares a Lectina de Células NK/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Receptores CCR6/genética , Receptores CCR6/inmunología , Receptores CCR6/metabolismo , Receptores CXCR6/genética , Receptores CXCR6/inmunología , Receptores CXCR6/metabolismoRESUMEN
Equine arteritis virus (EAV) has the unique ability to establish long-term persistent infection in the reproductive tract of stallions and be sexually transmitted. Previous studies showed that long-term persistent infection is associated with a specific allele of the CXCL16 gene (CXCL16S) and that persistence is maintained despite the presence of local inflammatory and humoral and mucosal antibody responses. Here, we performed transcriptomic analysis of the ampullae, the primary site of EAV persistence in long-term EAV carrier stallions, to understand the molecular signatures of viral persistence. We demonstrated that the local CD8+ T lymphocyte response is predominantly orchestrated by the transcription factors eomesodermin (EOMES) and nuclear factor of activated T-cells cytoplasmic 2 (NFATC2), which is likely modulated by the upregulation of inhibitory receptors. Most importantly, EAV persistence is associated with an enhanced expression of CXCL16 and CXCR6 by infiltrating lymphocytes, providing evidence of the implication of this chemokine axis in the pathogenesis of persistent EAV infection in the stallion reproductive tract. Furthermore, we have established a link between the CXCL16 genotype and the gene expression profile in the ampullae of the stallion reproductive tract. Specifically, CXCL16 acts as a "hub" gene likely driving a specific transcriptional network. The findings herein are novel and strongly suggest that RNA viruses such as EAV could exploit the CXCL16/CXCR6 axis in order to modulate local inflammatory and immune responses in the male reproductive tract by inducing a dysfunctional CD8+ T lymphocyte response and unique lymphocyte homing in the reproductive tract.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Equartevirus/inmunología , Equartevirus/patogenicidad , Animales , Infecciones por Arterivirus/genética , Infecciones por Arterivirus/inmunología , Infecciones por Arterivirus/veterinaria , Portador Sano/inmunología , Portador Sano/veterinaria , Portador Sano/virología , Quimiocina CXCL16/genética , Quimiocina CXCL16/inmunología , Perfilación de la Expresión Génica , Genitales Masculinos/inmunología , Genitales Masculinos/patología , Genitales Masculinos/virología , Enfermedades de los Caballos/genética , Enfermedades de los Caballos/inmunología , Enfermedades de los Caballos/virología , Caballos , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Masculino , Receptores CXCR6/genética , Receptores CXCR6/inmunología , Receptores Virales/inmunología , Factores de Transcripción/inmunología , Esparcimiento de Virus/genética , Esparcimiento de Virus/inmunologíaRESUMEN
Fatty liver is used for transplantation due to organ shortage, but prone to cause complications like ischemia-reperfusion injury (IRI). NKT cells as a bridge between innate and adaptive immunity were reported to infiltrate the liver at the early phase of IRI induced in normal liver. However, the localization mechanism of NKT cells is not precise, and the role of NKT cells in fatty liver IRI is poorly understood. In present murine IRI model of non-alcoholic fatty liver disease, we demonstrated that although the number reduced in fatty liver, NKT cells still activated and accumulated to fatty liver following IRI, and contributed to IRI by producing inflammatory cytokine IFN-γ. We revealed that NKT cells in fatty liver expressed more CXCR6, a vital chemokine receptor; meanwhile, the ligand CXCL16 mRNA expression level in fatty liver was up-regulated. The up-regulation of the CXCR6/CXCL16 axis in fatty liver happened in IRI, which maybe endow NKT cells more chemotaxis. We further found CXCR6 deficiency reduced the recruitment of NKT cells in a tissue-dependent manner, and impaired the IFN-γ producing capacity of hepatic NKT cells. Serum ALT level and hepatic histology were both improved in CXCR6 deficient mice. The results provide evidence of the pathogenic role of NKT cells in fatty liver IRI, and important localization mechanism involving up-regulated CXCR6/CXCL16. Deficiency of CXCR6 protects the fatty liver from IRI by reducing the recruitment and cytokine production of hepatic NKT cells.
Asunto(s)
Hígado/inmunología , Células T Asesinas Naturales/inmunología , Enfermedad del Hígado Graso no Alcohólico/inmunología , Receptores CXCR6/inmunología , Daño por Reperfusión/inmunología , Animales , Citocinas/inmunología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/patología , Receptores CXCR6/genética , Daño por Reperfusión/patologíaRESUMEN
Tissue-resident Natural Killer (NK) cells vary in phenotype according to tissue origin, but are typically CD56bright, CXCR6+, and CD69+. NK cells appear very early in fetal development, but little is known about when markers of tissue residency appear during gestation and whether the expression of these markers, most notably the chemokine receptor CXCR6, are associated with differences in functional capability. Using multi-parametric flow cytometry, we interrogated fetal liver and spleen NK cells for the expression of a multitude of extracellular markers associated with NK cell maturation, differentiation, and migration. We analyzed total NK cells from fetal liver and spleen and compared them to their adult liver and spleen counterparts, and peripheral blood (PB) NK. We found that fetal NK cells resemble each other and their adult counterparts more than PB NK. Maturity markers including CD16, CD57, and KIR are lower in fetal NK cells than PB, and markers associated with an immature phenotype are higher in fetal liver and spleen NK cells (NKG2A, CD94, and CD27). However, T-bet/EOMES transcription factor profiles are similar amongst fetal and adult liver and spleen NK cells (T-bet-/EOMES+) but differ from PB NK cells (T-bet+EOMES-). Further, donor-matched fetal liver and spleen NK cells share similar patterns of expression for most markers as a function of gestational age. We also performed functional studies including degranulation, cytotoxicity, and antibody-dependent cellular cytotoxicity (ADCC) assays. Fetal liver and spleen NK cells displayed limited cytotoxic effector function in chromium release assays but produced copious amounts of TNFα and IFNγ, and degranulated efficiently in response to stimulation with PMA/ionomycin. Further, CXCR6+ NK cells in fetal liver and spleen produce more cytokines and degranulate more robustly than their CXCR6- counterparts, even though CXCR6+ NK cells in fetal liver and spleen possess an immature phenotype. Major differences between CXCR6- and + NK cell subsets appear to occur later in development, as a distinct CXCR6+ NK cell phenotype is much more clearly defined in PB. In conclusion, fetal liver and spleen NK cells share similar phenotypes, resemble their adult counterparts, and already possess a distinct CXCR6+ NK cell population with discrete functional capabilities.
Asunto(s)
Células Asesinas Naturales/inmunología , Hígado/inmunología , Receptores CXCR6/inmunología , Bazo/inmunología , Antígenos CD/inmunología , Línea Celular Tumoral , Células Cultivadas , Citocinas/inmunología , Citotoxicidad Inmunológica/inmunología , Humanos , Células K562 , Leucocitos Mononucleares/inmunología , Fenotipo , Proteínas de Dominio T Box/inmunologíaRESUMEN
Molecular reprogramming in response to chemotherapeutics leads to poor therapeutic outcomes for prostate cancer (PCa). In this study, we demonstrated that CXCR6-CXCL16 axis promotes DTX resistance and acts as a counter-defense mechanism. After CXCR6 activation, cell death in response to DTX was inhibited, and blocking of CXCR6 potentiated DTX cytotoxicity. Moreover, in response to DTX, PCa cells expressed higher CXCR6, CXCL16, and ADAM-10. Furthermore, ADAM-10-mediated release of CXCL16 hyper-activated CXCR6 signaling in response to DTX. Activation of CXCR6 resulted in increased GSK-3ß, NF-κB, ERK1/2 phosphorylation, and survivin expression, which reduce DTX response. Finally, treatment of PCa cells with anti-CXCR6 monoclonal antibody synergistically or additively induced cell death with â¼1.5-4.5 fold reduction in the effective concentration of DTX. In sum, our data imply that co-targeting of CXCR6 would lead to therapeutic enhancement of DTX, leading to better clinical outcomes for PCa patients.
Asunto(s)
Quimiocina CXCL16/metabolismo , Docetaxel/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Receptores CXCR6/metabolismo , Proteína ADAM10/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Humanos , Masculino , Proteínas de la Membrana/metabolismo , FN-kappa B/metabolismo , Células PC-3 , Neoplasias de la Próstata/patología , Receptores CXCR6/antagonistas & inhibidores , Receptores CXCR6/inmunología , Transducción de SeñalRESUMEN
T-lymphocytes are critical for protection against respiratory infections, such as Mycobacterium tuberculosis and influenza virus, with chemokine receptors playing an important role in directing these cells to the lungs. CXCR6 is expressed by activated T-lymphocytes and its ligand, CXCL16, is constitutively expressed by the bronchial epithelia, suggesting a role in T-lymphocyte recruitment and retention. However, it is unknown whether CXCR6 is required in responses to pulmonary infection, particularly on CD4+ T-lymphocytes. Analysis of CXCR6-reporter mice revealed that in naïve mice, lung leukocyte expression of CXCR6 was largely restricted to a small population of T-lymphocytes, but this population was highly upregulated after either infection. Nevertheless, pulmonary infection of CXCR6-deficient mice with M. tuberculosis or recombinant influenza A virus expressing P25 peptide (rIAV-P25), an I-Ab-restricted epitope from the immunodominant mycobacterial antigen, Ag85B, demonstrated that the receptor was redundant for recruitment of T-lymphocytes to the lungs. Interestingly, CXCR6-deficiency resulted in reduced bacterial burden in the lungs 6 weeks after M. tuberculosis infection, and reduced weight loss after rIAV-P25 infection compared to wild type controls. This was paradoxically associated with a decrease in Th1-cytokine responses in the lung parenchyma. Adoptive transfer of P25-specific CXCR6-deficient T-lymphocytes into WT mice revealed that this functional change in Th1-cytokine production was not due to a T-lymphocyte intrinsic mechanism. Moreover, there was no reduction in the number or function of CD4+ and CD8+ tissue resident memory cells in the lungs of CXCR6-deficient mice. Although CXCR6 was not required for T-lymphocyte recruitment or retention in the lungs, CXCR6 influenced the kinetics of the inflammatory response so that deficiency led to increased host control of M. tuberculosis and influenza virus.