Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.088
Filtrar
1.
J Med Chem ; 67(16): 14524-14542, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39133077

RESUMEN

Twenty-one simplified analogues of the natural product domoic acid were designed, synthesized, and then characterized at homomeric kainic acid (KA) receptors (GluK1-3,5). LBG20304 displays a high affinity for homomeric GluK5 receptors (IC50 = 432 nM) with a >40-fold selectivity over homomeric GluK1-3 subtypes and ≫100-fold selectivity over native AMPA and N-methyl d-aspartate receptors. Functional studies of LBG20304 on heteromeric GluK2/5 receptors show no agonist or antagonist functional response at 10 µM, while a concentration of 100 µM at neuronal slices (rat) shows low agonist activity. A molecular dynamics simulation of LBG20304, in a homology model of GluK5, suggests specific interactions with the GluK5 receptor and an occluded ligand binding domain, which is translated to agonist or partial agonist activity. LBG20304 is a new compound for the study of the role and function of the KA receptors with the aim of understanding the involvement of these receptors in health and disease.


Asunto(s)
Ácido Kaínico , Simulación de Dinámica Molecular , Receptores de Ácido Kaínico , Receptores de Ácido Kaínico/agonistas , Receptores de Ácido Kaínico/metabolismo , Receptores de Ácido Kaínico/antagonistas & inhibidores , Receptores de Ácido Kaínico/química , Ácido Kaínico/análogos & derivados , Ácido Kaínico/farmacología , Ácido Kaínico/metabolismo , Ligandos , Animales , Humanos , Ratas , Relación Estructura-Actividad , Descubrimiento de Drogas
2.
Cell Rep ; 43(7): 114427, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38986610

RESUMEN

Kainate (KA)-type glutamate receptors (KARs) are implicated in various neuropsychiatric and neurological disorders through their ionotropic and metabotropic actions. However, compared to AMPA- and NMDA-type receptor functions, many aspects of KAR biology remain incompletely understood. Our study demonstrates an important role of KARs in organizing climbing fiber (CF)-Purkinje cell (PC) synapses and synaptic plasticity in the cerebellum, independently of their ion channel or metabotropic functions. The amino-terminal domain (ATD) of the GluK4 KAR subunit binds to C1ql1, provided by CFs, and associates with Bai3, an adhesion-type G protein-coupled receptor expressed in PC dendrites. Mice lacking GluK4 exhibit no KAR-mediated responses, reduced C1ql1 and Bai3 levels, and fewer CF-PC synapses, along with impaired long-term depression and oculomotor learning. Remarkably, introduction of the ATD of GluK4 significantly improves all these phenotypes. These findings demonstrate that KARs act as synaptic scaffolds, orchestrating synapses by forming a KAR-C1ql1-Bai3 complex in the cerebellum.


Asunto(s)
Cerebelo , Plasticidad Neuronal , Células de Purkinje , Receptores de Ácido Kaínico , Sinapsis , Animales , Sinapsis/metabolismo , Receptores de Ácido Kaínico/metabolismo , Plasticidad Neuronal/fisiología , Cerebelo/metabolismo , Ratones , Células de Purkinje/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Humanos
3.
Neuroinformatics ; 22(3): 389-402, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38976151

RESUMEN

Neurotransmitter receptor densities are relevant for understanding the molecular architecture of brain regions. Quantitative in vitro receptor autoradiography, has been introduced to map neurotransmitter receptor distributions of brain areas. However, it is very time and cost-intensive, which makes it challenging to obtain whole-brain distributions. At the same time, high-throughput light microscopy and 3D reconstructions have enabled high-resolution brain maps capturing measures of cell density across the whole human brain. Aiming to bridge gaps in receptor measurements for building detailed whole-brain atlases, we study the feasibility of predicting realistic neurotransmitter density distributions from cell-body stainings. Specifically, we utilize conditional Generative Adversarial Networks (cGANs) to predict the density distributions of the M2 receptor of acetylcholine and the kainate receptor for glutamate in the macaque monkey's primary visual (V1) and motor cortex (M1), based on light microscopic scans of cell-body stained sections. Our model is trained on corresponding patches from aligned consecutive sections that display cell-body and receptor distributions, ensuring a mapping between the two modalities. Evaluations of our cGANs, both qualitative and quantitative, show their capability to predict receptor densities from cell-body stained sections while maintaining cortical features such as laminar thickness and curvature. Our work underscores the feasibility of cross-modality image translation problems to address data gaps in multi-modal brain atlases.


Asunto(s)
Modelos Neurológicos , Animales , Receptores de Neurotransmisores/metabolismo , Receptores de Ácido Kaínico/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Corteza Motora/metabolismo , Corteza Motora/citología , Macaca mulatta , Imagenología Tridimensional/métodos
4.
J Struct Biol ; 216(3): 108113, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39079583

RESUMEN

Kainate receptors play an important role in the central nervous system by mediating postsynaptic excitatory neurotransmission and modulating the release of the inhibitory neurotransmitter GABA through a presynaptic mechanism. To date, only three structures of the ligand-binding domain (LBD) of the kainate receptor subunit GluK1 in complex with positive allosteric modulators have been determined by X-ray crystallography, all belonging to class II modulators. Here, we report a high-resolution structure of GluK1-LBD in complex with kainate and BPAM538, which belongs to the full-spanning class III. One BPAM538 molecule binds at the GluK1 dimer interface, thereby occupying two allosteric binding sites simultaneously. BPAM538 stabilizes the active receptor conformation with only minor conformational changes being introduced to the receptor. Using a calcium-sensitive fluorescence-based assay, a 5-fold potentiation of the kainate response (100 µM) was observed in presence of 100 µM BPAM538 at GluK1(Q)b, whereas no potentiation was observed at GluK2(VCQ)a. Using electrophysiology recordings of outside-out patches excised from HEK293 cells, BPAM538 increased the peak response of GluK1(Q)b co-expressed with NETO2 to rapid application of 10 mM L-glutamate with 130 ± 20 %, and decreased desensitization determined as the steady-state/peak response ratio from 23 ± 2 % to 90 ± 4 %. Based on dose-response relationship experiments on GluK1(Q)b the EC50 of BPAM538 was estimated to be 58 ± 29 µM.


Asunto(s)
Ácido Kaínico , Receptores de Ácido Kaínico , Receptores de Ácido Kaínico/química , Receptores de Ácido Kaínico/metabolismo , Receptores de Ácido Kaínico/genética , Cristalografía por Rayos X , Ácido Kaínico/metabolismo , Ácido Kaínico/farmacología , Ligandos , Regulación Alostérica , Humanos , Sitios de Unión , Unión Proteica , Dominios Proteicos , Sitio Alostérico , Células HEK293
5.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230475, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38853563

RESUMEN

Nitric oxide (NO) is a key diffusible messenger in the mammalian brain. It has been proposed that NO may diffuse retrogradely into presynaptic terminals, contributing to the induction of hippocampal long-term potentiation (LTP). Here, we present novel evidence that NO is required for kainate receptor (KAR)-dependent presynaptic form of LTP (pre-LTP) in the adult insular cortex (IC). In the IC, we found that inhibition of NO synthase erased the maintenance of pre-LTP, while the induction of pre-LTP required the activation of KAR. Furthermore, NO is essential for pre-LTP induced between two pyramidal cells in the IC using the double patch-clamp recording. These results suggest that NO is required for homosynaptic pre-LTP in the IC. Our results present strong evidence for the critical roles of NO in pre-LTP in the IC. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Asunto(s)
Corteza Cerebral , Potenciación a Largo Plazo , Óxido Nítrico , Terminales Presinápticos , Potenciación a Largo Plazo/fisiología , Óxido Nítrico/metabolismo , Animales , Corteza Cerebral/fisiología , Terminales Presinápticos/fisiología , Receptores de Ácido Kaínico/metabolismo , Técnicas de Placa-Clamp , Ratas , Células Piramidales/fisiología , Óxido Nítrico Sintasa/metabolismo , Ratones
6.
Nature ; 630(8017): 762-768, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38778115

RESUMEN

Kainate receptors, a subclass of ionotropic glutamate receptors, are tetrameric ligand-gated ion channels that mediate excitatory neurotransmission1-4. Kainate receptors modulate neuronal circuits and synaptic plasticity during the development and function of the central nervous system and are implicated in various neurological and psychiatric diseases, including epilepsy, depression, schizophrenia, anxiety and autism5-11. Although structures of kainate receptor domains and subunit assemblies are available12-18, the mechanism of kainate receptor gating remains poorly understood. Here we present cryo-electron microscopy structures of the kainate receptor GluK2 in the presence of the agonist glutamate and the positive allosteric modulators lectin concanavalin A and BPAM344. Concanavalin A and BPAM344 inhibit kainate receptor desensitization and prolong activation by acting as a spacer between the amino-terminal and ligand-binding domains and a stabilizer of the ligand-binding domain dimer interface, respectively. Channel opening involves the kinking of all four pore-forming M3 helices. Our structures reveal the molecular basis of kainate receptor gating, which could guide the development of drugs for treatment of neurological disorders.


Asunto(s)
Concanavalina A , Microscopía por Crioelectrón , Receptor de Ácido Kaínico GluK2 , Ácido Glutámico , Activación del Canal Iónico , Modelos Moleculares , Dominios Proteicos , Receptores de Ácido Kaínico , Receptores de Ácido Kaínico/química , Receptores de Ácido Kaínico/metabolismo , Receptores de Ácido Kaínico/ultraestructura , Humanos , Ácido Glutámico/metabolismo , Ácido Glutámico/química , Animales , Concanavalina A/química , Concanavalina A/metabolismo , Concanavalina A/farmacología , Ligandos , Regulación Alostérica , Sitios de Unión
7.
Cent Nerv Syst Agents Med Chem ; 24(3): 317-327, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716554

RESUMEN

BACKGROUND: Overactivation of receptors that respond to excitatory neurotransmitters can result in various harmful outcomes, such as the inability to properly modulate calcium levels, generation of free radicals, initiation of the mitochondrial permeability transition, and subsequent secondary damage caused by excitotoxicity. A non-proteinogenic amino acid of tea, L-theanine, is structurally related to glutamate, the major stimulatory neurotransmitter in the brain. Previous reports have emphasised its ability to bind with glutamate receptors. OBJECTIVE: An in-depth understanding of the binding compatibility between ionotropic glutamate receptors and L-theanine is a compelling necessity. METHODS: In this molecular docking study, the antagonistic effect of L-theanine and its possible therapeutic benefit in GluR5 kainate receptor inhibition has been evaluated and compared to the familiar AMPA and kainite receptor antagonists, cyanoquinoxaline (CNQX) and dinitroquinoxaline (DNQX), using Molegro Virtual Docker 7.0.0. RESULTS: The capacity of L-theanine to cohere with the GluR5 receptor was revealed to be higher than that of glutamate, although it could not surpass the high binding tendency of competitive antagonists CNQX and DNQX. Nonetheless, the drug-likeness score and the blood-brain barrier traversing potential of L-theanine were higher than CNQX and DNQX. CONCLUSION: The study provides an inference to the advantage of L-theanine, which can be a safe and effective alternative natural therapy for rescuing neuronal death due to excitotoxicity.


Asunto(s)
Glutamatos , Simulación del Acoplamiento Molecular , Receptores de Ácido Kaínico , Receptores de Ácido Kaínico/antagonistas & inhibidores , Receptores de Ácido Kaínico/metabolismo , Glutamatos/farmacología , Glutamatos/metabolismo , Humanos , Simulación del Acoplamiento Molecular/métodos , Ácido Glutámico/metabolismo
8.
Hum Mol Genet ; 33(17): 1524-1539, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-38776957

RESUMEN

Huntington's disease (HD) is a neurodegenerative genetic disorder caused by an expansion in the CAG repeat tract of the huntingtin (HTT) gene resulting in behavioural, cognitive, and motor defects. Current knowledge of disease pathogenesis remains incomplete, and no disease course-modifying interventions are in clinical use. We have previously reported the development and characterisation of the OVT73 transgenic sheep model of HD. The 73 polyglutamine repeat is somatically stable and therefore likely captures a prodromal phase of the disease with an absence of motor symptomatology even at 5-years of age and no detectable striatal cell loss. To better understand the disease-initiating events we have undertaken a single nuclei transcriptome study of the striatum of an extensively studied cohort of 5-year-old OVT73 HD sheep and age matched wild-type controls. We have identified transcriptional upregulation of genes encoding N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors in medium spiny neurons, the cell type preferentially lost early in HD. Further, we observed an upregulation of astrocytic glutamate uptake transporters and medium spiny neuron GABAA receptors, which may maintain glutamate homeostasis. Taken together, these observations support the glutamate excitotoxicity hypothesis as an early neurodegeneration cascade-initiating process but the threshold of toxicity may be regulated by several protective mechanisms. Addressing this biochemical defect early may prevent neuronal loss and avoid the more complex secondary consequences precipitated by cell death.


Asunto(s)
Modelos Animales de Enfermedad , Ácido Glutámico , Enfermedad de Huntington , Neuronas , Receptores de N-Metil-D-Aspartato , Animales , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Ovinos , Neuronas/metabolismo , Neuronas/patología , Ácido Glutámico/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , RNA-Seq , Receptores AMPA/genética , Receptores AMPA/metabolismo , Muerte Celular/genética , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Animales Modificados Genéticamente , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Humanos , Transcriptoma/genética , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/genética , Neuronas Espinosas Medianas
9.
J Biol Chem ; 300(5): 107263, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582451

RESUMEN

Synapse formation depends on the coordinated expression and regulation of scaffold proteins. The JNK family kinases play a role in scaffold protein regulation, but the nature of this functional interaction in dendritic spines requires further investigation. Here, using a combination of biochemical methods and live-cell imaging strategies, we show that the dynamics of the synaptic scaffold molecule SAP102 are negatively regulated by JNK inhibition, that SAP102 is a direct phosphorylation target of JNK3, and that SAP102 regulation by JNK is restricted to neurons that harbor mature synapses. We further demonstrate that SAP102 and JNK3 cooperate in the regulated trafficking of kainate receptors to the cell membrane. Specifically, we observe that SAP102, JNK3, and the kainate receptor subunit GluK2 exhibit overlapping expression at synaptic sites and that modulating JNK activity influences the surface expression of the kainate receptor subunit GluK2 in a neuronal context. We also show that SAP102 participates in this process in a JNK-dependent fashion. In summary, our data support a model in which JNK-mediated regulation of SAP102 influences the dynamic trafficking of kainate receptors to postsynaptic sites, and thus shed light on common pathophysiological mechanisms underlying the cognitive developmental defects associated with diverse mutations.


Asunto(s)
Espinas Dendríticas , Receptor de Ácido Kaínico GluK2 , Receptores de Ácido Kaínico , Animales , Humanos , Ratas , Membrana Celular/metabolismo , Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Hipocampo/citología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Proteína Quinasa 10 Activada por Mitógenos/genética , Neuronas/metabolismo , Neuropéptidos , Fosforilación , Transporte de Proteínas , Receptores de Ácido Kaínico/metabolismo , Receptores de Ácido Kaínico/genética , Sinapsis/metabolismo , Células Cultivadas
10.
Nat Neurosci ; 27(4): 679-688, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467901

RESUMEN

Thermosensors expressed in peripheral somatosensory neurons sense a wide range of environmental temperatures. While thermosensors detecting cool, warm and hot temperatures have all been extensively characterized, little is known about those sensing cold temperatures. Though several candidate cold sensors have been proposed, none has been demonstrated to mediate cold sensing in somatosensory neurons in vivo, leaving a knowledge gap in thermosensation. Here we characterized mice lacking the kainate-type glutamate receptor GluK2, a mammalian homolog of the Caenorhabditis elegans cold sensor GLR-3. While GluK2 knockout mice respond normally to heat and mechanical stimuli, they exhibit a specific deficit in sensing cold but not cool temperatures. Further analysis supports a key role for GluK2 in sensing cold temperatures in somatosensory DRG neurons in the periphery. Our results reveal that GluK2-a glutamate-sensing chemoreceptor mediating synaptic transmission in the central nervous system-is co-opted as a cold-sensing thermoreceptor in the periphery.


Asunto(s)
Receptor de Ácido Kaínico GluK2 , Receptores de Ácido Kaínico , Animales , Ratones , Caenorhabditis elegans/metabolismo , Frío , Receptor de Ácido Kaínico GluK2/metabolismo , Ácido Glutámico , Mamíferos/metabolismo , Neuronas/metabolismo , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/metabolismo , Transmisión Sináptica
11.
Sci Rep ; 14(1): 4521, 2024 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402313

RESUMEN

Kainate receptors (KARs) are one of the ionotropic glutamate receptors in the central nervous system (CNS) comprised of five subunits, GluK1-GluK5. There is a growing interest in the association between KARs and psychiatric disorders, and there have been several studies investigating the behavioral phenotypes of KAR deficient mice, however, the difference in the genetic background has been found to affect phenotype in multiple mouse models of human diseases. Here, we examined GluK1-5 single KO mice in a pure C57BL/6N background and identified that GluK3 KO mice specifically express anxiolytic-like behavior with an alteration in dopamine D2 receptor (D2R)-induced anxiety, and reduced D2R expression in the striatum. Biochemical studies in the mouse cortex confirmed that GluK3 subunits do not assemble with GluK4 and GluK5 subunits, that can be activated by lower concentration of agonists. Overall, we found that GluK3-containing KARs function to express anxiety, which may represent promising anti-anxiety medication targets.


Asunto(s)
Receptor Kainato GluK3 , Receptores de Ácido Kaínico , Ratones , Animales , Humanos , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/metabolismo , Ratones Endogámicos C57BL , Receptores Ionotrópicos de Glutamato , Ansiedad/genética
12.
J Labelled Comp Radiopharm ; 67(4): 120-130, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38332677

RESUMEN

Kainate receptors play a crucial role in mediating synaptic transmission within the central nervous system. However, the lack of selective pharmacological tool compounds for the GluK3 subunit represents a significant challenge in studying these receptors. Recently presented compound 1 stands out as a potent antagonist of GluK3 receptors, exhibiting nanomolar affinity at GluK3 receptors and strongly inhibiting glutamate-induced currents at homomeric GluK1 and GluK3 receptors in HEK293 cells with Kb values of 65 and 39 nM, respectively. This study presents the synthesis of two potent GluK3-preferring iodine derivatives of compound 1, serving as precursors for radiolabelling. Furthermore, we demonstrate the optimisation of dehalogenation conditions using hydrogen and deuterium, resulting in [2H]-1, and demonstrate the efficient synthesis of the radioligand [3H]-1 with a specific activity of 1.48 TBq/mmol (40.1 Ci/mmol). Radioligand binding studies conducted with [3H]-1 as a radiotracer at GluK1, GluK2, and GluK3 receptors expressed in Sf9 and rat P2 membranes demonstrated its potential applicability for selectively studying native GluK3 receptors in the presence of GluK1 and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-blocking ligands.


Asunto(s)
Ácido Glutámico , Receptores de Ácido Kaínico , Ratas , Animales , Humanos , Tritio , Deuterio , Células HEK293 , Receptores de Ácido Kaínico/química , Receptores de Ácido Kaínico/metabolismo , Receptores AMPA/química , Receptores AMPA/metabolismo
13.
FEBS Lett ; 598(7): 743-757, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38369668

RESUMEN

Kainate receptors belong to the family of ionotropic glutamate receptors and contribute to the majority of fast excitatory neurotransmission. Consequently, they also play a role in brain diseases. Therefore, understanding how these receptors can be modulated is of importance. Our study provides a crystal structure of the dimeric ligand-binding domain of the kainate receptor GluK2 in complex with L-glutamate and the small-molecule positive allosteric modulator, BPAM344, in an active-like conformation. The role of Thr535 and Gln786 in modulating GluK2 by BPAM344 was investigated using a calcium-sensitive fluorescence-based assay on transiently transfected cells expressing GluK2 and mutants hereof. This study may aid in the design of compounds targeting kainate receptors, expanding their potential as targets for the treatment of brain diseases.


Asunto(s)
Encefalopatías , Óxidos S-Cíclicos , Ácido Glutámico , Tiazinas , Humanos , Sitios de Unión , Ligandos , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/química , Receptores de Ácido Kaínico/metabolismo
14.
Eur J Med Chem ; 264: 116036, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38101041

RESUMEN

The synthesis and biological evaluation on AMPA and kainate receptors of new examples of 3,4-dihydro-2H-1,2,4-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxides is described. The introduction of a cyclopropyl chain instead of an ethyl chain at the 4-position of the thiadiazine ring was found to dramatically improve the potentiator activity on AMPA receptors, with compound 32 (BPAM395) expressing in vitro activity on AMPARs (EC2x = 0.24 µM) close to that of the reference 4-cyclopropyl-substituted benzothiadiazine dioxide 10 (BPAM344). Interestingly, the 4-allyl-substituted thienothiadiazine dioxide 27 (BPAM307) emerged as the most promising compound on kainate receptors being a more effective potentiator than the 4-cyclopropyl-substituted thienothiadiazine dioxide 32 and supporting the view that the 4-allyl substitution of the thiadiazine ring could be more favorable than the 4-cyclopropyl substitution to induce marked activity on kainate receptors versus AMPA receptors. The thieno-analogue 36 (BPAM279) of the clinically tested S18986 (11) was selected for in vivo evaluation in mice as a cognitive enhancer due to a safer profile than 32 after massive per os drug administration. Compound 36 was found to increase the cognition performance in mice at low doses (1 mg/kg) per os suggesting that the compound was well absorbed after oral administration and able to reach the central nervous system. Finally, compound 32 was selected for co-crystallization with the GluA2-LBD (L504Y,N775S) and glutamate to examine the binding mode of thienothiadiazine dioxides within the allosteric binding site of the AMPA receptor. At the allosteric site, this compound established similar interactions as the previously reported BTD-type AMPA receptor modulators.


Asunto(s)
Receptores AMPA , Tiadiazinas , Ratones , Animales , Receptores AMPA/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología , Receptores de Ácido Kaínico/metabolismo , Relación Estructura-Actividad , Tiadiazinas/química , Regulación Alostérica
15.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38069190

RESUMEN

Epilepsy is a neurological disorder characterized by abnormal neuronal excitability, with glutamate playing a key role as the predominant excitatory neurotransmitter involved in seizures. Animal models of epilepsy are crucial in advancing epilepsy research by faithfully replicating the diverse symptoms of this disorder. In particular, the GASH/Sal (genetically audiogenic seizure-prone hamster from Salamanca) model exhibits seizures resembling human generalized tonic-clonic convulsions. A single nucleotide polymorphism (SNP; C9586732T, p.His289Tyr) in the Grik1 gene (which encodes the kainate receptor GluK1) has been previously identified in this strain. The H289Y mutation affects the amino-terminal domain of GluK1, which is related to the subunit assembly and trafficking. We used confocal microscopy in Xenopus oocytes to investigate how the H289Y mutation, compared to the wild type (WT), affects the expression and cell-surface trafficking of GluK1 receptors. Additionally, we employed the two-electrode voltage-clamp technique to examine the functional effects of the H289Y mutation. Our results indicate that this mutation increases the expression and incorporation of GluK1 receptors into an oocyte's membrane, enhancing kainate-evoked currents, without affecting their functional properties. Although further research is needed to fully understand the molecular mechanisms responsible for this epilepsy, the H289Y mutation in GluK1 may be part of the molecular basis underlying the seizure-prone circuitry in the GASH/Sal model.


Asunto(s)
Epilepsia Refleja , Cricetinae , Animales , Humanos , Xenopus laevis/metabolismo , Epilepsia Refleja/genética , Convulsiones/metabolismo , Receptores de Ácido Kaínico/metabolismo , Oocitos/metabolismo
16.
J Neurosci ; 43(47): 7913-7928, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37802657

RESUMEN

Numerous rare variants that cause neurodevelopmental disorders (NDDs) occur within genes encoding synaptic proteins, including ionotropic glutamate receptors. However, in many cases, it remains unclear how damaging missense variants affect brain function. We determined the physiological consequences of an NDD causing missense mutation in the GRIK2 kainate receptor (KAR) gene, that results in a single amino acid change p.Ala657Thr in the GluK2 receptor subunit. We engineered this mutation in the mouse Grik2 gene, yielding a GluK2(A657T) mouse, and studied mice of both sexes to determine how hippocampal neuronal function is disrupted. Synaptic KAR currents in hippocampal CA3 pyramidal neurons from heterozygous A657T mice exhibited slow decay kinetics, consistent with incorporation of the mutant subunit into functional receptors. Unexpectedly, CA3 neurons demonstrated elevated action potential spiking because of downregulation of the small-conductance Ca2+ activated K+ channel (SK), which mediates the post-spike afterhyperpolarization. The reduction in SK activity resulted in increased CA3 dendritic excitability, increased EPSP-spike coupling, and lowered the threshold for the induction of LTP of the associational-commissural synapses in CA3 neurons. Pharmacological inhibition of SK channels in WT mice increased dendritic excitability and EPSP-spike coupling, mimicking the phenotype in A657T mice and suggesting a causative role for attenuated SK activity in aberrant excitability observed in the mutant mice. These findings demonstrate that a disease-associated missense mutation in GRIK2 leads to altered signaling through neuronal KARs, pleiotropic effects on neuronal and dendritic excitability, and implicate these processes in neuropathology in patients with genetic NDDs.SIGNIFICANCE STATEMENT Damaging mutations in genes encoding synaptic proteins have been identified in various neurodevelopmental disorders, but the functional consequences at the cellular and circuit level remain elusive. By generating a novel knock-in mutant mouse, this study examined the role of a pathogenic mutation in the GluK2 kainate receptor (KAR) subunit, a subclass of ionotropic glutamate receptors. Analyses of hippocampal CA3 pyramidal neurons determined elevated action potential firing because of an increase in dendritic excitability. Increased dendritic excitability was attributable to reduced activity of a Ca2+ activated K+ channel. These results indicate that a pathogenic KAR mutation results in dysregulation of dendritic K+ channels, which leads to an increase in synaptic integration and backpropagation of action potentials into distal dendrites.


Asunto(s)
Mutación Missense , Receptores de Ácido Kaínico , Masculino , Femenino , Humanos , Ratones , Animales , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/metabolismo , Neuronas/fisiología , Hipocampo/fisiología , Células Piramidales/fisiología
17.
J Neurosci ; 43(43): 7101-7118, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37709538

RESUMEN

Somatostatin (SST) interneurons produce delayed inhibition because of the short-term facilitation of their excitatory inputs created by the expression of metabotropic glutamate receptor 7 (mGluR7) and presynaptic GluK2-containing kainate receptors (GluK2-KARs). Using mice of both sexes, we find that as synaptic facilitation at layer (L)2/3 SST cell inputs increases during the first few postnatal weeks, so does GluK2-KAR expression. Removal of sensory input by whisker trimming does not affect mGluR7 but prevents the emergence of presynaptic GluK2-KARs, which can be restored by allowing whisker regrowth or by acute calmodulin activation. Conversely, late trimming or acute inhibition of Ca2+/calmodulin-dependent protein kinase II is sufficient to reduce GluK2-KAR activity. This developmental and activity-dependent regulation also produces a specific reduction of L4 GluK2-KARs that advances in parallel with the maturation of sensory processing in L2/3. Finally, we find that removal of both GluK2-KARs and mGluR7 from the synapse eliminates short-term facilitation and reduces sensory adaptation to repetitive stimuli, first in L4 of somatosensory cortex, then later in development in L2/3. The dynamic regulation of presynaptic GluK2-KARs potentially allows for flexible scaling of late inhibition and sensory adaptation.SIGNIFICANCE STATEMENT Excitatory synapses onto somatostatin (SST) interneurons express presynaptic, calcium-permeable kainate receptors containing the GluK2 subunit (GluK2-KARs), activated by high-frequency activity. In this study we find that their presence on L2/3 SST synapses in the barrel cortex is not based on a hardwired genetic program but instead is regulated by sensory activity, in contrast to that of mGluR7. Thus, in addition to standard synaptic potentiation and depression mechanisms, excitatory synapses onto SST neurons undergo an activity-dependent presynaptic modulation that uses GluK2-KARs. Further, we present evidence that loss of the frequency-dependent synaptic components (both GluK2-KARs and mGluR7 via Elfn1 deletion) contributes to a decrease in the sensory adaptation commonly seen on repetitive stimulus presentation.


Asunto(s)
Ácido Kaínico , Receptores de Ácido Kaínico , Masculino , Femenino , Ratones , Animales , Receptores de Ácido Kaínico/metabolismo , Receptores Presinapticos/metabolismo , Sinapsis/fisiología , Interneuronas/fisiología , Somatostatina/metabolismo
18.
Int J Mol Sci ; 24(16)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37629191

RESUMEN

Alzheimer's disease (AD) is one representative dementia characterized by the accumulation of amyloid beta (Aß) plaques and neurofibrillary tangles (NFTs) in the brain, resulting in cognitive decline and memory loss. AD is associated with neuropsychiatric symptoms, including major depressive disorder (MDD). Recent studies showed a reduction in mGluR5 expression in the brains of stress-induced mice models and individuals with MDD compared to controls. In our study, we identified depressive-like behavior and memory impairment in a mouse model of AD, specifically in the 6xTg model with tau and Aß pathologies. In addition, we investigated the expression of mGluR5 in the brains of 6xTg mice using micro-positron emission tomography (micro-PET) imaging, histological analysis, and Western blot analysis, and we observed a decrease in mGluR5 levels in the brains of 6xTg mice compared to wild-type (WT) mice. Additionally, we identified alterations in the ERK/AKT/GSK-3ß signaling pathway in the brains of 6xTg mice. Notably, we identified a significant negative correlation between depressive-like behavior and the protein level of mGluR5 in 6xTg mice. Additionally, we also found a significant positive correlation between depressive-like behavior and AD pathologies, including phosphorylated tau and Aß. These findings suggested that abnormal mGluR5 expression and AD-related pathologies were involved in depressive-like behavior in the 6xTg mouse model. Further research is warranted to elucidate the underlying mechanisms and explore potential therapeutic targets in the intersection of AD and depressive-like symptoms.


Asunto(s)
Enfermedad de Alzheimer , Trastorno Depresivo Mayor , Receptores de Ácido Kaínico , Animales , Ratones , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3 beta/genética , Trastornos de la Memoria , Placa Amiloide , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/metabolismo
19.
Neuropharmacology ; 239: 109671, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37567438

RESUMEN

Kainate receptors are potent modulators of circuit excitability and have been repeatedly implicated in pathophysiological synchronization of limbic networks. While the role of aberrant GluK2 subunit containing KARs in generation of epileptiform hypersynchronous activity is well described, the contribution of other KAR subtypes, including GluK1 subunit containing KARs remain less well understood. To investigate the contribution of GluK1 KARs in developmental and pathological synchronization of the hippocampal neural network, we used multielectrode array recordings on organotypic hippocampal slices that display first multi-unit activity and later spontaneous population discharges resembling ictal-like epileptiform activity (IEA). Chronic blockage of GluK1 activity using selective antagonist ACET or lentivirally delivered shRNA significantly delayed developmental synchronization of the hippocampal CA3 network and generation of IEA. GluK1 overexpression, on the other hand, had no significant effect on occurrence of IEA, but enhanced the size of the neuron population participating in the population discharges. Correlation analysis indicated that local knockdown of GluK1 locally in the CA3 neurons reduced their functional connectivity, while GluK1 overexpression increased the connectivity to both CA1 and DG. These data suggest that GluK1 KARs regulate functional connectivity between the excitatory neurons, possibly via morphological changes in glutamatergic circuit, affecting synchronization of neuronal populations. The significant effects of GluK1 manipulations on network activity call for further research on GluK1 KAR as potential targets for antiepileptic treatments, particularly during the early postnatal development when GluK1 KARs are strongly expressed in the limbic neural networks.


Asunto(s)
Neuronas , Receptores de Ácido Kaínico , Receptores de Ácido Kaínico/metabolismo , Neuronas/metabolismo , Hipocampo/metabolismo
20.
ChemMedChem ; 18(18): e202300278, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37387321

RESUMEN

Kainate receptors are a class of ionotropic glutamate receptors that respond to the excitatory neurotransmitter glutamate in the central nervous system and play an important role in the development of neurodegenerative disorders and the regulation of synaptic function. In the current study, we investigated the structure- activity relationship of the series of quinoxaline-2,3-diones substituted at N1, 6, and 7 positions, as ligands of kainate homomeric receptors GluK1-3 and GluK5. Pharmacological characterization showed that all derivatives obtained exhibited micromolar affinity at GluK3 receptors with Ki values in the range 0.1-4.4 µM range. The antagonistic properties of the selected analogues: N-(7-fluoro-6-iodo-2,3-dioxo-3,4-dihydroquinoxalin-1(2H)-yl)-3-sulfamoylbenzamide, N-(7-(1H-imidazol-1-yl)-6-iodo-2,3-dioxo-3,4-dihydroquinoxalin-1(2H)-yl)-3-sulfamoylbenzamide and N-(7-(1H-imidazol-1-yl)-2,3-dioxo-6-(phenylethynyl)-3,4-dihydroquinoxalin-1(2H)-yl)-3-sulfamoylbenzamide at GluK3 receptors, were confirmed by an intracellular calcium imaging assay. To correlate in vitro affinity data with structural features of the synthesized compounds and to understand the impact of the substituent in N1 position on ability to form additional protein-ligand interactions, molecular modeling and docking studies were carried out. Experimental solubility studies using UV spectroscopy detection have shown that 7-imidazolyl-6-iodo analogues with a sulfamoylbenzamide moiety at the N1 position are the best soluble compounds in the series, with molar solubility in TRISS buffer at pH 9 more than 3-fold higher compared to NBQX, a known AMPA/kainate antagonist.


Asunto(s)
Ácido Kaínico , Receptores de Ácido Kaínico , Receptores de Ácido Kaínico/química , Receptores de Ácido Kaínico/metabolismo , Quinoxalinas/farmacología , Solubilidad , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...