Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
1.
Sci Rep ; 14(1): 10855, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740782

RESUMEN

Type 2 diabetes mellitus (T2DM) is a chronic inflammatory disease that can compromise the functioning of various organs, including the salivary glands (SG). The purinergic system is one of the most important inflammatory pathways in T2DM condition, and P2X7R and P2X4R are the primary purinergic receptors in SG that regulate inflammatory homeostasis. This study aimed to evaluate P2X7R and P2X4R expression, and morphological changes in the submandibular gland (SMG) in T2DM. Twenty-four 5-week-old mice were randomly assigned to control (CON) and diabetes mellitus (DM) groups (n = 12 each). Body weight, diet, and blood glucose levels were monitored weekly. The histomorphology of the SMG and the expression of the P2X7R, and P2X7R was evaluated by immunohistochemistry (IHC) staining and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) at 11 and 13 weeks of age. Our findings indicate a significant increase in food consumption, body weight, and blood glucose levels in the DM group. Although a significant increase in P2X7R and P2X4R expression was observed in the DM groups, the receptor location remained unchanged. We also observed a significant increase in the acinar area in the DM13w group, and a significant decrease in the ductal area in the DM11w and DM13w groups. Targeting purinergic receptors may offer novel therapeutic methods for diabetic complications.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Dieta Alta en Grasa , Receptores Purinérgicos P2X4 , Receptores Purinérgicos P2X7 , Glándula Submandibular , Animales , Glándula Submandibular/metabolismo , Glándula Submandibular/patología , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Dieta Alta en Grasa/efectos adversos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Ratones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Masculino , Glucemia/metabolismo , Peso Corporal , Estreptozocina , Ratones Endogámicos C57BL
2.
Nature ; 626(8001): 1102-1107, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38355795

RESUMEN

Plasma cells produce large quantities of antibodies and so play essential roles in immune protection1. Plasma cells, including a long-lived subset, reside in the bone marrow where they depend on poorly defined microenvironment-linked survival signals1. We show that bone marrow plasma cells use the ligand-gated purinergic ion channel P2RX4 to sense extracellular ATP released by bone marrow osteoblasts through the gap-junction protein pannexin 3 (PANX3). Mutation of Panx3 or P2rx4 each caused decreased serum antibodies and selective loss of bone marrow plasma cells. Compared to their wild-type counterparts, PANX3-null osteoblasts secreted less extracellular ATP and failed to support plasma cells in vitro. The P2RX4-specific inhibitor 5-BDBD abrogated the impact of extracellular ATP on bone marrow plasma cells in vitro, depleted bone marrow plasma cells in vivo and reduced pre-induced antigen-specific serum antibody titre with little posttreatment rebound. P2RX4 blockade also reduced autoantibody titre and kidney disease in two mouse models of humoral autoimmunity. P2RX4 promotes plasma cell survival by regulating endoplasmic reticulum homeostasis, as short-term P2RX4 blockade caused accumulation of endoplasmic reticulum stress-associated regulatory proteins including ATF4 and B-lineage mutation of the pro-apoptotic ATF4 target Chop prevented bone marrow plasma cell demise on P2RX4 inhibition. Thus, generating mature protective and pathogenic plasma cells requires P2RX4 signalling controlled by PANX3-regulated extracellular ATP release from bone marrow niche cells.


Asunto(s)
Adenosina Trifosfato , Células de la Médula Ósea , Células Plasmáticas , Animales , Ratones , Adenosina Trifosfato/metabolismo , Autoanticuerpos/inmunología , Autoinmunidad/inmunología , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Linaje de la Célula , Conexinas/genética , Conexinas/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Mutación , Osteoblastos/metabolismo , Células Plasmáticas/citología , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Transducción de Señal
3.
J Immunol Methods ; 526: 113626, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38311008

RESUMEN

The P2X4 receptor is a trimeric ligand-gated ion channel activated by adenosine 5'-triphosphate (ATP). P2X4 is present in immune cells with emerging roles in inflammation and immunity, and related disorders. This review aims to provide an overview of the methods commonly used to study P2X4 in immune cells, focusing on those methods used to assess P2RX4 gene expression, the presence of the P2X4 protein, and P2X4 ion channel activity in these cells from humans, dogs, mice and rats. P2RX4 gene expression in immune cells is commonly assessed using semi-quantitative and quantitative reverse-transcriptase-PCR. The presence of P2X4 protein in immune cells is mainly assessed using anti-P2X4 polyclonal antibodies with immunoblotting or immunochemistry, but the use of these antibodies, as well as monoclonal antibodies and nanobodies to detect P2X4 with flow cytometry is increasing. Notably, use of an anti-P2X4 monoclonal antibody and flow cytometry has revealed that P2X4 is present on immune cells with a rank order of expression in eosinophils, then neutrophils and monocytes, then basophils and B cells, and finally T cells. P2X4 ion channel activity has been assessed mainly by Ca2+ flux assays using the cell permeable Ca2+-sensitive dyes Fura-2 and Fluo-4 with fluorescence microscopy, spectrophotometry, or flow cytometry. However, other methods including electrophysiology, and fluorescence assays measuring Na+ flux (using sodium green tetra-acetate) and dye uptake (using YO-PRO-12+) have been applied. Collectively, these methods have demonstrated the presence of functional P2X4 in monocytes and macrophages, microglia, eosinophils, mast cells and CD4+ T cells, with other evidence suggestive of functional P2X4 in dendritic cells, neutrophils, B cells and CD8+ T cells.


Asunto(s)
Linfocitos T CD8-positivos , Receptores Purinérgicos P2X4 , Ratones , Ratas , Humanos , Animales , Perros , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , Linfocitos T CD8-positivos/metabolismo , Monocitos/metabolismo , Macrófagos/metabolismo , Microglía/metabolismo , Adenosina Trifosfato/metabolismo
4.
Nihon Yakurigaku Zasshi ; 159(1): 39-43, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38171837

RESUMEN

Adenosine-5'-triphosphate (ATP) is an important intracellular energy currency, but it is released extracellularly in response to various stimuli and acts as an intercellular signaling molecule by stimulating various P2 receptors. ATP and ADP are stored in synaptic vesicles and secretory granules, and are released extracellularly upon stimulation, playing important roles in neurotransmission and platelet aggregation. Furthermore, considerable amount of ATP is released by mechanical stimuli such as skin scraping or by cell damage, which in turn activates immune cells to promote inflammatory responses. Mast cells (MCs) are derived from hematopoietic stem cells and play a central role in type I allergic reactions. MCs are activated by IgE-mediated antigen recognition, leading to type I allergic reactions. MCs express P2X7 receptors that are activated by high concentrations of ATP (>0.5 |mM), and reported to aggravate inflammatory bowel disease and dermatitis. In contrast, role of MC P2 receptors that respond to lower concentrations of ATP remains to be investigated. We investigated in detail the effects of ATP in mouse bone marrow-derived MCs, and found that lower concentrations of ATP (<100 |µM) promotes IgE-dependent and GPCR-mediated degranulation via the ionotropic P2X4 receptor. In mouse allergic models, P2X4 receptor signal promote MC-mediated allergic responses through comprehensively increasing the sensitivity of MCs to different stimuli. Since ATP is known to be released from various cells upon mechanical stimuli such as cell damage or scratching, inhibition of P2X4 receptor signaling may represent a novel strategy to abrogate allergic reaction.


Asunto(s)
Hipersensibilidad , Receptores Purinérgicos P2X4 , Ratones , Animales , Receptores Purinérgicos P2X4/metabolismo , Mastocitos/metabolismo , Hipersensibilidad/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Inmunoglobulina E
5.
Cell Biol Int ; 48(3): 358-368, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38100213

RESUMEN

Targeting of disease-associated microglia represents a promising therapeutic approach that can be used for the prevention or slowing down neurodegeneration. In this regard, the use of extracellular vesicles (EVs) represents a promising therapeutic approach. However, the molecular mechanisms by which EVs regulate microglial responses remain poorly understood. In the present study, we used EVs derived from human oral mucosa stem cells (OMSCs) to investigate the effects on the lipid raft formation and the phagocytic response of human microglial cells. Lipid raft labeling with fluorescent cholera toxin subunit B conjugates revealed that both EVs and lipopolysaccharide (LPS) by more than two times increased lipid raft formation in human microglia. By contrast, combined treatment with LPS and EVs significantly decreased lipid raft formation indicating possible interference of EVs with the process of LPS-induced lipid raft formation. Specific inhibition of Toll-like receptor 4 (TLR4) with anti-TLR4 antibody as well as inhibition of purinergic P2X4 receptor (P2X4R) with selective antagonist 5-BDBD inhibited EVs- and LPS-induced lipid raft formation. Selective blockage of αvß3/αvß5 integrins with cilengitide suppressed EV- and LPS-induced lipid raft formation in microglia. Furthermore, inhibition of TLR4 and P2X4R prevented EV-induced phagocytic activity of human microglial cells. We demonstrate that EVs induce lipid raft formation in human microglia through interaction with TLR4, P2X4R, and αVß3/αVß5 signaling pathways. Our results provide new insights about the molecular mechanisms regulating EV/microglia interactions and could be used for the development of new therapeutic strategies against neurological disorders.


Asunto(s)
Vesículas Extracelulares , Microglía , Humanos , Microglía/metabolismo , Receptor Toll-Like 4/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Mucosa Bucal/metabolismo , Transducción de Señal , Vesículas Extracelulares/metabolismo , Células Madre/metabolismo , Microdominios de Membrana/metabolismo
6.
Biochim Biophys Acta Gen Subj ; 1868(2): 130535, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38103757

RESUMEN

BACKGROUND: Calcimycin (A23187) is a polyether antibiotic and divalent cation ionophore, extracted from Streptomyces chartrecensis. With wide variety of antimicrobial activities, it also exhibits cytotoxicity of tumor cells. Calcimycin exhibit therapeutic potential against tumor cell growth; however, the molecular mechanism remains to be fully elucidated. Present study explores the mechanism of calcimycin-induced apoptosis cancer cell lines. METHODS: Apoptotic induction in a dose-dependent manner were recorded with MTT assays, Phase contrast imaging, wound healing assay, fluorescence imaging by DAPI and AO/EB staining and FACS using cell line model. Mitochondrial potential was analyzed by TMRM assay as Ca2+ signaling is well known to be influenced and synchronized by mitochondria also. RESULTS: Calcimycin induces apoptosis in dose dependent manner, also accompanied by increased intracellular calcium-level and expression of purinergic receptor-P2RX4, a ligand-gated ion channel. CONCLUSION: Calcimycin tends to increase the intracellular calcium level, mRNA expression of ATP receptor P2RX4, and phosphorylation of p38. Blocking of either intracellular calcium by BAPTA-AM, P2RX4 expression by antagonist 5-BDBD, and phospho-p38 by SB203580, abrogated the apoptotic activity of calcimycin. GENERAL SIGNIFICANCE: Taken together, these results show that calcimycin induces apoptosis in P2RX4 and ATP mediated intracellular Ca2+ and p38 MAPK mediated pathway in both the cancer cell lines. This study explored a new mode of action for calcimycin in cancer that could be potentially employed in future studies for cancer therapeutic research. This study disentangles that the calcimycin-induced apoptotic cell death is P2RX4 and ATP involved, intracellular Ca2+ and p38 MAPK mediated pathway.


Asunto(s)
Apoptosis , Calcimicina , Calcio , Receptores Purinérgicos P2X4 , Células MCF-7 , Línea Celular Tumoral , Humanos , Calcimicina/farmacología , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Espacio Intracelular/metabolismo , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
J Appl Biomed ; 21(4): 193-199, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38112458

RESUMEN

Naringin inhibits inflammation and oxidative stress, the P2 purinoreceptor X4 receptor (P2X4R) is associated with glial cell activation and inflammation, the purpose of this study is to investigate the effects of naringin on P2X4 receptor expression on satellite glial cells (SGCs) and its possible mechanisms. ATP promoted the SGC activation and upregulated P2X4R expression; naringin inhibited SGC activation, decreased expression of P2X4R, P38 MAPK/ERK, and NF-κB, and reduced levels of Ca2+, TNF-α, and IL-1ß in SGCs in an ATP-containing environment. These findings suggest that naringin attenuates the ATP-induced SGC activation and reduces P2X4R expression via the Ca2+-P38 MAPK/ERK-NF-κB pathway.


Asunto(s)
FN-kappa B , Receptores Purinérgicos P2X4 , Ratas , Animales , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , Animales Recién Nacidos , FN-kappa B/metabolismo , Ratas Sprague-Dawley , Ganglios Espinales/metabolismo , Calcio/metabolismo , Calcio/farmacología , Neuroglía/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/farmacología , Inflamación , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología
8.
Nat Commun ; 14(1): 6437, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833294

RESUMEN

P2X receptors are ATP-activated cation channels, and the P2X4 subtype plays important roles in the immune system and the central nervous system, particularly in neuropathic pain. Therefore, P2X4 receptors are of increasing interest as potential drug targets. Here, we report the cryo-EM structures of the zebrafish P2X4 receptor in complex with two P2X4 subtype-specific antagonists, BX430 and BAY-1797. Both antagonists bind to the same allosteric site located at the subunit interface at the top of the extracellular domain. Structure-based mutational analysis by electrophysiology identified the important residues for the allosteric inhibition of both zebrafish and human P2X4 receptors. Structural comparison revealed the ligand-dependent structural rearrangement of the binding pocket to stabilize the binding of allosteric modulators, which in turn would prevent the structural changes of the extracellular domain associated with channel activation. Furthermore, comparison with the previously reported P2X structures of other subtypes provided mechanistic insights into subtype-specific allosteric inhibition.


Asunto(s)
Receptores Purinérgicos P2X4 , Pez Cebra , Animales , Humanos , Pez Cebra/metabolismo , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , Sitio Alostérico , Adenosina Trifosfato/metabolismo
9.
Sci Rep ; 13(1): 14288, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37652931

RESUMEN

This study is performed to explore the role of P2X4 in intracerebral hemorrhage (ICH) and the association between P2X4 and the NLRP1/Caspase-1 pathway. The mouse ICH model was established via collagenase injection into the right basal ganglia. P2X4 expression in brain tissues was knocked down via intracerebroventricular injection with adeno-associated virus (AAV) harboring shRNA against shP2X4. The gene expression of P2X4 and protein levels related to NLRP1 inflammasome were detected using qRT-PCR and Western blot analysis, respectively. Muramyl dipeptide (an activator of NLRP1) was used to activate NLRP1 in brain tissues. ICH induced high expression of P2X4 in mouse brain tissues. The knockdown of P2X4 alleviated short- and long-term neurological deficits of ICH mice, as well as inhibited the tissue expression and serum levels of pro-inflammatory cytokines, including TNF-α, interleukin (IL)-6, and IL-1ß. Additionally, the expressions of NLRP1, ASC, and pro-Caspase-1 were down-regulated upon P2X4 silencing. Moreover, neurological impairment and the expression and secretion of cytokines after P2X4 silencing were aggravated by the additional administration of MDP. P2X4 knockdown represses neuroinflammation in brain tissues after ICH. Mechanistically, P2X4 inhibition exerts a neuroprotective effect in ICH by blocking the NLRP1/Caspase-1 pathway.


Asunto(s)
Enfermedades Neuroinflamatorias , Receptores Purinérgicos P2X4 , Factor de Necrosis Tumoral alfa , Animales , Ratones , Caspasa 1/genética , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/genética , Citocinas , Modelos Animales de Enfermedad , Interleucina-6 , Enfermedades Neuroinflamatorias/genética , Enfermedades Neuroinflamatorias/metabolismo , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo
10.
Neuropharmacology ; 236: 109574, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37156336

RESUMEN

Ionotropic receptors are ligand-gated ion channels triggering fast neurotransmitter responses. Among them, P2X and 5-HT3 receptors have been shown to physically interact each other and functionally inducing cross inhibitory responses. Nevertheless, despite the importance of P2X4 and 5-HT3A receptors that mediate for example neuropathic pain and psychosis respectively, complementary evidence has recently started to move forward in the understanding of this interaction. In this review, we discuss current evidence supporting the mechanism of crosstalking between both receptors, from the structural to the transduction pathway level. We expect this work may guide the design of further experiments to obtain a comprehensive view for the neuropharmacological role of these interacting receptors. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".


Asunto(s)
Canales Iónicos Activados por Ligandos , Receptores de Serotonina 5-HT3 , Receptores de Serotonina 5-HT3/metabolismo , Serotonina/metabolismo , Transporte de Proteínas , Unión Proteica/fisiología , Canales Iónicos Activados por Ligandos/metabolismo , Receptores Purinérgicos P2X4/metabolismo
11.
Cell Mol Life Sci ; 80(5): 138, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37145189

RESUMEN

Numerous evidences support that microglia contributes to the progression of Alzheimer's disease. P2X4 receptors are ATP-gated channels with high calcium permeability, which are de novo expressed in a subset of reactive microglia associated with various pathological contexts, contributing to microglial functions. P2X4 receptors are mainly localized in lysosomes and trafficking to the plasma membrane is tightly regulated. Here, we investigated the role of P2X4 in the context of Alzheimer's disease (AD). Using proteomics, we identified Apolipoprotein E (ApoE) as a specific P2X4 interacting protein. We found that P2X4 regulates lysosomal cathepsin B (CatB) activity promoting ApoE degradation; P2rX4 deletion results in higher amounts of intracellular and secreted ApoE in both bone-marrow-derived macrophage (BMDM) and microglia from APPswe/PSEN1dE9 brain. In both human AD brain and APP/PS1 mice, P2X4 and ApoE are almost exclusively expressed in plaque-associated microglia. In 12-month-old APP/PS1 mice, genetic deletion of P2rX4 reverses topographical and spatial memory impairment and reduces amount of soluble small aggregates of Aß1-42 peptide, while no obvious alteration of plaque-associated microglia characteristics is observed. Our results support that microglial P2X4 promotes lysosomal ApoE degradation, indirectly altering Aß peptide clearance, which in turn might promotes synaptic dysfunctions and cognitive deficits. Our findings uncover a specific interplay between purinergic signaling, microglial ApoE, soluble Aß (sAß) species and cognitive deficits associated with AD.


Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Apolipoproteínas E/metabolismo , Modelos Animales de Enfermedad , Trastornos de la Memoria , Ratones Transgénicos , Microglía/metabolismo , Placa Amiloide/metabolismo , Receptores Purinérgicos P2X4/metabolismo
12.
J Exp Clin Cancer Res ; 42(1): 134, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37231503

RESUMEN

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cancer. Large-scale metabolomic data have associated metabolic alterations with the pathogenesis and progression of renal carcinoma and have correlated mitochondrial activity with poor survival in a subset of patients. The aim of this study was to determine whether targeting mitochondria-lysosome interaction could be a novel therapeutic approach using patient-derived organoids as avatar for drug response. METHODS: RNAseq data analysis and immunohistochemistry were used to show overexpression of Purinergic receptor 4 (P2XR4) in clear cell carcinomas. Seahorse experiments, immunofluorescence and fluorescence cell sorting were used to demonstrate that P2XR4 regulates mitochondrial activity and the balance of radical oxygen species. Pharmacological inhibitors and genetic silencing promoted lysosomal damage, calcium overload in mitochondria and cell death via both necrosis and apoptosis. Finally, we established patient-derived organoids and murine xenograft models to investigate the antitumor effect of P2XR4 inhibition using imaging drug screening, viability assay and immunohistochemistry. RESULTS: Our data suggest that oxo-phosphorylation is the main source of tumor-derived ATP in a subset of ccRCC cells expressing P2XR4, which exerts a critical impact on tumor energy metabolism and mitochondrial activity. Prolonged mitochondrial failure induced by pharmacological inhibition or P2XR4 silencing was associated with increased oxygen radical species, changes in mitochondrial permeability (i.e., opening of the transition pore complex, dissipation of membrane potential, and calcium overload). Interestingly, higher mitochondrial activity in patient derived organoids was associated with greater sensitivity to P2XR4 inhibition and tumor reduction in a xenograft model. CONCLUSION: Overall, our results suggest that the perturbed balance between lysosomal integrity and mitochondrial activity induced by P2XR4 inhibition may represent a new therapeutic strategy for a subset of patients with renal carcinoma and that individualized organoids may be help to predict drug efficacy.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Animales , Ratones , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Calcio/metabolismo , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Mitocondrias/metabolismo , Línea Celular Tumoral
13.
Int J Mol Sci ; 24(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36614227

RESUMEN

Obesity can activate the inflammatory signal pathway, induce in the body a state of chronic inflammation, and increase the excitability of the sympathetic nervous system, which may induce sympathetic neuropathic injury. The stellate sympathetic ganglia (SG) can express the P2X4 receptor, and the abnormal expression of the P2X4 receptor is related to inflammation. Imperatorin (IMP) is a kind of furan coumarin plant which has anti-inflammatory effects. This project aimed to investigate whether IMP can affect the expression of P2X4 receptors in the SG of obese rats to display a protective effect from high-fat-triggered cardiac sympathetic neuropathic injury. Molecular docking through homology modelling revealed that IMP had good affinity for the P2X4 receptor. Our results showed that compared with the normal group, the administration of IMP or P2X4 shRNA decreased sympathetic excitement; reduced the serum levels of triglyceride, total cholesterol, and lactate dehydrogenase; downregulated the expression of P2X4 receptors in SG; and inhibited the expression of inflammatory factors in the SG and serum of obese rats significantly. In addition, the expression of factors associated with the cell pyroptosis GSDMD, caspase-1, NLRP-3, and IL-18 in obese rats were significantly higher than those of the normal rats, and such effects were decreased after treatment with IMP or P2X4 shRNA. Furthermore, IMP significantly reduced the ATP-activated currents in HEK293 cells transfected with P2X4 receptor. Thus, the P2X4 receptor may be a key target for the treatment of obesity-induced cardiac sympathetic excitement. IMP can improve obesity-induced cardiac sympathetic excitement, and its mechanism of action may be related to the inhibition of P2X4 receptor expression and activity in the SG, suppression of cellular pyroptosis in the SG, and reduction of inflammatory factor levels.


Asunto(s)
Receptores Purinérgicos P2X4 , Ganglio Estrellado , Ratas , Humanos , Animales , Ratas Sprague-Dawley , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , Células HEK293 , Simulación del Acoplamiento Molecular , Ganglio Estrellado/metabolismo , ARN Interferente Pequeño/metabolismo
14.
Purinergic Signal ; 19(3): 481-487, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36529845

RESUMEN

Neuropathic pain is a refractory pain state, and its mechanism is still not clear. Previous studies have shown that the purine receptor P2X4R expressed on hyperactive microglia in the spinal cord is essential for the occurrence and development of neuropathic pain. The cerebrospinal fluid-contacting nucleus (CSF-contacting nucleus) in the midbrain has been found to play an important role in the descending inhibition system of modulation. However, there have been no studies on P2X4R in the CSF-contacting nucleus involved in neuropathic pain. To investigate whether P2X4R is expressed in the CSF-contacting nucleus and whether its expression in the CSF-contacting nucleus is involved in the regulation of neuropathic pain, we used a model of chronic sciatic nerve ligation injury (CCI) to simulate neuropathic pain conditions. Immunohistochemistry experiments were conducted to identify the expression of P2X4R in the CSF-contacting nuclei in CCI rats, and western blot analysis showed a significant increase in P2X4R levels 7 days after modeling. Then, we packaged a P2rx4 gene-targeting shRNA in scAAV9 to knock down the P2X4R level in the CSF-contacting nucleus, and we found that CCI-induced mechanical hyperalgesia was reversed. In conclusion, P2X4R expressed in the CSF-contacting nucleus is involved in the process of neuropathic pain, and downregulating P2X4R protein in the CSF-contacting nucleus can reverse the occurrence and development of hyperalgesia, which could represent a potent therapeutic strategy for neuropathic pain.


Asunto(s)
Hiperalgesia , Neuralgia , Ratas , Animales , Hiperalgesia/metabolismo , Ratas Sprague-Dawley , Constricción , Neuralgia/metabolismo , Mesencéfalo/metabolismo , Receptores Purinérgicos P2X4/metabolismo
15.
Neurochem Res ; 48(3): 781-790, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36331667

RESUMEN

Neuropathic pain (NP) is a type of chronic pain affecting 6-8% of human health as no effective drug exists. The purinergic 2X4 receptor (P2X4R) is involved in NP. Neohesperidin (NH) is a dihydroflavonoside compound, which has anti-inflammatory and antioxidative properties. This study aimed to investigate whether NH has an effect on P2X4R-mediated NP induced by chronic constriction injury (CCI) of the sciatic nerve in rats. In this study, the CCI rat model was established to observe the changes of pain behaviors, P2X4R, and satellite glial cells (SGCs) activation in dorsal root ganglion (DRG) after NH treatment by using RT-PCR, immunofluorescence double labeling and Western blotting. Our results showed CCI rats had mechanical and thermal hyperalgesia with an increased level of P2X4R. Furthermore, SGCs were activated as indicated by increased expression of glial fibrillary acidic protein and increased tumor necrosis factor-alpha receptor 1and interleukin-1ß. In addition, phosphorylated extracellular regulated protein kinases and interferon regulatory factor 5 in CCI rats increased. After NH treatment in CCI rats, the levels of above protein decreased, and the pain reduced. Overall, NH can markedly alleviate NP by reducing P2X4R expression and SGCs activation in DRG.


Asunto(s)
Neuralgia , Receptores Purinérgicos P2X4 , Ratas , Humanos , Animales , Ratas Sprague-Dawley , Receptores Purinérgicos P2X4/metabolismo , Neuroglía/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Ganglios Espinales/metabolismo
16.
Purinergic Signal ; 19(2): 367-378, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35976527

RESUMEN

Bone cells are known to express multiple P2 receptor subtypes, and the functional effects of receptor activation have been described for many of these. One exception is the P2X4 receptor, which despite strong expression in osteoblasts and osteoclasts, has no defined functional activity. This study used the selective P2X4 receptor antagonists, 5-BDBD and PSB-12062, to investigate the role of this receptor in bone. Both antagonists (≥ 0.1 µM) dose-dependently decreased bone formation by 60-100%. This was accompanied by a ≤ 70% decrease in alkaline phosphatase activity, a ≤ 40% reduction in cell number, and a ≤ 80% increase in the number of adipocytes present in the culture. The analysis of gene expression showed that levels of osteoblast marker genes (e.g. Alpl, Bglap) were decreased in 5-BDBD treated cells. Conversely, expression of the adipogenic transcription factor PPARG was increased 10-fold. In osteoclasts, high doses of both antagonists were associated with a reduction in osteoclast formation and resorptive activity by ≤ 95% and ≤ 90%, respectively. Taken together, these data suggest that the P2X4 receptor plays a role in modulating bone cell function. In particular, it appears to influence osteoblast differentiation favouring the osteogenic lineage over the adipogenic lineage.


Asunto(s)
Osteogénesis , Receptores Purinérgicos P2X4 , Osteogénesis/fisiología , Receptores Purinérgicos P2X4/metabolismo , Diferenciación Celular/fisiología , Osteoclastos/metabolismo , Osteoblastos/metabolismo
17.
Life Sci ; 311(Pt A): 121143, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36328074

RESUMEN

AIMS: P2X receptors are ATP-gated ion channels which play a role in many pathophysiological conditions. They are considered as novel drug targets, particularly in the fields of pain, (neuro) inflammation, and cancer. Due to difficulties in developing drug-like orthosteric ligands that bind to the highly polar ATP binding site, the design of positive and negative allosteric modulators (PAMs and NAMs) is a promising strategy. The P2X4 receptor was proposed as a novel target for neuropathic and inflammatory pain (antagonists), and for the treatment of alcoholism (PAMs). So far, little is known about the allosteric binding site(s) of P2X4 receptors. The aim of this study was to identify the binding site(s) of the macrocyclic natural product ivermectin, the urea derivative BX430, and the antidepressant drug paroxetine that act as allosteric modulators of P2X4 receptors. MATERIAL AND METHODS: We generated chimeric receptors in which extracellular sequences of the human P2X4 receptor were exchanged for corresponding residues of the human P2X2 receptor, complemented by specific single amino acid residue mutants. Chimeric and mutated receptors were stably expressed in 1321N1 astrocytoma cells, and characterized by fluorimetric measurement of ATP-induced Ca2+-influx. In addition, docking studies utilizing a homology model of the human P2X4 receptor were performed. KEY FINDINGS: Our results suggest a common binding site for ivermectin and BX430 in an extracellular receptor domain, while paroxetine might bind to the cation pore. SIGNIFICANCE: The obtained results provide a basis for the development of positive and negative allosteric P2X4 modulators with improved properties and will support future drug development efforts.


Asunto(s)
Paroxetina , Receptores Purinérgicos P2X4 , Humanos , Receptores Purinérgicos P2X4/metabolismo , Ivermectina , Sitios de Unión , Dolor , Adenosina Trifosfato/metabolismo
18.
Neuropharmacology ; 221: 109278, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36202258

RESUMEN

The topic of the present review regards the ubiquitous and phylogenetically most ancient prototype of intercellular signaling, the one mediated by extracellular nucleosides and nucleotides, bearing a strong influence on pathophysiological processes in the nervous system. Not by chance, purine and pyrimidine molecules are the most prevalent and ubiquitous chemical messengers in the animal and plant kingdoms, operating through a large plethora of purinergic metabolizing enzymes, P1 and P2 receptors, nucleoside and nucleotide channels and transporters. Because ectonucleotidases degrade the agonists of P2 receptors while simultaneously generate the agonists for P1 receptors, and because several agonists, or antagonists, simultaneously bind and activate, or inhibit, more than one receptor subtype, it follows that an all-inclusive "purinergic network" perspective should be better considered when looking at purinergic actions. This becomes particularly crucial during pathological conditions as for instance amyotrophic lateral sclerosis, where the contribution of purinergic signaling has been demonstrated to differ according to each target cell phenotype and stage of disease progression. Here we will present some newly updated results about P2X7 and P2X4 as the most thoroughly investigated P2 receptors in amyotrophic lateral sclerosis, being aware that the comprehension of their actions is still in progress, and that the purinergic rationale for studying this disease must be however wide-ranging and all-inclusive. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.


Asunto(s)
Esclerosis Amiotrófica Lateral , Animales , Esclerosis Amiotrófica Lateral/metabolismo , Transducción de Señal , Receptores Purinérgicos P2X7/metabolismo , Adenosina Trifosfato/metabolismo , Receptores Purinérgicos P2X4/metabolismo
19.
J Am Soc Nephrol ; 33(12): 2211-2231, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36280286

RESUMEN

BACKGROUND: The mechanisms regulating CD8+ T cell migration to nonlymphoid tissue during inflammation have not been fully elucidated, and the migratory properties of effector memory CD8+ T cells that re-express CD45RA (TEMRA CD8+ T cells) remain unclear, despite their roles in autoimmune diseases and allotransplant rejection. METHODS: We used single-cell proteomic profiling and functional testing of CD8+ T cell subsets to characterize their effector functions and migratory properties in healthy volunteers and kidney transplant recipients with stable or humoral rejection. RESULTS: We showed that humoral rejection of a kidney allograft is associated with an accumulation of cytolytic TEMRA CD8+ T cells in blood and kidney graft biopsies. TEMRA CD8+ T cells from kidney transplant recipients exhibited enhanced migratory properties compared with effector memory (EM) CD8+ T cells, with enhanced adhesion to activated endothelium and transmigration in response to the chemokine CXCL12. CXCL12 directly triggers a purinergic P2×4 receptor-dependent proinflammatory response of TEMRA CD8+ T cells from transplant recipients. The stimulation with IL-15 promotes the CXCL12-induced migration of TEMRA and EM CD8+ T cells and promotes the generation of functional PSGL1, which interacts with the cell adhesion molecule P-selectin and adhesion of these cells to activated endothelium. Although disruption of the interaction between functional PSGL1 and P-selectin prevents the adhesion and transmigration of both TEMRA and EM CD8+ T cells, targeting VLA-4 or LFA-1 (integrins involved in T cell migration) specifically inhibited the migration of TEMRA CD8+ T cells from kidney transplant recipients. CONCLUSIONS: Our findings highlight the active role of TEMRA CD8+ T cells in humoral transplant rejection and suggest that kidney transplant recipients may benefit from therapeutics targeting these cells.


Asunto(s)
Linfocitos T CD8-positivos , Trasplante de Riñón , Humanos , Receptores de Trasplantes , Selectina-P/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Rechazo de Injerto , Memoria Inmunológica , Proteómica , Antígenos Comunes de Leucocito/metabolismo , Subgrupos de Linfocitos T/metabolismo
20.
Int Immunopharmacol ; 113(Pt A): 109326, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36252487

RESUMEN

Alcoholic liver fibrosis(ALF), as a liver disease caused by long-term alcoholism, attracts international attention. Activation of hepatic stellate cells is a key step in the development of alcoholic-associated liver fibrosis. Increasing studies have shown that P2X4 receptor, as a component of purinoceptor family in adenosine pathway, plays an important role in numerous liver diseases. In this study, it was found that the expression of P2X4 receptor was significantly increased in the mouse liver fibrosis model fed with ethanol plus CCL4 and in the HSC-T6 cell model stimulated by acetaldehyde. In vivo, C57BL/6J mice were used to establish ALF models, and 5-BDBD, a specific inhibitor of P2X4 receptor, was injected intraperitoneally at 6-8 weeks of ALF development. The results indicated that 5-BDBD could reduce the expression of fibrotic markers and attenuate the pathological features of fibrosis, thus demonstrating the alleviation of ALF.In vitro, PI3K/AKT pathway was activated in HSC-T6 cells stimulated by acetaldehyde. Silencing P2X4 receptor or administration of 5-BDBD could inhibit the phosphorylation of PI3K and AKT, thereby inhibiting the activation of HSC-T6 cells. In addition, 5-BDBD was administered to RAW264.7 cells activated by acetaldehyde, and then part of the supernatant was added to HSC-T6 cells culture medium. The results showed that 5-BDBD could reduce the expression of classical inflammatory pathways such as TGF-ß pathway in RAW267.4 cells, thus inhibiting the activation of HSC-T6 cells. Taken together, these results suggest that P2X4 receptors may influence the progression of alcohol-related liver fibrosis by directly mediating the PI3K/AKT pathway, or indirectly by influencing RAW264.7 cells to regulate hepatic stellate cell activation.


Asunto(s)
Células Estrelladas Hepáticas , Cirrosis Hepática , Fosfatidilinositol 3-Quinasas , Receptores Purinérgicos P2X4 , Animales , Ratones , Acetaldehído/farmacología , Etanol/toxicidad , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Transducción de Señal , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA