RESUMEN
Functional genetics has identified drug targets for metabolic disorders. Opioid use impacts metabolic homeostasis, although mechanisms remain elusive. Here, we explore the OPRD1 gene (encoding delta opioid receptor, DOP) to understand its impact on type 2 diabetes. Large-scale sequencing of OPRD1 and in vitro analysis reveal that loss-of-function variants are associated with higher adiposity and lower hyperglycemia risk, whereas gain-of-function variants are associated with lower adiposity and higher type 2 diabetes risk. These findings align with studies of opium addicts. OPRD1 is expressed in human islets and beta cells, with decreased expression under type 2 diabetes conditions. DOP inhibition by an antagonist enhances insulin secretion from human beta cells and islets. RNA-sequencing identifies pathways regulated by DOP antagonism, including nerve growth factor, circadian clock, and nuclear receptor pathways. Our study highlights DOP as a key player between opioids and metabolic homeostasis, suggesting its potential as a therapeutic target for type 2 diabetes.
Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Receptores Opioides delta , Receptores Opioides delta/metabolismo , Receptores Opioides delta/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Secreción de Insulina/genética , AdultoRESUMEN
Delta-opioid receptor protein (OPRD1) is one of the potential targets for treating pain. The presently available opioid agonists are known to cause unnecessary side effects. To discover a novel opioid agonist, our research group has synthesized a chimeric peptide MCRT and proved its potential activity through in vivo analysis. Non-synonymous SNPs (nsSNPs) missense mutations affect the functionality and stability of proteins leading to diseases. The current research was focused on understanding the role of MCRT in restoring the binding tendency of OPRD1 nsSNPs missense mutations on dynamic nature in comparison with Deltorphin-II and morphiceptin. The deleterious effects of nsSNPs were analyzed using various bioinformatics tools for predicting structural, functional, and oncogenic influence. The shortlisted nine nsSNPs were predicted for allergic reactions, domain changes, post-translation modification, multiple sequence alignment, secondary structure, molecular dynamic simulation (MDS), and peptide docking influence. Further, the docked complex of three shortlisted deleterious nsSNPs was analyzed using an MDS study, and the highly deleterious shortlisted nsSNP A149T was further analyzed for higher trajectory analysis. MCRT restored the binding tendency influence caused by nsSNPs on the dynamics of stability, functionality, binding affinity, secondary structure, residues connection, motion, and folding of OPRD1 protein.
Asunto(s)
Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación Missense , Polimorfismo de Nucleótido Simple , Unión Proteica , Receptores Opioides delta , Receptores Opioides delta/genética , Receptores Opioides delta/química , Receptores Opioides delta/metabolismo , Humanos , Simulación por Computador , Secuencia de Aminoácidos , Oligopéptidos/química , Oligopéptidos/genética , Oligopéptidos/farmacologíaRESUMEN
Hypoxic-ischemic brain damage (HIBD) in the perinatal period is an important cause of cerebral damage and long-term neurological sequelae, and can place much pressure on families and society. Our previous study demonstrated that miRNA-326 reduces neuronal apoptosis by up-regulating the δ-opioid receptor (DOR) under oxygen-glucose deprivation in vitro. In the present study, we aimed to explore the neuroprotective effects of the miRNA-326/DOR axis by inhibiting apoptosis in HIBD using neonatal miRNA-326 knockout mice. Neonatal C57BL/6 mice, neonatal miRNA-326 knockout mice, and neonatal miRNA-326 knockout mice intraperitoneally injected with the DOR inhibitor naltrindole were treated with hypoxic-ischemia (HI). Neurological deficit scores, magnetic resonance imaging, terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end labeling, and Caspase-3, Bax, and B-cell lymphoma 2 (Bcl-2) expression were evaluated on day 2 after HI. Neurobehavioral analyses were performed on days 2 and 28 after HI. Additionally, the Morris water maze test was conducted on days 28. Compared with HI-treated neonatal C57BL/6 mice, HI-treated neonatal miRNA-326 knockout mice had higher neurological deficit scores, smaller cerebral infarction areas, and improved motor function, reaction ability, and long-term spatial learning and memory. These effects were likely the result of inhibiting apoptosis; the DOR inhibitor reversed these neuroprotective effects. Our findings indicate that miRNA-326 knockout plays a neuroprotective effect in neonatal HIBD by inhibiting apoptosis via the target gene DOR.
Asunto(s)
Animales Recién Nacidos , Apoptosis , Hipoxia-Isquemia Encefálica , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs , Receptores Opioides delta , Animales , Masculino , Ratones , Apoptosis/genética , Hipoxia-Isquemia Encefálica/genética , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , MicroARNs/genética , MicroARNs/metabolismo , Fármacos Neuroprotectores/farmacología , Receptores Opioides delta/genética , Receptores Opioides delta/metabolismoRESUMEN
In this study, the expressions and distributions of methionine-enkephalin (Met-enk) and δ opioid receptor in the nervous system of Octopus ocellatus, and the immune regulatory mechanisms of Met-enk on O. ocellatus were explored. The distributions and expressions of Met-enk and δ opioid receptor were assessed by immunohistochemistry and enzyme-linked immunosorbent assay. UV-spectrophotometer, microplate reader, and flow cytometer were used to examine the effects of different concentrations of Met-enk on phagocytosis, antioxidant effects, and body surface mucus immunity of O. ocellatus hemocytes. The data were used to study the mechanisms of Met-enk immunity regulation in O. ocellatus. According to the results, the expression levels of Met-enk and δ opioid receptor in O. ocellatus lymphocytes were higher than those in hemocytes. The expression levels of Met-enk in the ganglia of O. ocellatus decreased in the following order: pedal ganglia > cerebral ganglia > visceral ganglia > optic ganglia > stellate ganglia. Moreover, the phagocytic activity of O. ocellatus hemocytes was enhanced with increasing Met-enk concentration. With increasing Met-enk concentration, the expressions of nitric oxide, total nitric oxide synthase, inducible nitric oxide synthase, catalase, hydrogen peroxide, myeloperoxidase, reduced glutathione, α-naphthy acetate esterase, and methionine aminopeptidases decreased in serums of O. ocellatus in the experimental group compared to the blank group. Similarly, the content of reduced glutathione in the hemocytes of O. ocellatus was also lower in the experimental group than in the blank group; however, the expressions of other substances were higher compared to the blank group. Furthermore, α-naphthy acetate esterase, myeloperoxidase, and hydrogen peroxide expressions in mucus immunity trials of the body surface were lower in the experimental group compared to the blank group. These results indicate that the distributions and expressions of Met-enk and δ opioid receptor in the nervous system of O. ocellatus were related to axoplasmic transport and immune regulation mechanisms. Met-enk participates in cellular immunity, humoral immunity, and mucus immunity in the form of neurotransmitters, thereby regulating the immune response of O. ocellatus.
Asunto(s)
Encefalina Metionina , Octopodiformes , Receptores Opioides delta , Animales , Receptores Opioides delta/metabolismo , Receptores Opioides delta/genética , Octopodiformes/inmunología , Inmunidad Innata , Hemocitos/inmunología , Hemocitos/metabolismo , Regulación de la Expresión Génica/inmunologíaRESUMEN
Hypoxia (20 min) and reoxygenation (30 min) were simulated on isolated rat cardiomyocytes to evaluate the cytoprotective effect of selective δ2-opioid receptor agonist deltorphin II, opioid receptor antagonist naloxone methiodide, µ-opioid receptor antagonist CTAP, κ-opioid receptor antagonist nor-binaltorphimine, ε1-opioid receptor antagonist BNTX, and δ2-opioid receptors naltriben. Deltorphin II was administered 5 min before reoxygenation, antagonists were administered 10 min before reoxygenation. The cytoprotective effect of deltorphin II was assessed by the number of cardiomyocytes survived after hypoxia/reoxygenation, as well as by the lactate dehydrogenase content in the incubation medium. It has been established that the cytoprotective effect of deltorphin II occurs at a concentration of 64 nmol/liter and is associated with activation of δ2-opioid receptors.
Asunto(s)
Antagonistas de Narcóticos , Receptores Opioides , Ratas , Animales , Antagonistas de Narcóticos/farmacología , Receptores Opioides delta/genética , Miocitos Cardíacos , Receptores Opioides mu , HipoxiaRESUMEN
Opioid use disorder (OUD) is a chronic and relapsing brain disease that results in significant mortality worldwide. Genetic factors are estimated to contribute to 40%-60% of the liability, with polymorphisms of opioid receptor genes implicated in this disorder. However, the mechanisms underlying these associations are not yet fully understood. In the present study, we first examined the methylation levels in the promoter region of the OPRM1, OPRD1, and OPRK1 genes in 111 healthy controls (HCs) and 120 patients with OUD, and genotyped three tag SNPs in these genes. Correlations between these SNPs and the methylation levels of the CpG sites and expression levels of the genes were analyzed. After identifying the mQTLs and eQTLs, we determined the associations between the mQTLs/eQTLs and susceptibility to and characteristics of OUD in 930 HCs and 801 patients with OUD. Our results demonstrated that SNPs rs1799971 in the OPRM1 gene and rs4654327 in the OPRD1 gene were both mQTLs and eQTLs. We observed unique correlations between mQTLs and methylation levels of several CpG sites in the OUD group compared to the HC group. Interestingly, both the two mQTLs and eQTLs were associated with the susceptibility to OUD. In conclusion, we suppose that mQTLs and eQTLs in genes may underlie the associations between certain risk genetic polymorphisms and OUD. These mQTLs and eQTLs could potentially serve as promising biomarkers for better management of opioid misuse.
Asunto(s)
Trastornos Relacionados con Opioides , Sitios de Carácter Cuantitativo , Humanos , Metilación , Genotipo , Trastornos Relacionados con Opioides/genética , Polimorfismo de Nucleótido Simple , Receptores Opioides mu/genética , Receptores Opioides delta/genéticaRESUMEN
BACKGROUND: Variants in the delta opioid receptor gene, OPRD1, were associated with opioid use disorder and response to treatment. The study goal was to assess whether OPRD1 variants predict survival and retention in methadone maintenance treatment (MMT). METHODS: Retention and survival time since admission (June 1993 - June 2022) until leaving treatment (for retention), or at the end of follow-up (Dec 2022) (for retention and survival) were analyzed in 488 patients. Vital data was taken from a national registry. Predictors were estimated using Kaplan-Meier and Cox regression models. RESULTS: Longer retention and survival were found for carriers of the T allele of SNP rs204076. This SNP is associated with OPRD1 expression in cortex (GTEx). Carriers of the T allele (n = 251) survived longer compared to non-carriers (24.7 vs. 20.2 years, p = 0.005) and had longer retention (11.2 vs. 8.8 years, p = 0.04). Multivariate analysis identified the T allele as an independent predictor of longer survival time (p = 0.003) and retention (p = 0.009). Additional predictors for survival were no benzodiazepine use after one year in MMT, no hepatitis C, <20 years of opioid usage, and admission at age < 30. Additional predictors for longer retention were no use of other drugs except opioids on admission, and no drugs at one year, as well as methadone dose ≥ 100mg/d at one year and axis I & II DSM-5 psychiatric diagnosis. CONCLUSIONS: The OPRD1 SNP rs204076 and non-genetic predictors contribute to survival time and retention in MMT patients.
Asunto(s)
Trastornos Relacionados con Opioides , Receptores Opioides delta , Humanos , Receptores Opioides delta/genética , Receptores Opioides delta/uso terapéutico , Metadona/uso terapéutico , Trastornos Relacionados con Opioides/tratamiento farmacológico , Trastornos Relacionados con Opioides/genética , Trastornos Relacionados con Opioides/psicología , Analgésicos Opioides/uso terapéutico , Benzodiazepinas/uso terapéutico , Tratamiento de Sustitución de OpiáceosRESUMEN
ABSTRACT: Exposure to severely stressful events during childhood is associated with poor health outcomes in later life, including chronic pain and substance use disorder. However, the mediators and mechanisms are unclear. We investigated the impact of a well-characterized mouse model of early-life adversity, fragmented maternal care (FC) between postnatal day 2 and 9, on nociception, inflammatory hypersensitivity, and responses to morphine. Male and female mice exposed to FC exhibited prolonged basal thermal withdrawal latencies and decreased mechanical sensitivity. In addition, morphine had reduced potency in mice exposed to FC and their development of tolerance to morphine was accelerated. Quantitative PCR analysis in several brain regions and the spinal cords of juvenile and adult mice revealed an impact of FC on the expression of genes encoding opioid peptide precursors and their receptors. These changes included enhanced abundance of δ opioid receptor transcript in the spinal cord. Acute inflammatory hypersensitivity (induced by hind paw administration of complete Freund's adjuvant) was unaffected by exposure to FC. However, after an initial recovery of mechanical hypersensitivity, there was a reappearance in mice exposed to FC by day 15, which was not seen in control mice. Changes in nociception, morphine responses, and hypersensitivity associated with FC were apparent in males and females but were absent from mice lacking δ receptors or ß-arrestin2. These findings suggest that exposure to early-life adversity in mice enhances δ receptor expression leading to decreased basal sensitivity to noxious stimuli coupled with accelerated morphine tolerance and enhanced vulnerability to persistent inflammatory hypersensitivity.
Asunto(s)
Morfina , Animales , Femenino , Masculino , Ratones , Analgésicos Opioides/efectos adversos , Hiperalgesia/etiología , Hiperalgesia/inducido químicamente , Morfina/efectos adversos , Dolor/inducido químicamente , Receptores Opioides delta/genética , Estrés Psicológico , Regulación hacia ArribaRESUMEN
This study aimed to determine the effects of nine OPRM1, OPRD1 and OPRK1 polymorphisms on plasma BUP and norbuprenorphine (norBUP) concentrations and various treatment responses in a sample of 122 patients receiving BUP/naloxone. Plasma concentrations of BUP and norBUP were detected by LC-MS/MS. PCR-RFLP method was used to genotype polymorphisms. OPRD1 rs569356 GG had significantly lower plasma norBUP concentration (p = 0.018), dose- (p = 0.049) and dose/kg-normalized norBUP values (p = 0.036) compared with AA. Craving and withdrawal symptoms were significantly higher in OPRD1 rs569356 AG+GG relative to AA. There was a statistically significant difference between the OPRD1 rs678849 genotypes in the intensity of anxiety (13.5 for CT+TT and 7.5 for TT). OPRM1 rs648893 TT (18.8 ± 10.8) was significantly different to CC+CT (14.82 ± 11.3; p = 0.049) in view of the intensity of depression. This current study provides the first data on a prominent effect of the OPRD1 rs569356 variation on BUP pharmacology due to its metabolite norBUP.
Asunto(s)
Buprenorfina , Trastornos Relacionados con Opioides , Humanos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Buprenorfina/uso terapéutico , Trastornos Relacionados con Opioides/genética , Trastornos Relacionados con Opioides/tratamiento farmacológico , Receptores Opioides delta/genética , Receptores Opioides delta/uso terapéuticoRESUMEN
Energy availability is an important regulator of reproductive function at various reproductive phases in mammals. Glucoprivation induced by 2-deoxy-D-glucose (2DG), an inhibitor of glucose utilization, as an experimental model of malnutrition suppresses the pulsatile release of GnRH/LH and induces gluconeogenesis. The present study was performed with the aim of examining whether enkephalin-δ-opioid receptor (DOR) signaling mediates the suppression of pulsatile GnRH/LH release and gluconeogenesis during malnutrition. The administration of naltrindole hydrochloride (NTI), a selective DOR antagonist, into the third ventricle blocked the suppression of LH pulses and part of gluconeogenesis induced by IV 2DG administration in ovariectomized rats treated with a negative feedback level of estradiol-17â ß (OVX + low E2). The IV 2DG administration significantly increased the number of Penk (enkephalin gene)-positive cells coexpressing fos (neuronal activation marker gene) in the paraventricular nucleus (PVN), but not in the arcuate nucleus (ARC) in OVX + low E2 rats. Furthermore, double in situ hybridization for Penk/Pdyn (dynorphin gene) in the PVN revealed that approximately 35% of the PVN Penk-expressing cells coexpressed Pdyn. Double in situ hybridization for Penk/Crh (corticotropin-releasing hormone gene) in the PVN and Penk/Kiss1 (kisspeptin gene) in the ARC revealed that few Penk-expressing cells coexpressed Crh and Kiss1. Taken together, these results suggest that central enkephalin-DOR signaling mediates the suppression of pulsatile LH release during malnutrition. Moreover, the current study suggests that central enkephalin-DOR signaling is also involved in gluconeogenesis during malnutrition in female rats.
Asunto(s)
Encefalinas , Gluconeogénesis , Receptores Opioides delta , Animales , Femenino , Ratas , Núcleo Arqueado del Hipotálamo/metabolismo , Encefalinas/genética , Encefalinas/metabolismo , Glucosa/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Hormona Luteinizante/metabolismo , Hormona Luteinizante/farmacología , Mamíferos/metabolismo , Receptores Opioides delta/genética , Receptores Opioides delta/metabolismoRESUMEN
BACKGROUND: Selective serotonin reuptake inhibitors such as fluoxetine have a limited treatment efficacy. The mechanism by which some patients respond to fluoxetine while others do not remains poorly understood, limiting treatment effectiveness. We have found the opioid system to be involved in the responsiveness to fluoxetine treatment in a mouse model for anxiety- and depressive-like behavior. METHODS: We analyzed gene expression changes in the dentate gyrus of mice chronically treated with corticosterone and fluoxetine. After identifying a subset of genes of interest, we studied their expression patterns in relation to treatment responsiveness. We further characterized their expression through in situ hybridization and the analysis of a single-cell RNA sequencing dataset. Finally, we behaviorally tested mu and delta opioid receptor knockout mice in the novelty suppressed feeding test and the forced swim test after chronic corticosterone and fluoxetine treatment. RESULTS: Chronic fluoxetine treatment upregulates proenkephalin expression in the dentate gyrus, and this upregulation is associated with treatment responsiveness. The expression of several of the most significantly upregulated genes, including proenkephalin, is localized to an anatomically and transcriptionally specialized subgroup of mature granule cells in the dentate gyrus. We have also found that the delta opioid receptor contributes to some, but not all, of the behavioral effects of fluoxetine. CONCLUSIONS: These data indicate that the opioid system is involved in the antidepressant effects of fluoxetine, and this effect may be mediated through the upregulation of proenkephalin in a subpopulation of mature granule cells.
Asunto(s)
Analgésicos Opioides , Fluoxetina , Ratones , Animales , Fluoxetina/farmacología , Analgésicos Opioides/farmacología , Corticosterona , Receptores Opioides delta/genética , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Ratones NoqueadosRESUMEN
Primary afferents are responsible for transmitting signals produced by noxious stimuli from the periphery to the spinal cord. Mu and delta opioid receptors (MOP and DOP) have analgesic properties and are highly expressed in dorsal root ganglia (DRG) neurons. In humans, spinal DOP is almost exclusively located on central terminals of DRG neurons, whereas in rodents, it is expressed both on presynaptic terminals and spinal neurons. In this study, we aimed to assess the distribution of MOP and DOP in the DRGs of mice and rats. Using in situ hybridization and immunofluorescence, we visualized MOP and DOP mRNA together with various neuronal markers. In rats and mice, we show that both receptors are expressed, albeit to different extents, in all types of neurons, namely, large and medium myelinated neurons (NF200-positive), small nonpeptidergic (IB4- or P2X3R-positive) and peptidergic C fibres (Tac1-positive). Overall, DOP mRNA was found to be mainly expressed in large and medium myelinated neurons, whereas MOP mRNA was mainly found in C fibres. The distribution of MOP and DOP, however, slightly differs between rats and mice, with a higher proportion of small nonpeptidergic C fibres expressing DOP mRNA in mice than in rats. We further found that neither morphine nor inflammation affected the distribution of the receptor mRNA. Because of their location, our results confirm that MOP and DOP have the potential to alleviate similar types of pain and that this effect could slightly differ between species.
Asunto(s)
Ganglios Espinales , Neuronas , ARN Mensajero , Receptores Opioides delta , Receptores Opioides mu , Animales , Ganglios Espinales/metabolismo , Ratones , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Receptores Opioides delta/genética , Receptores Opioides delta/metabolismo , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismoRESUMEN
BACKGROUND: Inflammatory visceral pain is endogenously controlled by enkephalins locally released by mucosal CD4+ T lymphocytes in mice. The present study aimed at identifying opioid receptor(s) expressed on nociceptive sensory nerves involved in this peripheral opioid-mediated analgesia. METHODS: The peripheral analgesia associated with the accumulation of CD4+ T lymphocytes within the inflamed colonic mucosa was assessed in conditional knockout mice specifically deleted for either of the two opioid receptors for enkephalins (i.e., µ (MOR) and δ (DOR) receptors) in Nav1.8-expressing sensory neurons in the dextran sulfate sodium (DSS)-induced colitis model. RESULTS: Endogenous analgesia is lost in conditional knockout mice for DOR, but not MOR at the later phase of the DSS-induced colitis. The absence of either of the opioid receptors on sensory nerves had no impact on both the colitis severity and the rate of T lymphocytes infiltrating the inflamed colonic mucosa. CONCLUSION: The key role of DOR on primary afferents in relieving intestinal inflammatory pain opens new therapeutic opportunities for peripherally restricted DOR analgesics to avoid most of the side effects associated with MOR-targeting drugs used in intestinal disorders.
Asunto(s)
Colitis/metabolismo , Mucosa Intestinal/metabolismo , Nociceptores/metabolismo , Receptores Opioides delta/metabolismo , Dolor Visceral/metabolismo , Analgesia , Animales , Colitis/genética , Modelos Animales de Enfermedad , Inflamación/genética , Inflamación/metabolismo , Ratones , Ratones Noqueados , Receptores Opioides delta/genética , Dolor Visceral/genéticaRESUMEN
Functional interactions between G protein-coupled receptors are poised to enhance neuronal sensitivity to neuromodulators and therapeutic drugs. Mu and delta opioid receptors (MORs and DORs) can interact when overexpressed in the same cells, but whether co-expression of endogenous MORs and DORs in neurons leads to functional interactions is unclear. Here, in mice, we show that both MORs and DORs inhibit parvalbumin-expressing basket cells (PV-BCs) in hippocampal CA1 through partially occlusive signaling pathways that terminate on somato-dendritic potassium channels and presynaptic calcium channels. Using photoactivatable opioid neuropeptides, we find that DORs dominate the response to enkephalin in terms of both ligand sensitivity and kinetics, which may be due to relatively low expression levels of MOR. Opioid-activated potassium channels do not show heterologous desensitization, indicating that MORs and DORs signal independently. In a direct test for heteromeric functional interactions, the DOR antagonist TIPP-Psi does not alter the kinetics or potency of either the potassium channel or synaptic responses to photorelease of the MOR agonist [d-Ala2, NMe-Phe4, Gly-ol5]enkephalin (DAMGO). Thus, aside from largely redundant and convergent signaling, MORs and DORs do not functionally interact in PV-BCs in a way that impacts somato-dendritic potassium currents or synaptic transmission. These findings imply that cross-talk between MORs and DORs, either in the form of physical interactions or synergistic intracellular signaling, is not a preordained outcome of co-expression in neurons.
Asunto(s)
Hipocampo/fisiología , Interneuronas/metabolismo , Ratones , Parvalbúminas/metabolismo , Receptores Opioides delta/genética , Receptores Opioides mu/genética , Transducción de Señal , Animales , Femenino , Masculino , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismoRESUMEN
Opioid addiction is a complex phenomenon with genetic, social, and other components. Due to such complexity, it is difficult to interpret the outcome of clinical studies, and thus, mutations found in individuals with these addictions are still not indisputably classified as opioid addiction-causing variants. Here, we computationally investigated two such mutations, A6V and N40D, found in the mu opioid receptor gene OPRM1. The mutations are located in the extracellular domain of the corresponding protein, which is important to the hetero-dimerization of OPRM1 with the delta opioid receptor protein (OPRD1). The hetero-dimerization of OPRD1-OPRM1 affects the signaling pathways activated by opioids and natural peptides and, thus, could be considered a factor contributing to addiction. In this study, we built four 3D structures of molecular pathways, including the G-protein signaling pathway and the ß-arrestin signaling pathway of the heterodimer of OPRD1-OPRM1. We also analyzed the effect of mutations of A6V and N40D on the stability of individual OPRM1/OPRD1 molecules and the OPRD1-OPRM1 heterodimer with the goal of inferring their plausible linkage with opioid addiction. It was found that both mutations slightly destabilize OPRM1/OPRD1 monomers and weaken their association. Since hetero-dimerization is a key step for signaling processes, it is anticipated that both mutations may be causing increased addiction risk.
Asunto(s)
Trastornos Relacionados con Opioides/genética , Receptores Opioides delta/genética , Receptores Opioides mu/genética , Receptores Opioides/genética , Transducción de Señal/genética , Dimerización , Humanos , Mutación/genética , beta-Arrestinas/genéticaRESUMEN
Class A G-protein-coupled receptors (GPCRs) normally function as monomers, although evidence from heterologous expression systems suggests that they may sometimes form homodimers and/or heterodimers. This study aims to evaluate possible functional interplay of endogenous µ- and δ-opioid receptors (MORs and DORs) in mouse neurons. Detecting GPCR dimers in native tissues, however, has been challenging. Previously, MORs and DORs co-expressed in transfected cells have been reported to form heterodimers, and their possible co-localization in neurons has been studied in knock-in mice expressing genetically engineered receptors fused to fluorescent proteins. Here, we find that single cholinergic neurons in the mouse striatum endogenously express both MORs and DORs. The receptors on neurons from live brain slices were fluorescently labeled with a ligand-directed labeling reagent, NAI-A594. The selective activation of MORs and DORs, with DAMGO (µ-agonist) and deltorphin (δ-agonist) inhibited spontaneous firing in all cells examined. In the continued presence of agonist, the firing rate returned to baseline as the result of receptor desensitization with the application of deltorphin but was less observed with the application of DAMGO. In addition, agonist-induced internalization of DORs but not MORs was detected. When MORs and DORs were activated simultaneously with [Met5]-enkephalin, desensitization of MORs was facilitated but internalization was not increased. Together, these results indicate that while MORs and DORs are expressed in single striatal cholinergic interneurons, the two receptors function independently.
Asunto(s)
Neuronas Colinérgicas/metabolismo , Cuerpo Estriado/metabolismo , Interneuronas/fisiología , Receptores Opioides delta/genética , Receptores Opioides mu/genética , Animales , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismoRESUMEN
BACKGROUND: The functional mechanism is unknown for many genetic variants associated with substance use disorder phenotypes. Rs678849, an intronic variant in the delta-opioid receptor gene (OPRD1), has been found to predict regional brain volume, addiction risk, and the efficacy of buprenorphine/naloxone in treating opioid use disorder. The variant has also been implicated as an expression quantitative trait locus (eQTL) for several genes. OBJECTIVES: The objective of this study was to identify functional differences between the two alleles of rs678849 in vitro. We hypothesized that the two alleles of rs678849 would have different effects on transcriptional activity due to differential interactions with transcription factors. METHODS: 15bp regions containing the C or T alleles of rs678849 were cloned into luciferase constructs and transfected into BE(2)C neuroblastoma cells to test the effect on transcription. Electrophoretic mobility shift assays (EMSA) using nuclear lysates from BE(2)C cell or human postmortem medial prefrontal cortex were used to identify proteins that differentially bound the two alleles. RESULTS: At 24 hours post-transfection, the C allele construct had significantly lower luciferase expression than the T allele construct and empty vector control (ANOVA p < .001). Proteomic analysis and supershift assays identified XRCC6 as a transcription factor specifically binding the C allele, whereas hnRNP D0 was found to specifically bind the T allele. CONCLUSION: These functional differences between the C and T alleles may help explain the psychiatric and neurological phenotype differences predicted by rs678849 genotype and the potential role of the variant as an eQTL.
Asunto(s)
Ribonucleoproteína Nuclear Heterogénea D0/metabolismo , Autoantígeno Ku/metabolismo , Variantes Farmacogenómicas , Receptores Opioides delta/genética , Factores de Transcripción/metabolismo , Alelos , Ensayo de Cambio de Movilidad Electroforética , Genotipo , Humanos , Luciferasas de Luciérnaga , Unión Proteica/genética , Sitios de Carácter Cuantitativo/genéticaRESUMEN
OBJECTIVE: Prior research demonstrated that the δ-opioid receptor (OPRD1) rs678849 variant influences opioid use in African Americans treated with methadone. We examined whether this variant moderated cocaine and opioid use in our clinical cohort of methadone and disulfiram treated recipients. METHODS: Cocaine and opioid codependent patients were stabilized for 2 weeks on methadone and subsequently randomized into groups treated with either methadone + placebo (n = 37) or methadone + disulfiram (250 mg/day; n = 33) for 12 weeks. RESULTS: A drop in cocaine-positive urine was found in the OPRD1 CC genotype group compared to T-allele carrier patients treated with methadone + disulfiram (P < 0.0001), but not in the methadone + placebo group. No difference in opioid-positive urines was found among each genotype group in either treatment group. CONCLUSION: These findings suggested that rs678849 genotype may predict treatment response of disulfiram for cocaine use in patients with co-occurring opioid and cocaine dependence.
Asunto(s)
Trastornos Relacionados con Cocaína/tratamiento farmacológico , Trastornos Relacionados con Cocaína/genética , Trastornos Relacionados con Opioides/tratamiento farmacológico , Trastornos Relacionados con Opioides/genética , Receptores Opioides delta/genética , Adulto , Alelos , Cocaína/orina , Disulfiram/uso terapéutico , Femenino , Genotipo , Humanos , Masculino , Metadona/uso terapéutico , Persona de Mediana Edad , Resultado del TratamientoRESUMEN
Several OPRD1 intronic variants were associated with opioid addiction (OD) in a population-specific manner. This follow-up study aims to further characterize the OPRD1 haplotype pattern of the risk variants in different populations and apply in silico analysis to identify potential causal variants. A population-specific haplotype pattern was revealed based on six OPRD1 eQTL SNPs and five common haplotypes were identified in a sample of European ancestry (CEU). A European-specific haplotype ('Hap 3') that includes SNPs previously associated with OD and is tagged by SNP rs2236861 is more common in subjects with OD. It is quite common (10%) in CEU but is absent in the African sample (YRI) and extends upstream of OPRD1. SNP rs2236857 is most probably a non-causal variant in LD with the causal SNP/s in a population-specific manner. The study provides an explanation for the lack of association in African Americans, despite its high frequency in this population. OD samples homozygous for 'Hap 3' were reanalyzed using a denser coverage of the region and revealed at least 25 potentially regulatory SNPs in high LD. Notably, GTEx data indicate that some of the SNPs are eQTLs for the upstream phosphatase and actin regulator 4 (PHACTR4), in the cortex, and others are eQTLs for OPRD1 and the upstream lncRNA ENSG00000270605, in the cerebellum. The study highlights the limitation of single SNP analysis and the sensitivity of association studies of OPRD1 to a genetic background. It proposes a long-range functional connection between OPRD1 and PHACTR4. PHACTR4, a mediator of cytoskeletal dynamics, may contribute to drug addiction by modulating synaptic plasticity.
Asunto(s)
Actinas , Trastornos Relacionados con Opioides , Estudios de Seguimiento , Haplotipos , Humanos , Trastornos Relacionados con Opioides/genética , Monoéster Fosfórico Hidrolasas , Polimorfismo de Nucleótido Simple , Receptores Opioides delta/genéticaRESUMEN
The prevailing model for the variety in drug responses is that different drugs stabilize distinct active states of their G protein-coupled receptor (GPCR) targets, allowing coupling to different effectors. However, whether the same ligand generates different GPCR active states based on the immediate environment of receptors is not known. Here we address this question using spatially resolved imaging of conformational biosensors that read out distinct active conformations of the δ-opioid receptor (DOR), a physiologically relevant GPCR localized to Golgi and the surface in neuronal cells. We have shown that Golgi and surface pools of DOR both inhibit cAMP, but engage distinct conformational biosensors in response to the same ligand in rat neuroendocrine cells. Further, DOR recruits arrestins on the surface but not on the Golgi. Our results suggest that the local environment determines the active states of receptors for any given drug, allowing GPCRs to couple to different effectors at different subcellular locations.