Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Development ; 148(5)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33593820

RESUMEN

Microbial factors influence homeostatic and oncogenic growth in the intestinal epithelium. However, we know little about immediate effects of commensal bacteria on stem cell division programs. In this study, we examined the effects of commensal Lactobacillus species on homeostatic and tumorigenic stem cell proliferation in the female Drosophila intestine. We identified Lactobacillus brevis as a potent stimulator of stem cell divisions. In a wild-type midgut, L.brevis activates growth regulatory pathways that drive stem cell divisions. In a Notch-deficient background, L.brevis-mediated proliferation causes rapid expansion of mutant progenitors, leading to accumulation of large, multi-layered tumors throughout the midgut. Mechanistically, we showed that L.brevis disrupts expression and subcellular distribution of progenitor cell integrins, supporting symmetric divisions that expand intestinal stem cell populations. Collectively, our data emphasize the impact of commensal microbes on division and maintenance of the intestinal progenitor compartment.


Asunto(s)
Adhesión Celular , Proliferación Celular , Drosophila/metabolismo , Intestinos/citología , Levilactobacillus brevis/fisiología , Células Madre/metabolismo , Animales , Animales Modificados Genéticamente/metabolismo , Antibacterianos/farmacología , Diferenciación Celular , Linaje de la Célula , Transformación Celular Neoplásica/efectos de los fármacos , Regulación hacia Abajo , Drosophila/microbiología , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Integrinas/metabolismo , Intestinos/microbiología , Levilactobacillus brevis/efectos de los fármacos , Receptores Notch/deficiencia , Receptores Notch/genética , Células Madre/citología , Células Madre/microbiología
2.
CNS Neurosci Ther ; 27(2): 174-185, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32961023

RESUMEN

INTRODUCTION: Presenilin enhancer2 (Pen-2) is an essential subunit of γ-secretase, which is a key protease responsible for the cleavage of amyloid precursor protein (APP) and Notch. Mutations on Pen-2 cause familial Alzheimer disease (AD). However, it remains unknown whether Pen-2 regulates neuronal survival and neuroinflammation in the adult brain. METHODS: Forebrain neuron-specific Pen-2 conditional knockout (Pen-2 cKO) mice were generated for this study. Pen-2 cKO mice expressing Notch1 intracellular domain (NICD) conditionally in cortical neurons were also generated. RESULTS: Loss of Pen-2 causes astrogliosis followed by age-dependent cortical atrophy and neuronal loss. Loss of Pen-2 results in microgliosis and enhanced inflammatory responses in the cortex. Expression of NICD in Pen-2 cKO cortices ameliorates neither neurodegeneration nor neuroinflammation. CONCLUSIONS: Pen-2 is required for neuronal survival in the adult cerebral cortex. The Notch signaling may not be involved in neurodegeneration caused by loss of Pen-2.


Asunto(s)
Envejecimiento/metabolismo , Secretasas de la Proteína Precursora del Amiloide/deficiencia , Corteza Cerebral/metabolismo , Gliosis/metabolismo , Neuronas/metabolismo , Receptores Notch/deficiencia , Envejecimiento/genética , Envejecimiento/patología , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Atrofia , Corteza Cerebral/patología , Progresión de la Enfermedad , Femenino , Eliminación de Gen , Gliosis/genética , Gliosis/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/patología , Receptores Notch/genética
3.
Nature ; 589(7842): 437-441, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33299176

RESUMEN

The formation of arteries is thought to occur by the induction of a highly conserved arterial genetic programme in a subset of vessels that will later experience an increase in oxygenated blood flow1,2. The initial steps of arterial specification require both the VEGF and Notch signalling pathways3-5. Here, we combine inducible genetic mosaics and transcriptomics to modulate and define the function of these signalling pathways in cell proliferation, arteriovenous differentiation and mobilization. We show that endothelial cells with high levels of VEGF or Notch signalling are intrinsically biased to mobilize and form arteries; however, they are not genetically pre-determined, and can also form veins. Mechanistically, we found that increased levels of VEGF and Notch signalling in pre-arterial capillaries suppresses MYC-dependent metabolic and cell-cycle activities, and promotes the incorporation of endothelial cells into arteries. Mosaic lineage-tracing studies showed that endothelial cells that lack the Notch-RBPJ transcriptional activator complex rarely form arteries; however, these cells regained the ability to form arteries when the function of MYC was suppressed. Thus, the development of arteries does not require the direct induction of a Notch-dependent arterial differentiation programme, but instead depends on the timely suppression of endothelial cell-cycle progression and metabolism, a process that precedes arterial mobilization and complete differentiation.


Asunto(s)
Arterias/citología , Arterias/crecimiento & desarrollo , Proliferación Celular , Células Endoteliales/citología , Endotelio Vascular/citología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Diferenciación Celular/genética , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Masculino , Ratones , Mosaicismo , Mutación , Fenotipo , Proteínas Proto-Oncogénicas c-myc/deficiencia , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores Notch/deficiencia , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal , Factores de Tiempo , Transcripción Genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Venas/citología
4.
J Clin Endocrinol Metab ; 105(9)2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32403133

RESUMEN

CONTEXT: In human, Sonic hedgehog (SHH) haploinsufficiency is the predominant cause of holoprosencephaly, a structural malformation of the forebrain midline characterized by phenotypic heterogeneity and incomplete penetrance. The NOTCH signaling pathway has recently been associated with holoprosencephaly in humans, but the precise mechanism involving NOTCH signaling during early brain development remains unknown. OBJECTIVE: The aim of this study was to evaluate the relationship between SHH and NOTCH signaling to determine the mechanism by which NOTCH dysfunction could cause midline malformations of the forebrain. DESIGN: In this study, we have used a chemical inhibition approach in the chick model and a genetic approach in the mouse model. We also reported results obtained from the clinical diagnosis of a cohort composed of 141 holoprosencephaly patients. RESULTS: We demonstrated that inhibition of NOTCH signaling in chick embryos as well as in mouse embryos induced a specific downregulation of SHH in the anterior hypothalamus. Our data in the mouse also revealed that the pituitary gland was the most sensitive tissue to Shh insufficiency and that haploinsufficiency of the SHH and NOTCH signaling pathways synergized to produce a malformed pituitary gland. Analysis of a large holoprosencephaly cohort revealed that some patients possessed multiple heterozygous mutations in several regulators of both pathways. CONCLUSIONS: These results provided new insights into molecular mechanisms underlying the extreme phenotypic variability observed in human holoprosencephaly. They showed how haploinsufficiency of the SHH and NOTCH activity could contribute to specific congenital hypopituitarism that was associated with a sella turcica defect.


Asunto(s)
Proteínas Hedgehog/genética , Holoprosencefalia/genética , Sistema Hipotálamo-Hipofisario/metabolismo , Receptores Notch/genética , Animales , Células Cultivadas , Embrión de Pollo , Estudios de Cohortes , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Haploinsuficiencia/genética , Proteínas Hedgehog/metabolismo , Holoprosencefalia/metabolismo , Holoprosencefalia/patología , Holoprosencefalia/fisiopatología , Humanos , Sistema Hipotálamo-Hipofisario/patología , Masculino , Ratones , Ratones Transgénicos , Embarazo , Receptores Notch/deficiencia , Estudios Retrospectivos , Transducción de Señal/genética
5.
Biochem Biophys Res Commun ; 515(4): 538-543, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31176486

RESUMEN

Chronic inflammatory responses have profound effects on the differentiation and activity of both the bone-forming osteoblasts and bone-resorbing osteoclasts. Importantly, inflammatory bone diseases characterized by clinical osteolysis promote bone resorption and decrease bone formation by uncoupling the process in favor of excess resorption. Notch signaling regulates osteoclast development and thus its manipulation has the potential to suppress resorptive potential. Here, we have utilized a genetic model of Notch inhibition in osteoclasts by expression of dnMAML to prevent formation of transcriptional complex essential for downstream Notch signaling. Using this model and LPS as a tool for experimental inflammatory osteolysis, we have demonstrated that dnMAML-expressing osteoclasts exhibited significantly lower maturation and resorption/functional potential ex vivo using TRAP staining and calcium phosphate coated surfaces. Moreover, we observed that while LPS stimulated the formation of wildtype osteoclasts pre-treated with RANKL, dnMAML expression produced resistance to osteoclast maturation after LPS stimulation. Genetically, Notch-inhibited animals showed a significantly lower TRAP and CTX-1 levels in serum after LPS treatment compared to the control groups in addition to a marked reduction in osteoclast surfaces in calvaria sections. This report provides evidence for modulation of Notch signaling activity to protect against inflammatory osteolysis. Taken together, the findings of this study will help guide the development of Notch signaling-based therapeutic approaches to prevent bone loss.


Asunto(s)
Lipopolisacáridos/farmacología , Osteoclastos/citología , Osteólisis/prevención & control , Receptores Notch/deficiencia , Transducción de Señal , Animales , Colágeno Tipo I/sangre , Colágeno Tipo I/deficiencia , Femenino , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Péptidos/sangre , Péptidos/deficiencia , Ligando RANK/farmacología , Receptores Notch/biosíntesis , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Fosfatasa Ácida Tartratorresistente/sangre , Fosfatasa Ácida Tartratorresistente/deficiencia , Fosfatasa Ácida Tartratorresistente/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
6.
Stem Cells ; 37(7): 924-936, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30932281

RESUMEN

Notch signaling plays pivotal roles in both hematopoietic stem/progenitor and their niche cells. Myeloproliferative phenotypes are induced by disruption of Notch signaling in nonhematopoietic bone marrow (BM) cells. Nestin-expressing cells in the BM reportedly represent a component of the hematopoietic stem cell niche. We established mice in which rare Nestin-expressing cells in the BM were marked by green fluorescent protein, and Notch signaling was conditionally disrupted in these cells specifically. We observed impairment of erythropoiesis in the BM accompanying splenomegaly with BM hematopoietic programs in other lineages undisturbed. Transplantation experiments revealed that the microenvironmental rather than the hematopoietic cells were attributable to these phenotypes. We further found that the erythroid-island-forming ability of BM central macrophages was compromised along with the transcriptional upregulation of interleukin-6. Various Inflammatory conditions hamper BM erythropoiesis, which often accompanies extramedullary hematopoiesis. The mouse model demonstrated here may be of relevance to this common pathophysiologic condition. Stem Cells 2019;37:924-936.


Asunto(s)
Células de la Médula Ósea/metabolismo , Eritropoyesis/genética , Macrófagos/metabolismo , Nestina/genética , Receptores Notch/genética , Esplenomegalia/genética , Animales , Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Linaje de la Célula/genética , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Nestina/metabolismo , Receptores Notch/deficiencia , Transducción de Señal , Esplenomegalia/metabolismo , Esplenomegalia/patología , Nicho de Células Madre/genética
7.
Biochem Biophys Res Commun ; 503(2): 803-808, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-29913146

RESUMEN

Glycolysis, the classic pathway for producing energy, has been known to be involved in neural development. Notch signaling also contributes to neural development and regulation of glycolysis in various tissues. However, the role of Notch signaling in glycolysis-related gene regulation during neural development is poorly understood. Here, we analyzed mRNA expression patterns and levels of glucose transporters (GLUT) as well as rate-limiting enzymes in glycolysis using zebrafish mib1ta52b mutants, in which Notch signaling was deficient at the early embryonic and larval stages. Our results indicated that in neural tissues, Notch signaling positively regulates glut1a and glut3a expression and negatively regulates hk2 expression at the larval stage but may not regulate them during early embryonic stages. Therefore, these results suggest that Notch signaling regulates glycolysis-related gene expression in a context-dependent manner in neural tissues at different developmental stages.


Asunto(s)
Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Glucólisis/genética , Receptores Notch/genética , Transducción de Señal/genética , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Perfilación de la Expresión Génica , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 3/genética , Transportador de Glucosa de Tipo 3/metabolismo , Mutación , Neurogénesis/genética , Receptores Notch/deficiencia , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
8.
Dev Biol ; 435(2): 162-169, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29371032

RESUMEN

DSL ligands activate the Notch receptor in many cellular contexts across metazoa to specify cell fate. In addition, Notch receptor activity is implicated in post-mitotic morphogenesis and neuronal function. In C. elegans, the DSL family ligand APX-1 is expressed in a subset of cells of the proximal gonad lineage, where it can act as a latent proliferation-promoting signal to maintain proximal germline tumors. Here we examine apx-1 in the proximal gonad and uncover a role in the maintenance of normal ovulation. Depletion of apx-1 causes an endomitotic oocyte (Emo) phenotype and ovulation defects. We find that lag-2 can substitute for apx-1 in this role, that the ovulation defect is partially suppressed by loss of ipp-5, and that lin-12 depletion causes a similar phenotype. In addition, we find that the ovulation defects are often accompanied by a delay of spermathecal distal neck closure after oocyte entry. Although calcium oscillations occur in the spermatheca, calcium signals are abnormal when the distal neck does not close completely. Moreover, oocytes sometimes cannot properly transit through the spermatheca, leading to fragmentation of oocytes once the neck closes. Finally, abnormal oocytes and neck closure defects are seen occasionally when apx-1 or lin-12 activity is reduced in adult animals, suggesting a possible post-developmental role for APX-1 and LIN-12 signaling in ovulation.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/genética , Endorreduplicación/genética , Organismos Hermafroditas/genética , Ovulación/genética , Canales de Sodio/fisiología , Estructuras Animales/anomalías , Estructuras Animales/fisiología , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Señalización del Calcio , Organismos Hermafroditas/fisiología , Proteínas de la Membrana/fisiología , Mitosis , Oocitos , Ovulación/fisiología , Fenotipo , Receptores Notch/deficiencia , Receptores Notch/fisiología , Canales de Sodio/deficiencia , Canales de Sodio/genética
9.
J Immunol ; 199(2): 643-655, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28615417

RESUMEN

Cryptococcus neoformans is a ubiquitous, opportunistic fungal pathogen but the cell signaling pathways that drive T cell responses regulating antifungal immunity are incompletely understood. Notch is a key signaling pathway regulating T cell development, and differentiation and functional responses of mature T cells in the periphery. The targeting of Notch signaling within T cells has been proposed as a potential treatment for alloimmune and autoimmune disorders, but it is unknown whether disturbances to T cell immunity may render these patients vulnerable to fungal infections. To elucidate the role of Notch signaling during fungal infections, we infected mice expressing the pan-Notch inhibitor dominant negative mastermind-like within mature T cells with C. neoformans Inhibition of T cell-restricted Notch signaling increased fungal burdens in the lungs and CNS, diminished pulmonary leukocyte recruitment, and simultaneously impaired Th1 and Th2 responses. Pulmonary leukocyte cultures from T cell Notch-deprived mice produced less IFN-γ, IL-5, and IL-13 than wild-type cells. This correlated with lower frequencies of IFN-γ-, IL-5-, and IL-13-producing CD4+ T cells, reduced expression of Th1 and Th2 associated transcription factors, Tbet and GATA3, and reduced production of IFN-γ by CD8+ T cells. In contrast, Th17 responses were largely unaffected by Notch signaling. The changes in T cell responses corresponded with impaired macrophage activation and reduced leukocyte accumulation, leading to diminished fungal control. These results identify Notch signaling as a previously unappreciated regulator of Th1 and Th2 immunity and an important element of antifungal defenses against cryptococcal infection and CNS dissemination.


Asunto(s)
Criptococosis/inmunología , Cryptococcus neoformans/inmunología , Receptores Notch/metabolismo , Animales , Antígenos Fúngicos/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Sistema Nervioso Central/parasitología , Criptococosis/microbiología , Factor de Transcripción GATA3/metabolismo , Interferón gamma/biosíntesis , Interferón gamma/inmunología , Interleucina-13/biosíntesis , Interleucina-13/inmunología , Interleucina-5/biosíntesis , Interleucina-5/inmunología , Pulmón/parasitología , Activación de Macrófagos , Ratones , Receptores Notch/deficiencia , Transducción de Señal , Células TH1/inmunología , Células Th17/inmunología , Células Th2/inmunología
10.
Nature ; 545(7654): 360-364, 2017 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-28489825

RESUMEN

The Notch signalling pathway mediates cell fate decisions and is tumour suppressive or oncogenic depending on the context. During lung development, Notch pathway activation inhibits the differentiation of precursor cells to a neuroendocrine fate. In small-cell lung cancer, an aggressive neuroendocrine lung cancer, loss-of-function mutations in NOTCH genes and the inhibitory effects of ectopic Notch activation indicate that Notch signalling is tumour suppressive. Here we show that Notch signalling can be both tumour suppressive and pro-tumorigenic in small-cell lung cancer. Endogenous activation of the Notch pathway results in a neuroendocrine to non-neuroendocrine fate switch in 10-50% of tumour cells in a mouse model of small-cell lung cancer and in human tumours. This switch is mediated in part by Rest (also known as Nrsf), a transcriptional repressor that inhibits neuroendocrine gene expression. Non-neuroendocrine Notch-active small-cell lung cancer cells are slow growing, consistent with a tumour-suppressive role for Notch, but these cells are also relatively chemoresistant and provide trophic support to neuroendocrine tumour cells, consistent with a pro-tumorigenic role. Importantly, Notch blockade in combination with chemotherapy suppresses tumour growth and delays relapse in pre-clinical models. Thus, small-cell lung cancer tumours generate their own microenvironment via activation of Notch signalling in a subset of tumour cells, and the presence of these cells may serve as a biomarker for the use of Notch pathway inhibitors in combination with chemotherapy in select patients with small-cell lung cancer.


Asunto(s)
Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Receptores Notch/metabolismo , Transducción de Señal , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología , Microambiente Tumoral , Animales , Diferenciación Celular , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Masculino , Ratones , Recurrencia Local de Neoplasia/prevención & control , Receptores Notch/agonistas , Receptores Notch/antagonistas & inhibidores , Receptores Notch/deficiencia , Proteínas Represoras/metabolismo , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico
11.
Nature ; 544(7649): 245-249, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28379941

RESUMEN

Normal differentiation and induced reprogramming require the activation of target cell programs and silencing of donor cell programs. In reprogramming, the same factors are often used to reprogram many different donor cell types. As most developmental repressors, such as RE1-silencing transcription factor (REST) and Groucho (also known as TLE), are considered lineage-specific repressors, it remains unclear how identical combinations of transcription factors can silence so many different donor programs. Distinct lineage repressors would have to be induced in different donor cell types. Here, by studying the reprogramming of mouse fibroblasts to neurons, we found that the pan neuron-specific transcription factor Myt1-like (Myt1l) exerts its pro-neuronal function by direct repression of many different somatic lineage programs except the neuronal program. The repressive function of Myt1l is mediated via recruitment of a complex containing Sin3b by binding to a previously uncharacterized N-terminal domain. In agreement with its repressive function, the genomic binding sites of Myt1l are similar in neurons and fibroblasts and are preferentially in an open chromatin configuration. The Notch signalling pathway is repressed by Myt1l through silencing of several members, including Hes1. Acute knockdown of Myt1l in the developing mouse brain mimicked a Notch gain-of-function phenotype, suggesting that Myt1l allows newborn neurons to escape Notch activation during normal development. Depletion of Myt1l in primary postmitotic neurons de-repressed non-neuronal programs and impaired neuronal gene expression and function, indicating that many somatic lineage programs are actively and persistently repressed by Myt1l to maintain neuronal identity. It is now tempting to speculate that similar 'many-but-one' lineage repressors exist for other cell fates; such repressors, in combination with lineage-specific activators, would be prime candidates for use in reprogramming additional cell types.


Asunto(s)
Linaje de la Célula/genética , Reprogramación Celular/genética , Silenciador del Gen , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/citología , Encéfalo/embriología , Encéfalo/metabolismo , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Ratones , Proteínas del Tejido Nervioso/deficiencia , Especificidad de Órganos/genética , Dominios Proteicos , Receptores Notch/deficiencia , Proteínas Represoras/química , Proteínas Represoras/deficiencia , Transducción de Señal , Factor de Transcripción HES-1/deficiencia , Factores de Transcripción/deficiencia
12.
Circ Res ; 119(4): 519-31, 2016 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-27354212

RESUMEN

RATIONALE: Endothelial Notch signaling is critical for early vascular development and survival. Yet, previously described mice lacking endothelial a disintegrin and metalloproteinase 10 (ADAM10), a key regulator of Notch signaling, survived into adulthood with organ-specific vascular defects. These findings raised questions about whether these vascular defects were related to Notch signaling or other functions of ADAM10. OBJECTIVE: The aims of the study are to determine whether compensatory or redundant functions of ADAM17 in Notch signaling can explain the survival of Adam10ΔEC mice, explore the contribution of different Tie2-Cre transgenes to the differences in survival, and establish whether the Adam10ΔEC vascular phenotypes can be recapitulated by inactivation of Notch receptors in endothelial cells. METHODS AND RESULTS: Mice lacking ADAM10 and ADAM17 in endothelial cells (Adam10/Adam17ΔEC), which survived postnatally with organ-specific vascular defects, resembled Adam10ΔEC mice. In contrast, Adam10ΔEC mice generated with the Tie2Cre transgene previously used to inactivate endothelial Notch (Adam10ΔEC(Flv)) died by E10.5. Quantitative polymerase chain reaction analysis demonstrated that Cre-mediated recombination occurs earlier in Adam10ΔEC(Flv) mice than in the previously described Adam10ΔEC mice. Finally, mice lacking endothelial Notch1 (Notch1ΔEC) share some organ-specific vascular defects with Adam10ΔEC mice, whereas Notch4(-/-) mice lacking endothelial Notch1 (Notch1ΔEC/Notch4(-/-)) had defects in all vascular beds affected in Adam10ΔEC mice. CONCLUSIONS: Our results argue against a major role for ADAM17 in endothelial Notch signaling and clarify the difference in phenotypes of previously described mice lacking ADAM10 or Notch in endothelial cells. Most notably, these findings uncover new roles for Notch signaling in the development of organ-specific vascular beds.


Asunto(s)
Proteína ADAM10/fisiología , Secretasas de la Proteína Precursora del Amiloide/fisiología , Circulación Sanguínea/fisiología , Proteínas de la Membrana/fisiología , Proteínas Proto-Oncogénicas/fisiología , Receptor Notch1/fisiología , Receptores Notch/fisiología , Flujo Sanguíneo Regional/fisiología , Transducción de Señal/fisiología , Proteína ADAM10/deficiencia , Secretasas de la Proteína Precursora del Amiloide/deficiencia , Animales , Células Endoteliales/fisiología , Femenino , Proteínas de la Membrana/deficiencia , Ratones , Ratones Noqueados , Ratones Transgénicos , Embarazo , Proteínas Proto-Oncogénicas/deficiencia , Receptor Notch1/deficiencia , Receptor Notch4 , Receptores Notch/deficiencia
13.
Cancer Sci ; 107(8): 1079-91, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27234159

RESUMEN

Sphere formation in conditioned serum-free culture medium supplemented with epidermal growth factor and basic fibroblast growth factor (tumorospheres) is considered useful for the enrichment of cancer stem-like cells, also known as tumor-initiating cells. We used a gene expression microarray to investigate the gene expression profile of melanoma cancer stem-like cells (MCSLCs). The results showed that MCSLCs highly expressed the following Notch signaling pathway molecules: Notch3 (NM_008716), Notch4 (NM_010929), Dtx4 (NM_172442), and JAG2 (NM_010588). Immunofluorescence staining showed tumorosphere cells highly expressed Notch4. Notch4(high) B16F10 cells were isolated by FACS, and Western blotting showed that high Notch4 expression is related to the expression of epithelial-mesenchymal transition (EMT)-associated proteins. Reduced invasive and migratory properties concomitant with the downregulation of the EMT markers Twist1, vimentin, and VE-cadherin and the overexpression of E-cadherin was observed in human melanoma A375 and MUM-2B cells. In these cells, Notch4 was also downregulated, both by Notch4 gene knockdown and by application of the γ-secretase inhibitor, DAPT. Mechanistically, the re-overexpression of Twist1 by the transfection of cells with a Twist1 expression plasmid led to an increase in VE-cadherin expression and a decrease in E-cadherin expression. Immunohistochemical analysis of 120 human melanoma tissues revealed a significant correlation between the high expression of Notch4 and the metastasis of melanoma. Taken together, our findings indicate that Notch4+ MCSLCs trigger EMT and promote the metastasis of melanoma cells.


Asunto(s)
Melanoma/metabolismo , Melanoma/patología , Invasividad Neoplásica , Metástasis de la Neoplasia , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proteínas Proto-Oncogénicas/metabolismo , Receptores Notch/metabolismo , Cadherinas/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Humanos , Melanoma/genética , Invasividad Neoplásica/genética , Metástasis de la Neoplasia/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Receptor Notch4 , Receptores Notch/deficiencia , Receptores Notch/genética , Proteína 1 Relacionada con Twist/metabolismo
14.
Sci Rep ; 5: 16449, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26563570

RESUMEN

Pericytes regulate vessel stability and pericyte dysfunction contributes to retinopathies, stroke, and cancer. Here we define Notch as a key regulator of pericyte function during angiogenesis. In Notch1(+/-); Notch3(-/-) mice, combined deficiency of Notch1 and Notch3 altered pericyte interaction with the endothelium and reduced pericyte coverage of the retinal vasculature. Notch1 and Notch3 were shown to cooperate to promote proper vascular basement membrane formation and contribute to endothelial cell quiescence. Accordingly, loss of pericyte function due to Notch deficiency exacerbates endothelial cell activation caused by Notch1 haploinsufficiency. Mice mutant for Notch1 and Notch3 develop arteriovenous malformations and display hallmarks of the ischemic stroke disease CADASIL. Thus, Notch deficiency compromises pericyte function and contributes to vascular pathologies.


Asunto(s)
Malformaciones Arteriovenosas/genética , CADASIL/genética , Pericitos/metabolismo , Receptor Notch1/genética , Receptores Notch/genética , Animales , Malformaciones Arteriovenosas/metabolismo , Western Blotting , CADASIL/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Endoteliales/ultraestructura , Expresión Génica , Células HEK293 , Humanos , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Microscopía Electrónica de Transmisión , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Pericitos/patología , Pericitos/ultraestructura , Receptor Notch1/deficiencia , Receptor Notch3 , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores Notch/deficiencia , Vasos Retinianos/metabolismo , Vasos Retinianos/patología , Vasos Retinianos/fisiopatología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
15.
EMBO Mol Med ; 7(6): 848-58, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25870235

RESUMEN

Notch signaling is essential for vascular physiology. Neomorphic heterozygous mutations in NOTCH3, one of the four human NOTCH receptors, cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Hypomorphic heterozygous alleles have been occasionally described in association with a spectrum of cerebrovascular phenotypes overlapping CADASIL, but their pathogenic potential is unclear. We describe a patient with childhood-onset arteriopathy, cavitating leukoencephalopathy with cerebral white matter abnormalities presented as diffuse cavitations, multiple lacunar infarctions and disseminated microbleeds. We identified a novel homozygous c.C2898A (p.C966*) null mutation in NOTCH3 abolishing NOTCH3 expression and causing NOTCH3 signaling impairment. NOTCH3 targets acting in the regulation of arterial tone (KCNA5) or expressed in the vasculature (CDH6) were downregulated. Patient's vessels were characterized by smooth muscle degeneration as in CADASIL, but without deposition of granular osmiophilic material (GOM), the CADASIL hallmark. The heterozygous parents displayed similar but less dramatic trends in decrease in the expression of NOTCH3 and its targets, as well as in vessel degeneration. This study suggests a functional link between NOTCH3 deficiency and pathogenesis of vascular leukoencephalopathies.


Asunto(s)
Alopecia/genética , Alopecia/patología , Infarto Cerebral/genética , Infarto Cerebral/patología , Leucoencefalopatías/genética , Leucoencefalopatías/patología , Receptores Notch/deficiencia , Enfermedades de la Columna Vertebral/genética , Enfermedades de la Columna Vertebral/patología , Adulto , Cadherinas/análisis , Regulación hacia Abajo , Heterocigoto , Histocitoquímica , Humanos , Inmunohistoquímica , Canal de Potasio Kv1.5/análisis , Microscopía Electrónica de Transmisión , Músculo Esquelético/patología , Receptor Notch3 , Piel/patología , Adulto Joven
16.
Development ; 142(1): 41-50, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25480918

RESUMEN

Genetic data indicate that abrogation of Notch-Rbpj or Wnt-ß-catenin pathways results in the loss of the intestinal stem cells (ISCs). However, whether the effect of Notch is direct or due to the aberrant differentiation of the transit-amplifying cells into post-mitotic goblet cells is unknown. To address this issue, we have generated composite tamoxifen-inducible intestine-specific genetic mouse models and analyzed the expression of intestinal differentiation markers. Importantly, we found that activation of ß-catenin partially rescues the differentiation phenotype of Rbpj deletion mutants, but not the loss of the ISC compartment. Moreover, we identified Bmi1, which is expressed in the ISC and progenitor compartments, as a gene that is co-regulated by Notch and ß-catenin. Loss of Bmi1 resulted in reduced proliferation in the ISC compartment accompanied by p16(INK4a) and p19(ARF) (splice variants of Cdkn2a) accumulation, and increased differentiation to the post-mitotic goblet cell lineage that partially mimics Notch loss-of-function defects. Finally, we provide evidence that Bmi1 contributes to ISC self-renewal.


Asunto(s)
Intestinos/patología , Complejo Represivo Polycomb 1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Animales , Compartimento Celular , Proliferación Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p19 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p19 de las Quinasas Dependientes de la Ciclina/metabolismo , Reparación del ADN , Homeostasis , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/deficiencia , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Intestinos/anomalías , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Complejo Represivo Polycomb 1/deficiencia , Complejo Represivo Polycomb 1/genética , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Receptores Notch/deficiencia , Activación Transcripcional/genética , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
17.
Arterioscler Thromb Vasc Biol ; 35(2): 409-20, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25477343

RESUMEN

OBJECTIVE: Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what extent they contribute to the integrity of blood vessels and blood-brain barrier function is less well understood. In this report, we explored the impact of the loss of VSMC in the Notch3(-/-) mouse on blood vessel integrity in the central nervous system. APPROACH AND RESULTS: Notch3(-/-) mice showed focal disruptions of the blood-brain barrier demonstrated by extravasation of tracers accompanied by fibrin deposition in the retinal vasculature. This blood-brain barrier leakage was accompanied by a regionalized and patchy loss of VSMC, with VSMC gaps predominantly in arterial resistance vessels of larger caliber. The loss of VSMC appeared to be caused by progressive degeneration of VSMC resulting in a gradual loss of VSMC marker expression and a progressive acquisition of an aberrant VSMC phenotype closer to the gaps, followed by enhanced apoptosis and cellular disintegration in the gaps. Arterial VSMC were the only mural cell type that was morphologically affected, despite Notch3 also being expressed in pericytes. Transcriptome analysis of isolated brain microvessels revealed gene expression changes in Notch3(-/-) mice consistent with loss of arterial VSMC and presumably secondary transcriptional changes were observed in endothelial genes, which may explain the compromised vascular integrity. CONCLUSIONS: We demonstrate that Notch3 is important for survival of VSMC, and reveal a critical role for Notch3 and VSMC in blood vessel integrity and blood-brain barrier function in the mammalian vasculature.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Receptores Notch/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Apoptosis , Biomarcadores/metabolismo , Vasos Sanguíneos/metabolismo , Barrera Hematoencefálica/patología , Permeabilidad Capilar , Células Endoteliales/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genotipo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Microvasos/metabolismo , Microvasos/patología , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Pericitos/metabolismo , Fenotipo , Receptor Notch3 , Receptores Notch/deficiencia , Receptores Notch/genética , Vasos Retinianos/metabolismo , Vasos Retinianos/patología , Transducción de Señal , Transcripción Genética
18.
Nat Med ; 20(10): 1199-205, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25194568

RESUMEN

The Notch signaling pathway controls cell fates through interactions between neighboring cells by positively or negatively affecting the processes of proliferation, differentiation and apoptosis in a context-dependent manner. This pathway has been implicated in human cancer as both an oncogene and a tumor suppressor. Here we report new inactivating mutations in Notch pathway components in over 40% of human bladder cancers examined. Bladder cancer is the fourth most commonly diagnosed malignancy in the male population of the United States. Thus far, driver mutations in fibroblast growth factor receptor 3 (FGFR3) and, less commonly, in RAS proteins have been identified. We show that Notch activation in bladder cancer cells suppresses proliferation both in vitro and in vivo by directly upregulating dual-specificity phosphatases (DUSPs), thus reducing the phosphorylation of ERK1 and ERK2 (ERK1/2). In mouse models, genetic inactivation of Notch signaling leads to Erk1/2 phosphorylation, resulting in tumorigenesis in the urinary tract. Collectively our findings show that loss of Notch activity is a driving event in urothelial cancer.


Asunto(s)
Receptores Notch/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Animales , Carcinoma de Células Transicionales/genética , Carcinoma de Células Transicionales/metabolismo , Carcinoma de Células Transicionales/patología , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Fosfatasas de Especificidad Dual/metabolismo , Femenino , Dosificación de Gen , Genes Supresores de Tumor , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Mutación , Receptor Notch1/deficiencia , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptores Notch/deficiencia , Receptores Notch/genética , Transducción de Señal , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología
19.
Exp Dermatol ; 23(10): 696-700, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24889007

RESUMEN

This viewpoint presents a unifying concept for the treatment of atopic dermatitis (AD) that is based on the improvement of deficient Notch signalling, which appears to represent the fundamental epithelial defect of AD resulting in epidermal and immunological barrier dysfunction. One study of AD patients demonstrated a marked epidermal deficiency of Notch receptors and several mouse models with genetically suppressed Notch signalling exhibit dry skin, signs of scratching, skin barrier abnormalities, increased transepidermal water loss and Th2 cell-mediated immunological changes closely resembling human AD. Notch signalling is critically involved in the differentiation of regulatory T cells, in the feedback inhibition of activated innate immunity, in the repression of activating protein-1 (AP-1), the regulation of late epidermal differentiation associated with filaggrin- and stratum corneum barrier lipid processing, in aquaporin 3- and claudin-1 expression and in keratinocyte-mediated release of thymic stromal lymphopoietin (TSLP), which promotes Th2-driven immune responses with TSLP- and IL-31-mediated stimulation of cutaneous sensory neurons involved in the induction of itch. Translational evidence will be provided that all major therapeutic regimens employed for the treatment of AD such as glucocorticoids, calcineurin inhibitors and UV radiation may converge in the upregulation of impaired Notch signalling, the proposed pathogenic defect of AD.


Asunto(s)
Dermatitis Atópica/metabolismo , Dermatitis Atópica/terapia , Receptores Notch/deficiencia , Piel/metabolismo , Animales , Dermatitis Atópica/inmunología , Proteínas Filagrina , Humanos , Inmunidad Innata , Ratones , Prurito/etiología , Receptores Notch/metabolismo , Transducción de Señal , Piel/patología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Factor de Transcripción AP-1/metabolismo , Investigación Biomédica Traslacional
20.
Dis Model Mech ; 7(8): 997-1004, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24906372

RESUMEN

Duchenne muscular dystrophy (DMD) is a devastating disease characterized by muscle wasting, loss of mobility and death in early adulthood. Satellite cells are muscle-resident stem cells responsible for the repair and regeneration of damaged muscles. One pathological feature of DMD is the progressive depletion of satellite cells, leading to the failure of muscle repair. Here, we attempted to explore the molecular mechanisms underlying satellite cell ablation in the dystrophin mutant mdx mouse, a well-established model for DMD. Initial muscle degeneration activates satellite cells, resulting in increased satellite cell number in young mdx mice. This is followed by rapid loss of satellite cells with age due to the reduced self-renewal ability of mdx satellite cells. In addition, satellite cell composition is altered even in young mdx mice, with significant reductions in the abundance of non-committed (Pax7+ and Myf5-) satellite cells. Using a Notch-reporter mouse, we found that the mdx satellite cells have reduced activation of Notch signaling, which has been shown to be necessary to maintain satellite cell quiescence and self-renewal. Concomitantly, the expression of Notch1, Notch3, Jag1, Hey1 and HeyL are reduced in the mdx primary myoblast. Finally, we established a mouse model to constitutively activate Notch signaling in satellite cells, and show that Notch activation is sufficient to rescue the self-renewal deficiencies of mdx satellite cells. These results demonstrate that Notch signaling is essential for maintaining the satellite cell pool and that its deficiency leads to depletion of satellite cells in DMD.


Asunto(s)
Envejecimiento/patología , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Receptores Notch/deficiencia , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/patología , Transducción de Señal , Animales , Recuento de Células , Proliferación Celular , Ratones Endogámicos mdx , Músculos/patología , Receptores Notch/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...