RESUMEN
Cholesterol is a key carbon source for Mycobacterium tuberculosis (Mtb) survival and persistence within macrophages. However, little is known about the role of cholesterol metabolism by Mtb in host-Mtb interplay. Here, we report the immune suppression mediated by Mtb's cholesterol metabolites. Conducting the cholesterol metabolic profiling and loss-of-function experiments, we show that the cholesterol oxidation products catalyzed by a thiolase FadA5 from Mtb H37Ra, 4-androstenedione (AD), and its derivant 1,4-androstenedione (ADD) inhibit the expression of pro-inflammatory cytokines and thus promote bacterial survival in bone marrow-derived macrophages (BMDMs). Our time-resolved fluorescence resonance energy transfer (TR-FRET)-based screening further identifies the nuclear receptor LXRα as the target of ADD. Activation of LXRα via ADD impedes the nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPK) signaling and reduces cholesterol accumulation in lipid rafts upon TLR4 simulation, thereby compromising the inflammatory responses. Our findings provide the evidence that Mtb could suppress the host immunity through its cholesterol metabolic enzyme and products, which are potential targets for screening novel anti-tuberculosis (TB) agents.
Asunto(s)
Colesterol , Receptores X del Hígado , Macrófagos , Mycobacterium tuberculosis , Tuberculosis , Colesterol/metabolismo , Animales , Receptores X del Hígado/metabolismo , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Macrófagos/metabolismo , Tuberculosis/microbiología , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Citocinas/metabolismo , Inflamación/metabolismo , Humanos , Interacciones Huésped-PatógenoRESUMEN
Nuclear receptors (NRs) are widely expressed transcription factors that bind small, lipophilic compounds and regulate diverse biological processes. In the small intestine, NRs are known to act as sensors that control transcriptional responses to endogenous and exogenous signals, yet their downstream effects have not been characterized extensively. Here, we investigate the activation of six different NRs individually in human intestinal organoids using small molecules agonists. We observe changes in key enterocyte functions such as lipid, glucose, and amino acid absorption, the regulation of electrolyte balance, and drug metabolism. Our findings reinforce PXR, LXR, FXR, and PPARα as regulators of lipid absorption. Furthermore, known hepatic effects of AHR and VDR activation were recapitulated in the human small intestine. Finally, we identify unique target genes for intestinal PXR activation (ERG28, TMEM97, and TM7SF2), LXR activation (RAB6B), and VDR activation (CA12). This study provides an unbiased and comprehensive transcriptomic description of individual NR pathways in the human small intestine. By gaining a deeper understanding of the effects of individual NRs, we might better harness their pharmacological and therapeutic potential.
Asunto(s)
Intestino Delgado , Receptores Citoplasmáticos y Nucleares , Transcriptoma , Humanos , Intestino Delgado/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/genética , Receptores X del Hígado/metabolismo , Receptores X del Hígado/genética , Receptores X del Hígado/agonistas , Organoides/metabolismo , Transducción de Señal , Metabolismo de los Lípidos/genética , Enterocitos/metabolismo , Receptor X de Pregnano/metabolismo , Receptor X de Pregnano/genética , Regulación de la Expresión Génica/efectos de los fármacosRESUMEN
FOXP3+ regulatory T cells (Treg cells) are key for immune homeostasis. Here, we reveal that nuclear receptor corepressor 1 (NCOR1) controls naïve and effector Treg cell states. Upon NCOR1 deletion in T cells, effector Treg cell frequencies were elevated in mice and in in vitro-generated human Treg cells. NCOR1-deficient Treg cells failed to protect mice from severe weight loss and intestinal inflammation associated with CD4+ T cell transfer colitis, indicating impaired suppressive function. NCOR1 controls the transcriptional integrity of Treg cells, since effector gene signatures were already upregulated in naïve NCOR1-deficient Treg cells while effector NCOR1-deficient Treg cells failed to repress genes associated with naïve Treg cells. Moreover, genes related to cholesterol homeostasis including targets of liver X receptor (LXR) were dysregulated in NCOR1-deficient Treg cells. However, genetic ablation of LXRß in T cells did not revert the effects of NCOR1 deficiency, indicating that NCOR1 controls naïve and effector Treg cell subset composition independent from its ability to repress LXRß-induced gene expression. Thus, our study reveals that NCOR1 maintains naïve and effector Treg cell states via regulating their transcriptional integrity. We also reveal a critical role for this epigenetic regulator in supporting the suppressive functions of Treg cells in vivo.
Asunto(s)
Diferenciación Celular , Co-Represor 1 de Receptor Nuclear , Linfocitos T Reguladores , Linfocitos T Reguladores/inmunología , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 1 de Receptor Nuclear/genética , Animales , Ratones , Humanos , Receptores X del Hígado/metabolismo , Receptores X del Hígado/genética , Ratones Endogámicos C57BL , Colitis/inmunología , Colitis/genética , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Ratones NoqueadosRESUMEN
Metabolic dysfunction-associated steatotic liver disease (MASLD) is primarily attributed to the abnormal upregulation of hepatic lipogenesis, which is especially caused by the overactivation of the liver X receptor/sterol regulatory element-binding protein-1c (LXR/SREBP-1c) pathway in hepatocytes. In this study, we report the rational design and synthesis of a novel series of squaramides via bioisosteric replacement, which was evaluated for its inhibitory activity on the LXR/SREBP-1c pathway using dual cell-based assays. Compound 31 was found to significantly downregulate LXR, SREBP-1c, and their target genes associated with lipogenesis. Further investigation revealed that compound 31 may indirectly inhibit the LXR/SREBP-1c pathway by activating the upstream regulator sirtuin 6 (SIRT6). Encouragingly, compound 31 substantially attenuated lipid accumulation in HepG2 cells and in the liver of high-fat-diet-fed mice. These findings suggest that compound 31 holds promise as a candidate for the development of treatments for MASLD and other lipid metabolism-related diseases.
Asunto(s)
Receptores X del Hígado , Transducción de Señal , Sirtuinas , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Humanos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/antagonistas & inhibidores , Animales , Receptores X del Hígado/metabolismo , Receptores X del Hígado/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Células Hep G2 , Sirtuinas/antagonistas & inhibidores , Sirtuinas/metabolismo , Ratones , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Masculino , Ratones Endogámicos C57BL , Relación Estructura-Actividad , Dieta Alta en Grasa , Descubrimiento de DrogasRESUMEN
The mechanisms of regulation of the organic anion transporting polypeptide OATP1B3 by sex hormones were studied using HepG2 cells. Estradiol, progesterone, and testosterone were added to cells at concentrations of 1, 10, 100 µM for 24 h. The relative content of OATP1B3 was evaluated by Western blotting. Estradiol at concentrations of 10 and 100 µM increased the level of OATP1B3 acting through the farnesoid X-receptor, testosterone at concentrations of 1, 10, and 100 µM increased the expression of the transporter protein due to its effect on the liver X-receptor subtype α (LXRα), and progesterone did not affect the expression of OATP1B3.
Asunto(s)
Estradiol , Progesterona , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos , Testosterona , Humanos , Estradiol/metabolismo , Estradiol/farmacología , Progesterona/metabolismo , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/metabolismo , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/genética , Testosterona/metabolismo , Células Hep G2 , Receptores X del Hígado/metabolismo , Receptores X del Hígado/genética , Regulación de la Expresión Génica/efectos de los fármacosRESUMEN
Dysfunction or loss of pancreatic ß cells can cause insulin deficiency and impaired glucose regulation, resulting in conditions like type 2 diabetes. The ATP-binding cassette transporter A1 (ABCA1) plays a key role in the reverse cholesterol transport system, and its decreased expression is associated with pancreatic ß cell lipotoxicity, resulting in abnormal insulin synthesis and secretion. Increased glutamate release can cause glucotoxicity in ß cells, though the detailed mechanisms remain unclear. This study investigated the effect of N-methyl-D-aspartic acid (NMDA) on ABCA1 expression in INS-1 cells and primary pancreatic islets to elucidate the signaling mechanisms that suppress insulin secretion. Using Western blotting, microscopy, and biochemical analyses, we found that NMDA activated the mitogen-activated protein kinase (MEK)-dependent pathway, suppressing ABCA1 protein and mRNA expression. The MEK-specific inhibitor PD98059 restored ABCA1 promoter activity, indicating the involvement of the extracellular signal-regulated kinase (MEK/ERK) pathway. Furthermore, we identified the liver X receptor (LXR) as an effector transcription factor in NMDA regulation of ABCA1 transcription. NMDA treatment increased cholesterol and triglyceride levels while decreasing insulin secretion, even under high-glucose conditions. These effects were abrogated by treatment with PD98059. This study reveals that NMDA suppresses ABCA1 expression via the MEK/ERK/LXR pathway, providing new insights into the pathological suppression of insulin secretion in pancreatic ß cells and emphasizing the importance of investigating the role of NMDA in ß cell dysfunction.
Asunto(s)
Transportador 1 de Casete de Unión a ATP , Células Secretoras de Insulina , Receptores X del Hígado , Sistema de Señalización de MAP Quinasas , N-Metilaspartato , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Animales , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , N-Metilaspartato/farmacología , Ratas , Receptores X del Hígado/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Colesterol/metabolismo , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Masculino , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Línea CelularRESUMEN
The strategy of lowering cholesterol levels by promoting cholesterol excretion is still lacking, and few molecular targets act on multiple cholesterol metabolic processes. In this study, we find that Nogo-B deficiency/inhibition simultaneously promotes hepatic uptake of cholesterol and cholesterol excretion. Nogo-B deficiency decreases cholesterol levels by activating ATP-binding cassette transporters (ABCs), apolipoprotein E (ApoE), and low-density lipoprotein receptor (LDLR) expression. We discover that Nogo-B interacts with liver X receptor α (LXRα), and Nogo-B deficiency inhibits ubiquitination degradation of LXRα, thereby enhancing its function on cholesterol excretion. Decreased cellular cholesterol levels further activate SREBP2 and LDLR expression, thereby promoting hepatic uptake of cholesterol. Nogo-B inhibition decreases atherosclerotic plaques and cholesterol levels in mice, and Nogo-B levels are correlated to cholesterol levels in human plasma. In this study, Nogo-B deficiency/inhibition not only promotes hepatic uptake of blood cholesterol but also facilitates cholesterol excretion. This study reports a strategy to lower cholesterol levels by inhibiting Nogo-B expression to promote hepatic cholesterol uptake and cholesterol excretion.
Asunto(s)
Colesterol , Hipercolesterolemia , Proteínas Nogo , Receptores de LDL , Animales , Humanos , Masculino , Ratones , Apolipoproteínas E/metabolismo , Colesterol/metabolismo , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patología , Hígado/metabolismo , Receptores X del Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nogo/antagonistas & inhibidores , Proteínas Nogo/metabolismo , Receptores de LDL/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , UbiquitinaciónRESUMEN
A novel amphiphilic guanidyl-functionalized stigmasterol hydrochloride (GFSH) was designed and synthesized as bile salt sequestrants for cholesterol reduction. GFSH exhibited a considerable in vitro capacity for bile salt binding in gastrointestinal digestion and alleviated hypercholesterolemia in vivo. GFSH spontaneously interacted with sodium cholate via synergistic electrostatic, hydrophobic, and hydrogen-bonding interactions. The effects of GFSH on serum cholesterol reduction in mice fed a high-fat-high-cholesterol diet were explored by measuring the expression of key transcription factors related to bile acid metabolism. GFSH produced a dose-dependent reduction in weight gain, hepatic fat accumulation, and fecal and blood markers. Real-time quantitative polymerase chain reaction (RT-qPCR) and western blot analyses demonstrated GFSH-induced expression of hepatic CYP7A, LXRα, and LDL-R. GFSH exerts the cholesterol-lowering activity by inducing the bile acid metabolism.
Asunto(s)
Ácidos y Sales Biliares , Colesterol 7-alfa-Hidroxilasa , Colesterol , Hipercolesterolemia , Ratones Endogámicos C57BL , Estigmasterol , Animales , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/química , Ratones , Colesterol/metabolismo , Colesterol/sangre , Estigmasterol/química , Estigmasterol/farmacología , Humanos , Masculino , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/metabolismo , Colesterol 7-alfa-Hidroxilasa/metabolismo , Colesterol 7-alfa-Hidroxilasa/genética , Anticolesterolemiantes/farmacología , Anticolesterolemiantes/química , Hígado/metabolismo , Hígado/efectos de los fármacos , Receptores X del Hígado/metabolismo , Receptores X del Hígado/genéticaRESUMEN
Transitions between the fed and fasted state are common in mammals. The liver orchestrates adaptive responses to feeding/fasting by transcriptionally regulating metabolic pathways of energy usage and storage. Transcriptional and enhancer dynamics following cessation of fasting (refeeding) have not been explored. We examined the transcriptional and chromatin events occurring upon refeeding in mice, including kinetic behavior and molecular drivers. We found that the refeeding response is temporally organized with the early response focused on ramping up protein translation while the later stages of refeeding drive a bifurcated lipid synthesis program. While both the cholesterol biosynthesis and lipogenesis pathways were inhibited during fasting, most cholesterol biosynthesis genes returned to their basal levels upon refeeding while most lipogenesis genes markedly overshoot above pre-fasting levels. Gene knockout, enhancer dynamics, and ChIP-seq analyses revealed that lipogenic gene overshoot is dictated by LXRα. These findings from unbiased analyses unravel the mechanism behind the long-known phenomenon of refeeding fat overshoot.
Asunto(s)
Elementos de Facilitación Genéticos , Ayuno , Receptores X del Hígado , Hígado , Animales , Masculino , Ratones , Colesterol/metabolismo , Elementos de Facilitación Genéticos/genética , Ayuno/metabolismo , Regulación de la Expresión Génica , Lipogénesis , Hígado/metabolismo , Receptores X del Hígado/metabolismo , Receptores X del Hígado/genética , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
Liver X receptor-α (LXRα) regulates cellular cholesterol abundance and potently activates hepatic lipogenesis. Here we show that at least 1 in 450 people in the UK Biobank carry functionally impaired mutations in LXRα, which is associated with biochemical evidence of hepatic dysfunction. On a western diet, male and female mice homozygous for a dominant negative mutation in LXRα have elevated liver cholesterol, diffuse cholesterol crystal accumulation and develop severe hepatitis and fibrosis, despite reduced liver triglyceride and no steatosis. This phenotype does not occur on low-cholesterol diets and can be prevented by hepatocyte-specific overexpression of LXRα. LXRα knockout mice exhibit a milder phenotype with regional variation in cholesterol crystal deposition and inflammation inversely correlating with steatosis. In summary, LXRα is necessary for the maintenance of hepatocyte health, likely due to regulation of cellular cholesterol content. The inverse association between steatosis and both inflammation and cholesterol crystallization may represent a protective action of hepatic lipogenesis in the context of excess hepatic cholesterol.
Asunto(s)
Colesterol , Receptores X del Hígado , Hígado , Mutación , Animales , Receptores X del Hígado/metabolismo , Receptores X del Hígado/genética , Colesterol/metabolismo , Humanos , Ratones , Hígado/metabolismo , Masculino , Femenino , Ratones Noqueados , Hígado Graso/genética , Hígado Graso/metabolismo , Lipogénesis/genética , Hepatocitos/metabolismoRESUMEN
Parkinson's disease (PD) is the second most common neurodegenerative disorder whose etiology remains unknown. The immune system has been implicated in hallmarks of PD including aggregation of α-synuclein and death of dopaminergic neurons in the substantia nigra. As a core regulator of immune response and inflammation, liver X receptors (LXRs) have been shown to have protective effects in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. With two isoforms of LXRs (LXRα and LXRß) expressed in the brain, their roles and distributions in this tissue remain largely unexplored. Here, we used MPTP to mimic symptoms and biomedical changes seen in PD in LXRα-/- and wild-type mice to investigate the role of LXRα in the etiology and progression of PD. We found that MPTP is unable to induce motor deficits, anxiety-like behavior in LXRα-/- mice, which has been seen in WT mice. Gene ontology analysis of RNA sequencing revealed that knockout of LXRα led to enrichment of the process, including immune response and inflammation in the midbrain. In addition, MPTP did not lead to dopaminergic neuron death in the striatum and substantia nigra in LXRα-/- mice, the basal GFAP protein level, and pro-inflammatory cytokines were elevated in LXRα-/- mice. Lastly, the microglia activation and astrogliosis caused by MPTP intoxication we found in WT mice were abolished in LXRα-/- mice. To sum up, we conclude that LXRα is a critical regulator in MPTP intoxication and may play a unique role in astrogliosis seen in the neuroinflammation of PD.
Asunto(s)
Receptores X del Hígado , Ratones Endogámicos C57BL , Ratones Noqueados , Neuroglía , Enfermedades Neuroinflamatorias , Animales , Receptores X del Hígado/metabolismo , Neuroglía/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Ratones , Masculino , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/patología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Sustancia Negra/metabolismo , Sustancia Negra/patología , Microglía/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patologíaRESUMEN
Tumors growing in metabolically challenged environments, such as glioblastoma in the brain, are particularly reliant on crosstalk with their tumor microenvironment (TME) to satisfy their high energetic needs. To study the intricacies of this metabolic interplay, we interrogated the heterogeneity of the glioblastoma TME using single-cell and multi-omics analyses and identified metabolically rewired tumor-associated macrophage (TAM) subpopulations with pro-tumorigenic properties. These TAM subsets, termed lipid-laden macrophages (LLMs) to reflect their cholesterol accumulation, are epigenetically rewired, display immunosuppressive features, and are enriched in the aggressive mesenchymal glioblastoma subtype. Engulfment of cholesterol-rich myelin debris endows subsets of TAMs to acquire an LLM phenotype. Subsequently, LLMs directly transfer myelin-derived lipids to cancer cells in an LXR/Abca1-dependent manner, thereby fueling the heightened metabolic demands of mesenchymal glioblastoma. Our work provides an in-depth understanding of the immune-metabolic interplay during glioblastoma progression, thereby laying a framework to unveil targetable metabolic vulnerabilities in glioblastoma.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Vaina de Mielina , Microambiente Tumoral , Humanos , Vaina de Mielina/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glioblastoma/metabolismo , Glioblastoma/patología , Animales , Ratones , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Colesterol/metabolismo , Receptores X del Hígado/metabolismo , Macrófagos/metabolismo , Línea Celular Tumoral , Transportador 1 de Casete de Unión a ATP/metabolismo , Femenino , MasculinoRESUMEN
Therapeutics enhancing apolipoprotein (APOE) positive function are a priority, because APOE4 is the major genetic risk factor for Alzheimer's disease (AD). The function of APOE, the key constituent of lipoprotein particles that transport cholesterol and lipids in the brain, is dependent on lipidation by ABCA1, a cell-membrane cholesterol transporter. ABCA1 transcription is regulated by liver X receptors (LXR): agonists have been shown to increase ABCA1, often accompanied by unwanted lipogenesis and elevated triglycerides (TG). Therefore, nonlipogenic ABCA1-inducers (NLAI) are needed. Two rounds of optimization of an HTS hit, derived from a phenotypic screen, gave lead compound 39 that was validated and tested in E3/4FAD mice that express human APOE3/4 and five mutant APP and PSEN1 human transgenes. Treatment with 39 increased ABCA1 expression, enhanced APOE lipidation, and reversed multiple AD phenotypes, without increasing TG. This NLAI/LXR-agonist study is the first in a human APOE-expressing model with hallmark amyloid-ß pathology.
Asunto(s)
Transportador 1 de Casete de Unión a ATP , Enfermedad de Alzheimer , Apolipoproteína E3 , Apolipoproteína E4 , Modelos Animales de Enfermedad , Ratones Transgénicos , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Humanos , Ratones , Apolipoproteína E4/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Receptores X del Hígado/agonistas , Receptores X del Hígado/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismoRESUMEN
Foam cells in atheroma are engorged with lipid droplets (LDs) that contain esters of regulatory lipids whose metabolism remains poorly understood. LD-associated hydrolase (LDAH) has a lipase structure and high affinity for LDs of foam cells. Using knockout and transgenic mice of both sexes, here we show that LDAH inhibits atherosclerosis development and promotes stable lesion architectures. Broad and targeted lipidomic analyzes of primary macrophages and comparative lipid profiling of atheroma identified a broad impact of LDAH on esterified sterols, including natural liver X receptor (LXR) sterol ligands. Transcriptomic analyzes coupled with rescue experiments show that LDAH modulates the expression of prototypical LXR targets and leads macrophages to a less inflammatory phenotype with a profibrotic gene signature. These studies underscore the role of LDs as reservoirs and metabolic hubs of bioactive lipids, and suggest that LDAH favorably modulates macrophage activation and protects against atherosclerosis via lipolytic mobilization of regulatory sterols.
Asunto(s)
Aterosclerosis , Gotas Lipídicas , Receptores X del Hígado , Macrófagos , Ratones Noqueados , Animales , Aterosclerosis/metabolismo , Aterosclerosis/genética , Aterosclerosis/prevención & control , Aterosclerosis/patología , Receptores X del Hígado/metabolismo , Receptores X del Hígado/genética , Ratones , Masculino , Ligandos , Femenino , Gotas Lipídicas/metabolismo , Macrófagos/metabolismo , Esteroles/metabolismo , Células Espumosas/metabolismo , Ratones Transgénicos , Ratones Endogámicos C57BL , Humanos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Activación de Macrófagos , Esterol EsterasaRESUMEN
Intracellular cholesterol metabolism is regulated by the SREBP-2 and LXR signaling pathways. The effects of inflammation on these molecular mechanisms remain poorly studied, especially at the blood-brain barrier (BBB) level. Tumor necrosis factor α (TNFα) is a proinflammatory cytokine associated with BBB dysfunction. Therefore, the aim of our study was to investigate the effects of TNFα on BBB cholesterol metabolism, focusing on its underlying signaling pathways. Using a human in vitro BBB model composed of human brain-like endothelial cells (hBLECs) and brain pericytes (HBPs), we observed that TNFα increases BBB permeability by degrading the tight junction protein CLAUDIN-5 and activating stress signaling pathways in both cell types. TNFα also promotes cholesterol release and decreases cholesterol accumulation and APOE secretion. In hBLECs, the expression of SREBP-2 targets (LDLR and HMGCR) is increased, while ABCA1 expression is decreased. In HBPs, only LDLR and ABCA1 expression is increased. TNFα treatment also induces 25-hydroxycholesterol (25-HC) production, a cholesterol metabolite involved in the immune response and intracellular cholesterol metabolism. 25-HC pretreatment attenuates TNFα-induced BBB leakage and partially alleviates the effects of TNFα on ABCA1, LDLR, and HMGCR expression. Overall, our results suggest that TNFα favors cholesterol efflux via an LXR/ABCA1-independent mechanism at the BBB, while it activates the SREBP-2 pathway. Treatment with 25-HC partially reversed the effect of TNFα on the LXR/SREBP-2 pathways. Our study provides novel perspectives for better understanding cerebrovascular signaling events linked to BBB dysfunction and cholesterol metabolism in neuroinflammatory diseases.
Asunto(s)
Barrera Hematoencefálica , Colesterol , Células Endoteliales , Hidroxicolesteroles , Proteína 2 de Unión a Elementos Reguladores de Esteroles , Factor de Necrosis Tumoral alfa , Hidroxicolesteroles/farmacología , Hidroxicolesteroles/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Humanos , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Colesterol/metabolismo , Receptores de LDL/metabolismo , Receptores de LDL/genética , Transducción de Señal/efectos de los fármacos , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Pericitos/metabolismo , Pericitos/efectos de los fármacos , Pericitos/patología , Hidroximetilglutaril-CoA Reductasas/metabolismo , Hidroximetilglutaril-CoA Reductasas/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Receptores X del Hígado/metabolismo , Receptores X del Hígado/genética , Células CultivadasRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Hepatic ischemia/reperfusion injury (HIRI) is a common occurrence during or after liver surgery, representing a major cause for postoperative complications or increased morbidity and mortality in liver diseases. Rehmanniae Radix Praeparata (RRP) is a traditional Chinese medicine frequently used and has garnered extensive attention for its therapeutic potential treating cardiovascular and hepatic ailments. Recent studies have indicated the possibility of RRP in regulating lipid accumulation and apoptosis in hepatocytes. AIM OF THE STUDY: This study aimed to investigate the specific mechanisms by which RRP may impede the progression of HIRI through the regulation of lipid metabolism. MATERIALS AND METHODS: High-performance liquid chromatography (HPLC) was used to identify the major components of RRP water extract. C57BL/6J mice were orally given RRP at doses of 2.5 g/kg, 5 g/kg, and 10 g/kg for a duration of 7 days before undergoing HIRI surgery. Furthermore, we established a lipid-loaded in vitro model by exposing hepatocytes to oleic acid and palmitic acid (OAPA). The anti-HIRI effect of RRP was determined through transcriptomics and various molecular biology experiments. RESULTS: After identifying active ingredients in RRP, we observed that RRP exerted lipid-lowering and hepatoprotective effects on HIRI mice and OAPA-treated hepatocytes. RRP activated AMP-activated protein kinase (AMPK) and inhibited mammalian target of rapamycin (mTOR), which further on the one hand, inhibited the cleavage and activation of sterol regulatory element binding protein 2 (SREBP2) by limiting the movement of SREBPs cleavage-activating protein (SCAP)-SREBP2 complex with the help of endoplasmic reticulum lipid raft-associated protein 1 (ERLIN1) and insulin-induced gene 1 (INSIG1), and on the other hand, promoted liver X receptor α (LXRα) nuclear transportation and subsequent cholesterol efflux. Meanwhile, the anti-lipotoxic effect of RRP can be partly reversed by an LXRα inhibitor but largely blocked by the application of compound C, an AMPK inhibitor. CONCLUSION: Our study elucidated that RRP served as a potential AMPK activator to alleviate HIRI by blocking SREBP2 activation and cholesterol synthesis, while also activating LXRα to facilitate cholesterol efflux. These findings shed new light on the potential therapeutic use of RRP for improving HIRI.
Asunto(s)
Hepatocitos , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Extractos Vegetales , Rehmannia , Daño por Reperfusión , Animales , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Masculino , Rehmannia/química , Extractos Vegetales/farmacología , Ratones , Receptores X del Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Proteínas Quinasas Activadas por AMP/metabolismo , Hepatopatías/tratamiento farmacológico , Hepatopatías/metabolismoRESUMEN
Eriodictyol, a flavonoid distributed in citrus fruits, has been known to exhibit anti-inflammatory activity. In this study, destabilized medial meniscus (DMM)-induced OA model was used to investigate the protective role of eriodictyol on OA. Meanwhile, we used an IL-1ß-stimulated human osteoarthritis chondrocytes model to investigate the anti-inflammatory mechanism of eriodictyol on OA. The production of nitric oxide was detected by Griess reaction. The productions of MMP1, MMP3, and PGE2 were detected by ELISA. The expression of LXRα, ABCA1, PI3K, AKT, and NF-κB were measured by western blot analysis. The results demonstrated that eriodictyol could alleviate DMM-induced OA in mice. In vitro, eriodictyol inhibited IL-1ß-induced NO, PGE2, MMP1, and MMP3 production in human osteoarthritis chondrocytes. Eriodictyol also suppressed the phosphorylation of PI3K, AKT, NF-κB p65, and IκBα induced by IL-1ß. Meanwhile, eriodictyol significantly increased the expression of LXRα and ABCA1. Furthermore, eriodictyol disrupted lipid rafts formation through reducing the cholesterol content. And cholesterol replenishment experiment showed that adding water-soluble cholesterol could reverse the anti-inflammatory effect of eriodictyol. In conclusion, the results indicated eriodictyol inhibited IL-1ß-induced inflammation in human osteoarthritis chondrocytes through suppressing lipid rafts formation, which subsequently inhibiting PI3K/AKT/NF-κB signaling pathway.
Asunto(s)
Condrocitos , Flavanonas , FN-kappa B , Osteoartritis , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Flavanonas/farmacología , Animales , Humanos , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Ratones , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Osteoartritis/patología , Interleucina-1beta/metabolismo , Receptores X del Hígado/metabolismo , Masculino , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Progresión de la Enfermedad , Modelos Animales de Enfermedad , Antiinflamatorios/farmacología , Óxido Nítrico/metabolismo , Ratones Endogámicos C57BLAsunto(s)
Colesterol , Receptores X del Hígado , Estado Prediabético , Transducción de Señal , Humanos , Estado Prediabético/metabolismo , Receptores X del Hígado/metabolismo , Receptores X del Hígado/genética , Colesterol/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Animales , Diabetes Mellitus/metabolismo , Factores de Riesgo , Diabetes Mellitus Tipo 2/metabolismo , RatonesRESUMEN
The long and very long chain polyunsaturated fatty acids (LC-PUFAs) are preferentially transported by the mother to the fetus. Failure to supply LC-PUFAs is strongly linked with stillbirth, fetal growth restriction, and impaired neurodevelopmental outcomes. However, dietary supplementation during pregnancy is unable to simply reverse these outcomes, suggesting imperfectly understood interactions between dietary fatty acid intake and the molecular mechanisms of maternal supply. Here we employ a comprehensive approach combining untargeted and targeted lipidomics with transcriptional profiling of maternal and fetal tissues in mouse pregnancy. Comparison of wild-type mice with genetic models of impaired lipid metabolism allows us to describe maternal hepatic adaptations required to provide LC-PUFAs to the developing fetus. A late pregnancy-specific, selective activation of the Liver X Receptor signalling pathway dramatically increases maternal supply of LC-PUFAs within circulating phospholipids. Crucially, genetic ablation of this pathway in the mother reduces LC-PUFA accumulation by the fetus, specifically of docosahexaenoic acid (DHA), a critical nutrient for brain development.
Asunto(s)
Ácidos Docosahexaenoicos , Ácidos Grasos Insaturados , Feto , Hígado , Fosfolípidos , Animales , Femenino , Embarazo , Hígado/metabolismo , Fosfolípidos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ratones , Ácidos Docosahexaenoicos/metabolismo , Feto/metabolismo , Receptores X del Hígado/metabolismo , Receptores X del Hígado/genética , Metabolismo de los Lípidos/genética , Ratones Endogámicos C57BL , Transducción de Señal , Masculino , Lipidómica , Ratones NoqueadosRESUMEN
Liver X receptors (LXRs) which link lipid metabolism and inflammation, were overexpressed in experimental rheumatoid arthritis (RA) rats as observed in our previous studies, while suppression of LXRα by silybin ameliorates arthritis and abnormal lipid metabolism. However, the role of LXRs in RA remains undefined. In this study, we investigated the inhibition role of LXRs in the polarization and activation of M1 macrophage by using a special LXRs inverse agonist SR9243, which led to ameliorating the progression of adjuvant-induced arthritis (AIA) in rats. Mechanistically, SR9243 disrupted the LPS/IFN-γ-induced Warburg effect in M1 macrophages, while glycolysis inhibitor 2-DG attenuated the inhibition effect of SR9243 on M1 polarization and the cytokines expression of M1 macrophages including iNOS, TNF-α, and IL-6 in vitro. Furthermore, SR9243 downregulated key glycolytic enzymes, including LDH-A, HK2, G6PD, GLUT1, and HIF-1α in M1 macrophages, which is mediated by increased phosphorylation of AMPK (Thr172) and reduced downstream phosphorylation of mTOR (Ser2448). Importantly, gene silencing of LXRs compromises the inhibition effect of SR9243 on M1 macrophage polarization and activation. Collectively, for the first time, our findings suggest that the LXR inverse agonist SR9243 mitigates adjuvant-induced rheumatoid arthritis and protects against bone erosion by inhibiting M1 macrophage polarization and activation through modulation of glycolytic metabolism via the AMPK/mTOR/HIF-1α pathway.