Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167257, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38795836

RESUMEN

Apelin receptor (APJ), a member of the class A family of G protein-coupled receptor (GPCR), plays a crucial role in regulating cardiovascular and central nervous systems function. APJ influences the onset and progression of various diseases such as hypertension, atherosclerosis, and cerebral stroke, making it an important target for drug development. Our preliminary findings indicate that APJ can form homodimers, heterodimers, or even higher-order oligomers, which participate in different signaling pathways and have distinct functions compared with monomers. APJ homodimers can serve as neuroprotectors against, and provide new pharmaceutical targets for vascular dementia (VD). This review article aims to summarize the structural characteristics of APJ dimers and their roles in physiology and pathology, as well as explore their potential pharmacological applications.


Asunto(s)
Receptores de Apelina , Multimerización de Proteína , Humanos , Receptores de Apelina/metabolismo , Receptores de Apelina/genética , Receptores de Apelina/química , Animales , Transducción de Señal , Aterosclerosis/metabolismo , Demencia Vascular/metabolismo , Demencia Vascular/patología , Hipertensión/metabolismo , Hipertensión/patología
2.
Cell ; 187(6): 1460-1475.e20, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38428423

RESUMEN

Apelin is a key hormone in cardiovascular homeostasis that activates the apelin receptor (APLNR), which is regarded as a promising therapeutic target for cardiovascular disease. However, adverse effects through the ß-arrestin pathway limit its pharmacological use. Here, we report cryoelectron microscopy (cryo-EM) structures of APLNR-Gi1 complexes bound to three agonists with divergent signaling profiles. Combined with functional assays, we have identified "twin hotspots" in APLNR as key determinants for signaling bias, guiding the rational design of two exclusive G-protein-biased agonists WN353 and WN561. Cryo-EM structures of WN353- and WN561-stimulated APLNR-G protein complexes further confirm that the designed ligands adopt the desired poses. Pathophysiological experiments have provided evidence that WN561 demonstrates superior therapeutic effects against cardiac hypertrophy and reduced adverse effects compared with the established APLNR agonists. In summary, our designed APLNR modulator may facilitate the development of next-generation cardiovascular medications.


Asunto(s)
Receptores de Apelina , Fármacos Cardiovasculares , Diseño de Fármacos , Receptores de Apelina/agonistas , Receptores de Apelina/química , Receptores de Apelina/ultraestructura , Microscopía por Crioelectrón , Proteínas de Unión al GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Humanos , Fármacos Cardiovasculares/química
3.
Nat Struct Mol Biol ; 29(7): 688-697, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35817871

RESUMEN

The technique of cryogenic-electron microscopy (cryo-EM) has revolutionized the field of membrane protein structure and function with a focus on the dominantly observed molecular species. This report describes the structural characterization of a fully active human apelin receptor (APJR) complexed with heterotrimeric G protein observed in both 2:1 and 1:1 stoichiometric ratios. We use cryo-EM single-particle analysis to determine the structural details of both species from the same sample preparation. Protein preparations, in the presence of the endogenous peptide ligand ELA or a synthetic small molecule, both demonstrate these mixed stoichiometric states. Structural differences in G protein engagement between dimeric and monomeric APJR suggest a role for the stoichiometry of G protein-coupled receptor- (GPCR-)G protein coupling on downstream signaling and receptor pharmacology. Furthermore, a small, hydrophobic dimer interface provides a starting framework for additional class A GPCR dimerization studies. Together, these findings uncover a mechanism of versatile regulation through oligomerization by which GPCRs can modulate their signaling.


Asunto(s)
Proteínas de Unión al GTP , Receptores Acoplados a Proteínas G , Receptores de Apelina/química , Receptores de Apelina/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Unión al GTP/metabolismo , Humanos , Receptores Acoplados a Proteínas G/química , Transducción de Señal
4.
Biochem J ; 479(3): 385-399, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35084016

RESUMEN

The apelin receptor (APLNR) regulates many biological processes including metabolism, angiogenesis, circulating blood volume and cardiovascular function. Additionally, APLNR is overexpressed in various types of cancer and influences cancer progression. APLNR is reported to regulate tumor recognition during immune surveillance by modulating the IFN-γ response. However, the mechanism of APLNR cross-talk with intratumoral IFN-γ signaling remains unknown. Here, we show that activation of APLNR up-regulates IFN-γ signaling in melanoma cells through APLNR mediated ß-arrestin 1 but not ß-arrestin 2 recruitment. Our data suggests that ß-arrestin 1 directly interacts with STAT1 to inhibit STAT1 phosphorylation to attenuate IFN-γ signaling. The APLNR mutant receptor, I109A, which is deficient in ß-arrestins recruitment, is unable to enhance intratumoral IFN-γ signaling. While APLNR N112G, a constitutively active mutant receptor, increases intratumoral sensitivity to IFN-γ signaling by enhancing STAT1 phosphorylation upon IFN-γ exposure. We also demonstrate in a co-culture system that APLNR regulates tumor survival rate. Taken together, our findings reveal that APLNR modulates IFN-γ signaling in melanoma cells and suggest that APLNR may be a potential target to enhance the efficacy of immunotherapy.


Asunto(s)
Receptores de Apelina/fisiología , Interferón gamma/fisiología , Quinasas Janus/fisiología , Melanoma/metabolismo , Proteínas de Neoplasias/fisiología , Factor de Transcripción STAT1/fisiología , Transducción de Señal/fisiología , beta-Arrestina 1/fisiología , Receptores de Apelina/antagonistas & inhibidores , Receptores de Apelina/química , Receptores de Apelina/genética , Línea Celular Tumoral , Citotoxicidad Inmunológica , Células HEK293 , Humanos , Quinasas Janus/antagonistas & inhibidores , Melanoma/inmunología , Modelos Moleculares , Mapeo de Interacción de Proteínas , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Linfocitos T/inmunología , Arrestina beta 2/análisis
5.
Molecules ; 26(16)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34443478

RESUMEN

Alzheimer's disease is a neurodegenerative disorder incompatible with normal daily activity, affecting one in nine people. One of its potential targets is the apelin receptor (APJR), a G-protein coupled receptor, which presents considerably high expression levels in the central nervous system. In silico studies of APJR drug-like molecule binding are in small numbers while high throughput screenings (HTS) are already sufficiently many to devise efficient drug design strategies. This presents itself as an opportunity to optimize different steps in future large scale virtual screening endeavours. Here, we ran a first stage docking simulation against a library of 95 known binders and 3829 generated decoys in an effort to improve the rescoring stage. We then analyzed receptor binding site structure and ligands binding poses to describe their interactions. As a result, we devised a simple and straightforward virtual screening Stage II filtering score based on search space extension followed by a geometric estimation of the ligand-binding site fitness. Having this score, we used an ensemble of receptors generated by Hamiltonian Monte Carlo simulation and reported the results. The improvements shown herein prove that our ensemble docking protocol is suited for APJR and can be easily extrapolated to other GPCRs.


Asunto(s)
Receptores de Apelina/química , Ensayos Analíticos de Alto Rendimiento/métodos , Simulación del Acoplamiento Molecular/métodos , Receptores Acoplados a Proteínas G/metabolismo , Apelina/análogos & derivados , Apelina/química , Sitios de Unión , Biomimética , Diseño de Fármacos , Humanos , Ligandos , Péptidos/química , Unión Proteica
6.
FEBS J ; 288(22): 6543-6562, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34076959

RESUMEN

Human APJ receptor/apelin receptor (APJR), activated by apelin peptide isoforms, regulates a wide range of physiological processes. The role of extracellular loop (ECL) domain residues of APJR in ligand binding and receptor activation has not been established yet. Based on multiple sequence alignment of APJ receptor from various organisms, we identified conserved residues in the extracellular domains. Alanine substitutions of specific residues were characterized to evaluate their ligand binding efficiency and Gq -, Gi -, and ß-arrestin-mediated signaling. Mutation-dependent variation in ligand binding and signaling was observed. W197 A in ECL2 and L276 L277 W279 -AAA in ECL3 were deficient in Gi and ß-arrestin signaling pathways with relatively preserved Gq -mediated signaling. T169 T170 -AA, Y182 A, and T190 A mutants in ECL2 showed impaired ß-arrestin-dependent cell signaling while maintaining G protein- mediated signaling. Structural comparison with angiotensin II type I receptor revealed the importance of ECL2 and ECL3 residues in APJR ligand binding and signaling. Our results unequivocally confirm the specific role of these ECL residues in ligand binding and in orchestrating receptor conformations that are involved in preferential/biased signaling functions.


Asunto(s)
Receptores de Apelina/metabolismo , Receptores de Apelina/química , Receptores de Apelina/genética , Células Cultivadas , Células HEK293 , Humanos , Ligandos , Modelos Moleculares , Mutación
7.
J Med Chem ; 64(9): 5345-5364, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33524256

RESUMEN

Side-chain-constrained amino acids are useful tools to modulate the biological properties of peptides. In this study, we applied side-chain constraints to apelin-13 (Ape13) by substituting the Pro12 and Phe13 positions, affecting the binding affinity and signaling profile on the apelin receptor (APJ). The residues 1Nal, Trp, and Aia were found to be beneficial substitutions for Pro12, and the resulting analogues displayed high affinity for APJ (Ki 0.08-0.18 nM vs Ape13 Ki 0.7 nM). Besides, constrained (d-Tic) or α,α-disubstituted residues (Dbzg; d-α-Me-Tyr(OBn)) were favorable for the Phe13 position. Compounds 47 (Pro12-Phe13 replaced by Aia-Phe, Ki 0.08 nM) and 53 (Pro12-Phe13 replaced by 1Nal-Dbzg, Ki 0.08 nM) are the most potent Ape13 analogues activating the Gα12 pathways (53, EC50 Gα12 2.8 nM vs Ape13, EC50 43 nM) known to date, displaying high affinity, resistance to ACE2 cleavage as well as improved pharmacokinetics in vitro (t1/2 5.8-7.3 h in rat plasma) and in vivo.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Receptores de Apelina/química , Receptores de Apelina/metabolismo , Presión Sanguínea/efectos de los fármacos , Subunidades alfa de la Proteína de Unión al GTP G12-G13/química , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Semivida , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/farmacología , Masculino , Unión Proteica , Estabilidad Proteica , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
8.
Sci Adv ; 6(3): eaax7379, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31998837

RESUMEN

Developing antibody agonists targeting the human apelin receptor (APJ) is a promising therapeutic approach for the treatment of chronic heart failure. Here, we report the structure-guided discovery of a single-domain antibody (sdAb) agonist JN241-9, based on the cocrystal structure of APJ with an sdAb antagonist JN241, the first cocrystal structure of a class A G protein-coupled receptor (GPCR) with a functional antibody. As revealed by the structure, JN241 binds to the extracellular side of APJ, makes critical contacts with the second extracellular loop, and inserts the CDR3 into the ligand-binding pocket. We converted JN241 into a full agonist JN241-9 by inserting a tyrosine into the CDR3. Modeling and molecular dynamics simulation shed light on JN241-9-stimulated receptor activation, providing structural insights for finding agonistic antibodies against class A GPCRs.


Asunto(s)
Receptores de Apelina/agonistas , Receptores de Apelina/química , Descubrimiento de Drogas/métodos , Relación Estructura-Actividad Cuantitativa , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/farmacología , Animales , Sitios de Unión , Diseño de Fármacos , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica
9.
Biochem Biophys Res Commun ; 521(2): 408-413, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31668922

RESUMEN

Increasing evidence indicates some G protein-coupled receptors function as a heterodimer, which provide a novel target for therapeutics investigation. However, study on the receptor-receptor interaction interface, a potent target on interfering dimer formation, are still limited. Here, using bioluminescence resonance energy transfer (BRET) combined with co-immunoprecipitation (Co-IP), we found a new constitutive GPCR heterodimer, apelin receptor (APJ)-orexin receptor type 1 (OX1R). Both APJ and OX1R co-internalized when constantly subjected to cognate agonist (apelin-13 or orexin-A) specific to either protomer. Combined with BRET and immunostaining, the in vitro synthesized transmembrane peptides (TMs) interfering experiments suggests that TM4 and 5 of APJ act as the interaction interface of the APJ-OX1R heterodimer, and co-internalization could be disrupted by these peptides as well. Our study not only provide new evidence on GPCR heterodimerization, but address a novel heterodimerization interface, which can be severed as a potential pharmacological target.


Asunto(s)
Receptores de Apelina/química , Receptores de Orexina/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores de Apelina/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Inmunoprecipitación , Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína
10.
J Med Chem ; 62(22): 10456-10465, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31724863

RESUMEN

The APJ receptor and its endogenous peptidic ligand apelin have been implicated as important modulators of cardiovascular function, and APJ receptor agonists may be beneficial in the treatment of heart failure. In this article, we describe the discovery of a series of biphenyl acid derivatives as potent APJ receptor agonists. Following the identification of initial high-throughput screen lead 2, successive optimization led to the discovery of lead compound 15a. Compound 15a demonstrated comparable in vitro potency to apelin-13, the endogenous peptidic ligand for the APJ receptor. In vivo, compound 15a demonstrated a dose-dependent improvement in the cardiac output in male Sprague Dawley rats with no significant changes in either mean arterial blood pressure or heart rate, consistent with the hemodynamic profile of apelin-13 in an acute pressure volume loop model.


Asunto(s)
Receptores de Apelina/agonistas , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Receptores de Apelina/química , Receptores de Apelina/metabolismo , Compuestos de Bifenilo/química , Presión Sanguínea/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células HEK293 , Frecuencia Cardíaca/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Masculino , Ratas Sprague-Dawley , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
11.
Pharmacol Rev ; 71(4): 467-502, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31492821

RESUMEN

The predicted protein encoded by the APJ gene discovered in 1993 was originally classified as a class A G protein-coupled orphan receptor but was subsequently paired with a novel peptide ligand, apelin-36 in 1998. Substantial research identified a family of shorter peptides activating the apelin receptor, including apelin-17, apelin-13, and [Pyr1]apelin-13, with the latter peptide predominating in human plasma and cardiovascular system. A range of pharmacological tools have been developed, including radiolabeled ligands, analogs with improved plasma stability, peptides, and small molecules including biased agonists and antagonists, leading to the recommendation that the APJ gene be renamed APLNR and encode the apelin receptor protein. Recently, a second endogenous ligand has been identified and called Elabela/Toddler, a 54-amino acid peptide originally identified in the genomes of fish and humans but misclassified as noncoding. This precursor is also able to be cleaved to shorter sequences (32, 21, and 11 amino acids), and all are able to activate the apelin receptor and are blocked by apelin receptor antagonists. This review summarizes the pharmacology of these ligands and the apelin receptor, highlights the emerging physiologic and pathophysiological roles in a number of diseases, and recommends that Elabela/Toddler is a second endogenous peptide ligand of the apelin receptor protein.


Asunto(s)
Receptores de Apelina/metabolismo , Hormonas Peptídicas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Secuencia de Aminoácidos , Animales , Apelina/metabolismo , Apelina/farmacología , Receptores de Apelina/agonistas , Receptores de Apelina/antagonistas & inhibidores , Receptores de Apelina/química , Humanos , Ligandos , Modelos Moleculares , Hormonas Peptídicas/química , Hormonas Peptídicas/farmacología , Conformación Proteica , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/metabolismo , Distribución Tisular
12.
Peptides ; 121: 170139, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31472173

RESUMEN

BACKGROUND: Apelin signalling pathways have important cardiovascular and metabolic functions. Recently, apelin-36-[L28A] and apelin-36-[L28C(30kDa-PEG)], were reported to function independent of the apelin receptor in vivo to produce beneficial metabolic effects without modulating blood pressure. We aimed to show that these peptides bound to the apelin receptor and to further characterise their pharmacology in vitro at the human apelin receptor. METHODS: [Pyr1]apelin-13 saturation binding experiments and competition binding experiments were performed in rat and human heart homogenates using [125I]apelin-13 (0.1 nM), and/or increasing concentrations of apelin-36, apelin-36-[L28A] and apelin-36-[L28C(30kDa-PEG)] (50pM-100µM). Apelin-36 and its analogues apelin-36-[F36A], apelin-36-[L28A], apelin-36-[L28C(30kDa-PEG)], apelin-36-[A28 A13] and [40kDa-PEG]-apelin-36 were tested in forskolin-induced cAMP inhibition and ß-arrestin assays in CHO-K1 cells heterologously expressing the human apelin receptor. Bias signaling was quantified using the operational model for bias. RESULTS: In both species, [Pyr1]apelin-13 had comparable subnanomolar affinity and the apelin receptor density was similar. Apelin-36, apelin-36-[L28A] and apelin-36-[L28C(30kDa-PEG)] competed for binding of [125I]apelin-13 with nanomolar affinities. Apelin-36-[L28A] and apelin-36-[L28C(30kDa-PEG)] inhibited forskolin-induced cAMP release, with nanomolar potencies but they were less potent compared to apelin-36 at recruiting ß-arrestin. Bias analysis suggested that these peptides were G protein biased. Additionally, [40kDa-PEG]-apelin-36 and apelin-36-[F36A] retained nanomolar potencies in both cAMP and ß-arrestin assays whilst apelin-36-[A13 A28] exhibited a similar profile to apelin-36-[L28C(30kDa-PEG)] in the ß-arrestin assay but was more potent in the cAMP assay. CONCLUSIONS: Apelin-36-[L28A] and apelin-36-[L28C(30kDa-PEG)] are G protein biased ligands of the apelin receptor, suggesting that the apelin receptor is an important therapeutic target in metabolic diseases.


Asunto(s)
Receptores de Apelina/metabolismo , Apelina/metabolismo , Ventrículos Cardíacos/metabolismo , Péptidos/metabolismo , beta-Arrestinas/metabolismo , Adulto , Animales , Apelina/química , Apelina/farmacología , Receptores de Apelina/química , Unión Competitiva , Células CHO , Colforsina/farmacología , Mezclas Complejas/química , Mezclas Complejas/metabolismo , Cricetulus , AMP Cíclico/metabolismo , Femenino , Ventrículos Cardíacos/química , Humanos , Ligandos , Masculino , Persona de Mediana Edad , Péptidos/síntesis química , Péptidos/farmacología , Unión Proteica , Ratas , Ratas Sprague-Dawley
13.
Int J Mol Sci ; 20(15)2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31357423

RESUMEN

To probe ligand-receptor binding at the atomic-level, a frequent approach involves multidimensional nuclear magnetic resonance (NMR) spectroscopy experiments relying on 13C- and/or 15N-enrichment alongside 1H. Alternatively, the lack of fluorine in biomolecules may be exploited through specific incorporation of 19F nuclei into a sample. The 19F nucleus is highly sensitive to environmental changes and allows for one-dimensional NMR spectroscopic study, with perturbation to chemical shift and spin dynamics diagnostic of structural change, ligand binding, and modified conformational sampling. This was applied to the apelinergic system, which comprises a rhodopsin-like G protein-coupled receptor (the apelin receptor (AR)/APJ) and two families of cognate ligands, the apelin and apela (ELABELA/toddler) peptides. Specifically, AR fragments consisting of either the N-terminal tail and first transmembrane (TM) α-helix (AR55) or the first three transmembrane α-helices (TM1-3) were prepared with biosynthetic fluorotryptophan incorporation. Interactions of each AR fragment with a high-affinity, 2,4,5-trifluorophenylalanine labeled apelin analogue were compared by 19F NMR. Distinct ranges of 19F chemical shifts for ligand and receptor provide unambiguous tracking of both species, with distinct binding behaviour observed for each AR fragment implying that AR55 is not sufficient to recapitulate the physiological binding event. Site-specific perturbation was also apparent for the apelin analogue as a function of substitution site, indicating an orientational binding preference. As a whole, this strategy of distinctive 19F labelling for ligand and receptor provides a relatively fast (i.e., employing 1D NMR experiments) and highly sensitive method to simultaneously and definitively track binding in both species.


Asunto(s)
Imagen por Resonancia Magnética con Fluor-19 , Ligandos , Imagen Molecular , Receptores Acoplados a Proteínas G/metabolismo , Secuencia de Aminoácidos , Receptores de Apelina/química , Receptores de Apelina/metabolismo , Imagen por Resonancia Magnética con Fluor-19/métodos , Humanos , Estructura Molecular , Unión Proteica , Receptores Acoplados a Proteínas G/química , Relación Estructura-Actividad
14.
FEBS Lett ; 593(6): 634-643, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30801688

RESUMEN

The human APJ receptor (APJR), activated by apelin isoforms, regulates cardiovascular functions and fluid homeostasis. Understanding its structure-function relationship is crucial for a comprehensive knowledge of signalling aberrations that cause several physiological disorders. Here, we demonstrate the influence of extracellular loop (ECL) domains in the mechanism of ß-arrestin-mediated signalling from human APJR: Apelin system. Alanine mutations of evolutionarily conserved residues were characterized using receptor internalization, ß-arrestin pull-down, Akt phosphorylation and cell migration assay. C281A and 268 KTL270 -AAA in ECL3 were deficient in all assays, whereas 183 MDYS186 -AAAA mutant in ECL2 showed impaired ß-arrestin-mediated signalling but demonstrated Gi -dependent cell migration. Our findings establish that conserved residues in the extracellular domain play a prominent role in modulating receptor interactions with the ß-arrestin signalling cascade.


Asunto(s)
Receptores de Apelina/química , Apelina/genética , Transducción de Señal , beta-Arrestinas/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Apelina/metabolismo , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Movimiento Celular , Pollos/genética , Pollos/metabolismo , Células HEK293 , Humanos , Radioisótopos de Yodo , Mutación , Perciformes/genética , Perciformes/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Coloración y Etiquetado/métodos , Xenopus laevis/genética , Xenopus laevis/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
15.
Biochem J ; 475(23): 3813-3826, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30409826

RESUMEN

Biased ligands of G protein-coupled receptors (GPCRs) may have improved therapeutic benefits and safety profiles. However, the molecular mechanism of GPCR biased signaling remains largely unknown. Using apelin receptor (APJ) as a model, we systematically investigated the potential effects of amino acid residues around the orthosteric binding site on biased signaling. We discovered that a single residue mutation I109A (I1093.32) in the transmembrane domain 3 (TM3) located in the deep ligand-binding pocket was sufficient to convert a balanced APJ into a G protein signaling biased receptor. APJ I109A mutant receptor retained full capabilities in ligand binding and G protein activation, but was defective in GRK recruitment, ß-arrestin recruitment, and downstream receptor-mediated ERK activation. Based on molecular dynamics simulations, we proposed a molecular mechanism for biased signaling of I109A mutant receptor. We postulate that due to the extra space created by I109A mutation, the phenyl group of the last residue (Phe-13) of apelin rotates down and initiates a cascade of conformational changes in TM3. Phe-13 formed a new cluster of hydrophobic interactions with the sidechains of residues in TM3, including F1103.33 and M1133.36, which stabilizes the mutant receptor in a conformation favoring biased signaling. Interruption of these stabilizing interactions by double mutation F110A/I109A or M113A/I109A largely restored the ß-arrestin-mediated signaling. Taken together, we describe herein the discovery of a biased APJ mutant receptor and provide detailed molecular insights into APJ signaling selectivity, facilitating the discovery of novel therapeutics targeting APJ.


Asunto(s)
Aminoácidos/química , Receptores de Apelina/química , Dominios Proteicos , Receptores Acoplados a Proteínas G/química , Secuencia de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Apelina/química , Apelina/metabolismo , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Sitios de Unión/genética , Línea Celular Tumoral , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Ligandos , Simulación de Dinámica Molecular , Mutación Missense , Unión Proteica , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
16.
Structure ; 25(6): 858-866.e4, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28528775

RESUMEN

Apelin receptor (APJR) is a key regulator of human cardiovascular function and is activated by two different endogenous peptide ligands, apelin and Elabela, each with different isoforms diversified by length and amino acid sequence. Here we report the 2.6-Å resolution crystal structure of human APJR in complex with a designed 17-amino-acid apelin mimetic peptide agonist. The structure reveals that the peptide agonist adopts a lactam constrained curved two-site ligand binding mode. Combined with mutation analysis and molecular dynamics simulations with apelin-13 binding to the wild-type APJR, this structure provides a mechanistic understanding of apelin recognition and binding specificity. Comparison of this structure with that of other peptide receptors suggests that endogenous peptide ligands with a high degree of conformational flexibility may bind and modulate the receptors via a similar two-site binding mechanism.


Asunto(s)
Receptores de Apelina/química , Alanina , Apelina/química , Receptores de Apelina/agonistas , Receptores de Apelina/genética , Cristalografía por Rayos X , Humanos , Simulación de Dinámica Molecular , Imitación Molecular , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/química , Péptidos Cíclicos/química , Conformación Proteica , Transducción de Señal
17.
Sci Rep ; 7: 40335, 2017 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-28091541

RESUMEN

The apelin receptor (APJ) belongs to family A of the G protein-coupled receptors (GPCRs) and is a potential pharmacotherapeutic target for heart failure, hypertension, and other cardiovascular diseases. There is evidence APJ heterodimerizes with other GPCRs; however, the existence of APJ homodimers and oligomers remains to be investigated. Here, we measured APJ monomer-homodimer-oligomer interconversion by monitoring APJ dynamically on cells and compared their proportions, spatial arrangement, and mobility using total internal reflection fluorescence microscopy, resonance energy transfer, and proximity biotinylation. In cells with <0.3 receptor particles/µm2, approximately 60% of APJ molecules were present as dimers or oligomers. APJ dimers were present on the cell surface in a dynamic equilibrium with constant formation and dissociation of receptor complexes. Furthermore, we applied interference peptides and MALDI-TOF mass spectrometry to confirm APJ homo-dimer and explore the dimer-interfaces. Peptides corresponding to transmembrane domain (TMD)1, 2, 3, and 4, but not TMD5, 6, and 7, disrupted APJ dimerization. APJ mutants in TMD1 and TMD2 also decreased bioluminescence resonance energy transfer of APJ dimer. APJ dimerization resulted in novel functional characteristics, such as a distinct G-protein binding profile and cell responses after agonist stimulation. Thus, dimerization may serve as a unique mechanism for fine-tuning APJ-mediated functions.


Asunto(s)
Receptores de Apelina/metabolismo , Proteínas de Unión al GTP/metabolismo , Multimerización de Proteína , Transducción de Señal , Imagen Individual de Molécula/métodos , Secuencia de Aminoácidos , Animales , Apelina/química , Apelina/metabolismo , Receptores de Apelina/agonistas , Receptores de Apelina/química , Células CHO , Membrana Celular/metabolismo , Supervivencia Celular , Cricetinae , Cricetulus , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Mutación Puntual/genética , Dominios Proteicos
18.
Biochim Biophys Acta ; 1864(12): 1748-1756, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27671350

RESUMEN

BACKGROUND: Human APJ receptor (APJR), a rhodopsin family G-Protein Coupled Receptor (GPCR), activated by isoforms of peptide ligand apelin causing potent inotropic effect, is involved in cardiac function, angiogenesis and maintenance of fluid homeostasis. APJR is expressed in various organs e.g., heart, brain, kidney, muscles, etc. Hence, problems in APJR signaling lead to severe dysregulation in the pathophysiology of an organism. METHODS: Based on multiple sequence alignment of receptors from various organisms, we observe a large number of conserved residues in the extracellular side. Mutational studies including calcium mobilization, receptor internalization and ERK1/2 phosphorylation assays were performed. RESULTS: Stimulation of APJR and its mutants with apelin-13 led to mutation-dependent variation in receptor activation, intracellular Ca2+rise, and its subsequent downstream signaling. The mutant 183MDYS186-AAAA in ECL2 showed Gi-biased signaling while 268KTL270-AAA in ECL3 showed Gq biasing. C281A mutant in ECL3 was deficient in all assays. CONCLUSION: Conserved residues in the ECL2 of APJR are key for ligand binding, activation mechanism, and selective downstream signaling. Additionally, we demonstrate that Cys281 (in ECL3) mediated disulfide linkage is important for ligand recognition and receptor activation. GENERAL SIGNIFICANCE: This work explains the importance of extracellular loop domains in ligand binding, receptor activation and downstream signaling of human APJR.


Asunto(s)
Receptores de Apelina/metabolismo , Apelina/metabolismo , Sustitución de Aminoácidos , Animales , Apelina/genética , Receptores de Apelina/química , Receptores de Apelina/genética , Señalización del Calcio , Secuencia Conservada , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , beta-Arrestinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...