Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 181(12): 1829-1842, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38378168

RESUMEN

BACKGROUND AND PURPOSE: Insulin therapies for Type 1 diabetes (T1D) have limitations, such as glucose fluctuations, hypoglycaemia, and weight gain. Only pramlintide is approved with insulin. However, its short half-life limits efficacy, requiring multiple daily injections and increasing hypoglycaemia risk. New strategies are needed to improve glycaemic control. Dual amylin and calcitonin receptor agonists are potent insulin sensitizers developed for Type 2 diabetes (T2D) as they improve glucose control, reduce body weight, and attenuate hyperglucagonemia. However, it is uncertain if they could be used to treat T1D. EXPERIMENTAL APPROACH: Sprague Dawley rats received a single intravenous injection of streptozotocin (STZ) (50 mg·kg-1) to induce T1D. Humulin (1 U/200 g·day-1 or 2 U/200 g·day-1) was continuously infused, while half of the rats received additional KBP-336 (4.5 nmol·kg-1 Q3D) treatment. Bodyweight, food intake, and blood glucose were monitored throughout the study. An oral glucose tolerance test was performed during the study. KEY RESULTS: Treatment with Humulin or Humulin + KBP-336 improved the health of STZ rats. Humulin increased body weight in STZ rats, but KBP-336 attenuated these increases and maintained a significant weight loss. The combination exhibited greater blood glucose reductions than Humulin-treated rats alone, reflected by improved HbA1c levels and glucose control. The combination prevented hyperglucagonemia, reduced amylin levels, and increased pancreatic insulin content, indicating improved insulin sensitivity and beta-cell preservation. CONCLUSION AND IMPLICATIONS: The insulin sensitizer KBP-336 lowered glucagon secretion while attenuating insulin-induced weight gain. Additionally, KBP-336 may prevent hypoglycaemia and improve insulin resistance, which could be a significant advantage for individuals with T1D seeking therapeutic benefits.


Asunto(s)
Glucemia , Peso Corporal , Diabetes Mellitus Tipo 1 , Control Glucémico , Hipoglucemiantes , Insulina , Ratas Sprague-Dawley , Receptores de Calcitonina , Animales , Receptores de Calcitonina/agonistas , Receptores de Calcitonina/metabolismo , Masculino , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Ratas , Peso Corporal/efectos de los fármacos , Hipoglucemiantes/farmacología , Hipoglucemiantes/administración & dosificación , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Agonistas de los Receptores de Amilina/farmacología , Polipéptido Amiloide de los Islotes Pancreáticos , Estreptozocina
2.
Nat Chem Biol ; 20(2): 162-169, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37537379

RESUMEN

Amylin receptors (AMYRs), heterodimers of the calcitonin receptor (CTR) and one of three receptor activity-modifying proteins, are promising obesity targets. A hallmark of AMYR activation by Amy is the formation of a 'bypass' secondary structural motif (residues S19-P25). This study explored potential tuning of peptide selectivity through modification to residues 19-22, resulting in a selective AMYR agonist, San385, as well as nonselective dual amylin and calcitonin receptor agonists (DACRAs), with San45 being an exemplar. We determined the structure and dynamics of San385-bound AMY3R, and San45 bound to AMY3R or CTR. San45, via its conjugated lipid at position 21, was anchored at the edge of the receptor bundle, enabling a stable, alternative binding mode when bound to the CTR, in addition to the bypass mode of binding to AMY3R. Targeted lipid modification may provide a single intervention strategy for design of long-acting, nonselective, Amy-based DACRAs with potential anti-obesity effects.


Asunto(s)
Polipéptido Amiloide de los Islotes Pancreáticos , Receptores de Calcitonina , Humanos , Receptores de Calcitonina/agonistas , Receptores de Calcitonina/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Obesidad , Lípidos
3.
Am J Physiol Endocrinol Metab ; 325(5): E529-E539, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37792041

RESUMEN

Dual amylin and calcitonin receptor agonists (DACRAs) are effective treatments for obesity and type 2 diabetes (T2D). They provide beneficial effects on body weight, glucose control, and insulin action. However, whether DACRAs protect against diabetes-related kidney damage remains unknown. We characterize the potential of long-acting DACRAs (KBP-A, Key Bioscience Peptide-A) as a treatment for T2D-related pathological alterations of the kidney extracellular matrix (ECM) in Zucker diabetic fatty rats (ZDF). We examined levels of endotrophin (profibrotic signaling molecule reflecting collagen type VI formation) and tumstatin (matrikine derived from collagen type IVα3) in serum and evaluated kidney morphology and collagen deposition in the kidneys. We included a study in obese Sprague-Dawley rats to further investigate the impact of KBP-A on ECM biomarkers. In ZDF vehicles, levels of endotrophin and tumstatin increased, suggesting disease progression along with an increase in blood glucose levels. These rats also displayed damage to their kidneys, which was evident from the presence of collagen formation in the medullary region of the kidney. Interestingly, KBP-A treatment attenuated these increases, resulting in significantly lower levels of endotrophin and tumstatin than the vehicle. Levels of endotrophin and tumstatin were unchanged in obese Sprague-Dawley rats, supporting the relation to diabetes-related kidney complications. Furthermore, KBP-A treatment normalized collagen deposition in the kidney while improving glucose control. These studies confirm the beneficial effects of DACRAs on biomarkers associated with kidney fibrosis. Moreover, these antifibrotic effects are likely associated with improved glucose control, highlighting KBP-A as a promising treatment of T2D and its related late complications.NEW & NOTEWORTHY These studies describe the beneficial effects of using a dual amylin and calcitonin receptor agonist (DACRA) for diabetes-related kidney complications. DACRA treatment reduced levels of serological biomarkers associated with kidney fibrosis. These reductions were further reflected by reduced collagen expression in diabetic kidneys. In general, these results validate the use of serological biomarkers while demonstrating the potential effect of DACRAs in treating diabetes-related long-term complications.


Asunto(s)
Agonistas de los Receptores de Amilina , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Riñón , Animales , Ratas , Agonistas de los Receptores de Amilina/farmacología , Agonistas de los Receptores de Amilina/uso terapéutico , Glucemia/metabolismo , Colágeno , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Fibrosis , Polipéptido Amiloide de los Islotes Pancreáticos , Riñón/patología , Obesidad , Ratas Sprague-Dawley , Ratas Zucker , Receptores de Calcitonina/agonistas
4.
Biomed Pharmacother ; 164: 114969, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37269811

RESUMEN

Dual amylin and calcitonin receptor agonists (DACRAs) are known to induce significant weight loss as well as improve glucose tolerance, glucose control, and insulin action in rats. However, to what extent DACRAs affect insulin sensitivity beyond that induced by weight loss and if DACRAs affect glucose turnover including tissue-specific glucose uptake is still unknown. Hyperinsulinemic glucose clamp studies were carried out in pre-diabetic ZDSD and diabetic ZDF rats treated with either the DACRA KBP or the long-acting DACRA KBP-A for 12 days. The glucose rate of disappearance was assessed using 3-3H glucose and tissue-specific glucose uptake was evaluated using 14C-2-deoxy-D-glucose (14C-2DG). In diabetic ZDF rats, KBP treatment significantly reduced fasting blood glucose and improved insulin sensitivity independent of weight loss. Furthermore, KBP increased the rate of glucose clearance, likely by increasing glucose storage, but without altering the endogenous glucose production. This was confirmed in pre-diabetic ZDSD rats. Direct assessment of tissue-specific glucose uptake showed, that both KBP and KBP-A significantly increased glucose uptake in muscles. In summary, KBP treatment significantly improved insulin sensitivity in diabetic rats and markedly increased glucose uptake in muscles. Importantly, in addition to their well-established weight loss potential, the KBPs have an insulin-sensitizing effect independent of weight loss, highlighting DACRAs as promising agents for the treatment of type 2 diabetes and obesity.


Asunto(s)
Agonistas de los Receptores de Amilina , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Estado Prediabético , Ratas , Animales , Agonistas de los Receptores de Amilina/farmacología , Receptores de Calcitonina/agonistas , Polipéptido Amiloide de los Islotes Pancreáticos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ratas Sprague-Dawley , Pérdida de Peso , Glucosa , Insulina , Hormonas y Agentes Reguladores de Calcio , Músculos , Glucemia
5.
Eur J Pharmacol ; 954: 175837, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37329973

RESUMEN

OBJECTIVE: Long-acting dual amylin and calcitonin receptor agonists (DACRAs) hold great promise as potential treatments for obesity and its associated comorbidities. These agents have demonstrated beneficial effects on body weight, glucose control, and insulin action mirroring the effects observed with glucagon-like peptide-1 (GLP-1) agonist treatment. Strategies aimed at enhancing and prolonging treatment efficacy include treatment sequencing and combination therapy. Here, we sought to investigate the impact of switching between or combining treatment with the DACRA KBP-336 and the GLP-1 analog semaglutide in fed rats with obesity induced by a high-fat diet (HFD). METHODS: Two studies were performed in which HFD-induced obese Sprague Dawley rats were switched between treatment with KBP-336 (4.5 nmol/kg, Q3D) and semaglutide (50 nmol/kg, Q3D) or a combination of the two. Treatment efficacy on weight loss and food intake was evaluated, and glucose tolerance was assessed by oral glucose tolerance tests. RESULTS: KBP-336 and semaglutide monotherapy resulted in a similar reduction in body weight and food intake. Treatment sequencing resulted in continuous weight loss and all monotherapies resulted in similar weight loss independent of the treatment regimen (P < 0.001 compared to vehicle). The combination of KBP-336 and semaglutide significantly improved the weight loss compared to either monotherapy alone (P < 0.001), which was evident in the adiposity at the study end. All treatments improved glucose tolerance, with the KBP-effect on insulin sensitivity as the dominant response. CONCLUSIONS: These findings highlight KBP-336 as a promising anti-obesity therapy both alone, in treatment sequencing, and in combination with semaglutide or other incretin-based therapies.


Asunto(s)
Agonistas de los Receptores de Amilina , Conservadores de la Densidad Ósea , Diabetes Mellitus Tipo 2 , Ratas , Animales , Agonistas de los Receptores de Amilina/farmacología , Receptores de Calcitonina/agonistas , Polipéptido Amiloide de los Islotes Pancreáticos , Ratas Sprague-Dawley , Pérdida de Peso , Peso Corporal , Obesidad/tratamiento farmacológico , Péptido 1 Similar al Glucagón , Glucosa , Receptor del Péptido 1 Similar al Glucagón , Hipoglucemiantes
6.
Eur J Pharmacol ; 938: 175397, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36414113

RESUMEN

Pharmacotherapies for obesity and type 2 diabetes (T2D) are thought to bridge the gap between lifestyle modification and the weight loss obtained with bariatric surgery. Although the effect of monotherapies, namely amylin and glucagon-like peptide-1 receptor (GLP-1R) agonists, has shown great potential, combination therapy is now becoming a strategy to optimize efficacy for weight management while minimizing adverse effects. This study investigated a dual amylin and calcitonin receptor agonist (DACRA); KBP-066A in combination with the GLP-1R agonist semaglutide or the sodium-glucose co transporter-2 inhibitor (SGLT2i) empagliflozin for anti-obesity and anti-diabetic treatment. The effect of KBP-066A, semaglutide, and empagliflozin alone and in combination was studied with respect to their impact on body weight, food intake, and glucose metabolism in high-fat diet (HFD) and Zucker diabetic fatty (fa/fa) (ZDF) rats. Treatment with KBP-066A and semaglutide lowered body weight by 13% and 9.7%. In contrast, a combination of both KBP-066A + semaglutide reduced body weight by 21% in HFD rats demonstrating superiority compared to monotherapies alone. A combination of KBP-066A with semaglutide or empagliflozin significantly lowered fasting blood glucose, and HbA1C (%) levels in ZDF rats. The complementary action by KBP-066A to GLP-1R agonist and SGLT2i on BW, food intake and glucose control endorsed the potential of DACRAs as an add-on therapy to therapeutic options for T2D and obesity.


Asunto(s)
Agonistas de los Receptores de Amilina , Diabetes Mellitus Tipo 2 , Ratas , Animales , Agonistas de los Receptores de Amilina/farmacología , Agonistas de los Receptores de Amilina/uso terapéutico , Receptores de Calcitonina/agonistas , Receptores de Calcitonina/uso terapéutico , Polipéptido Amiloide de los Islotes Pancreáticos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ratas Zucker , Peso Corporal , Obesidad/tratamiento farmacológico , Receptor del Péptido 1 Similar al Glucagón , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico
7.
Biomed Pharmacother ; 156: 113842, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36242844

RESUMEN

Cagrilintide is a novel long-acting amylin receptor agonist, which has shown a potent induction of weight loss. Interestingly, cagrilintide is a Dual Amylin and Calcitonin Receptor Agonist (DACRA) derived from an amylin backbone. Another class of long-acting DACRAs exists, namely the KBPs. These are salmon calcitonin-based and have shown preclinical potential; however, how and if they differentiate from amylin-derived molecules remain to be studied. Here, we compare cagrilintide to the DACRA KBP-336 with respect to receptor activation balance in vitro and using metabolic in vivo models. Peptide potencies were assessed using receptor-specific assays in vitro and in vivo. In vivo efficacies on body weight and glucose homeostasis were investigated head-to-head in high-fat diet (HFD) fed obese and T2D (ZDF) rat models. Both peptides activate the amylin and the calcitonin receptor in vitro and in vivo, with KBP-336 being more potent, and showing a CTR bias. KBP-336 and cagrilintide induced a potent and dose-dependent weight loss in HFD rats, with the highest dose of KBP-336 being superior to cagrilintide. In diabetic ZDF rats, DACRA treatment improved fasting blood glucose, HbA1c levels, and insulin action, with KBP-336 being superior to cagrilintide in improving glucose control. In summary, both KBP-336 and cagrilintide are DACRAs, however with KBP-336 being biased towards the CTR resulting in a different receptor activation balance. Interestingly, KBP-336 showed superior long-term efficacy on both weight loss and glucose control, supporting relevance of the receptor balance, and highlighting KBP-336 as a promising agent for the treatment of obesity and T2D.


Asunto(s)
Agonistas de los Receptores de Amilina , Diabetes Mellitus Tipo 2 , Animales , Ratas , Agonistas de los Receptores de Amilina/farmacología , Agonistas de los Receptores de Amilina/uso terapéutico , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Polipéptido Amiloide de los Islotes Pancreáticos/farmacología , Polipéptido Amiloide de los Islotes Pancreáticos/uso terapéutico , Obesidad/tratamiento farmacológico , Ratas Sprague-Dawley , Receptores de Calcitonina/agonistas , Receptores de Calcitonina/uso terapéutico , Pérdida de Peso
8.
Mol Metab ; 53: 101282, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34214708

RESUMEN

OBJECTIVE: Dual amylin and calcitonin receptor agonists (DACRAs) are novel therapeutic agents that not only improve insulin sensitivity but also work as an adjunct to established T2DM therapies. DACRAs are currently administered once daily, though it is unknown whether DACRAs with increased plasma half-life can be developed as a once-weekly therapy. METHODS: The in vitro potencies of the KBP-066A and KBP-066 (non-acylated) were assessed using reporter assays. Acylation functionality was investigated by a combination of pharmacokinetics and acute food intake in rats. in vivo efficacies were investigated head-to-head in obese (HFD) and T2D (ZDF) models. RESULTS: In in vitro, KBP-066A activated the CTR and AMY-R potently, with no off-target activity. Acylation functionality was confirmed by acute tests, as KBP-066A demonstrated a prolonged PK and PD response compared to KBP-066. Both compounds induced potent and dose-dependent weight loss in the HFD rat model. In ZDF rats, fasting blood glucose/fasting insulin levels (tAUC) were reduced by 39%/50% and 36%/47% for KBP-066 and KBP-066A, respectively. This effect resulted in a 31% and 46% vehicle-corrected reduction in HbA1c at the end of the study for KBP-066 and KBP-066A, respectively. CONCLUSIONS: Here, we present pre-clinical data on an acylated DACRA, KBP-066A. The in vivo efficacy of KBP-066A is significantly improved compared to its non-acylated variant regarding weight loss and glycemic control in obese (HFD) and obese diabetic rats (ZDF). This compendium of pre-clinical studies highlights KBP-066A as a promising, once-weekly therapeutic agent for treating T2DM and obesity.


Asunto(s)
Agonistas de los Receptores de Amilina/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Receptores de Calcitonina/agonistas , Receptores de Polipéptido Amiloide de Islotes Pancreáticos/metabolismo , Agonistas de los Receptores de Amilina/química , Animales , Línea Celular , Dieta Alta en Grasa/efectos adversos , Control Glucémico , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Pérdida de Peso/efectos de los fármacos
9.
Am J Physiol Regul Integr Comp Physiol ; 321(2): R250-R259, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34259025

RESUMEN

The peptide hormone amylin reduces food intake and body weight and is an attractive candidate target for novel pharmacotherapies to treat obesity. However, the short half-life of native amylin and amylin analogs like pramlintide limits these compounds' potential utility in promoting sustained negative energy balance. Here, we evaluate the ability of the novel long-acting amylin/calcitonin receptor agonist ZP5461 to reduce feeding and body weight in rats, and also test the role of calcitonin receptors (CTRs) in the dorsal vagal complex (DVC) of the hindbrain in the energy balance effects of chronic ZP5461 administration. Acute dose-response studies indicate that systemic ZP5461 (0.5-3 nmol/kg) robustly suppresses energy intake and body weight gain in chow- and high-fat diet (HFD)-fed rats. When HFD-fed rats received chronic systemic administration of ZP5461 (1-2 nmol/kg), the compound initially produced reductions in energy intake and weight gain but failed to produce sustained suppression of intake and body weight. Using virally mediated knockdown of DVC CTRs, the ability of chronic systemic ZP5461 to promote early reductions in intake and body weight gain was determined to be mediated in part by activation of DVC CTRs, implicating the DVC as a central site of action for ZP5461. Future studies should address other dosing regimens of ZP5461 to determine whether an alternative dose/frequency of administration would produce more sustained body weight suppression.


Asunto(s)
Agonistas de los Receptores de Amilina/farmacología , Depresores del Apetito/farmacología , Ingestión de Alimentos/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Receptores de Calcitonina/agonistas , Receptores de Polipéptido Amiloide de Islotes Pancreáticos/efectos de los fármacos , Rombencéfalo/efectos de los fármacos , Nervio Vago/efectos de los fármacos , Aumento de Peso/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Ingestión de Energía/efectos de los fármacos , Masculino , Ratas Sprague-Dawley , Receptores de Calcitonina/genética , Receptores de Calcitonina/metabolismo , Receptores de Polipéptido Amiloide de Islotes Pancreáticos/genética , Receptores de Polipéptido Amiloide de Islotes Pancreáticos/metabolismo , Rombencéfalo/metabolismo , Transducción de Señal , Factores de Tiempo , Nervio Vago/metabolismo
10.
Br J Clin Pharmacol ; 87(12): 4786-4796, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34019711

RESUMEN

There is a need for antidiabetic agents successfully targeting insulin sensitivity and treating obesity control at the same time. The aim of this first-in-human study was (a) to evaluate safety and tolerability, (b) to evaluate pharmacokinetics and (c) to assess indications of receptor engagement of single ascending doses of KBP-042, a dual amylin and calcitonin receptor agonist (DACRA) that has shown promising preclinical data, with superior activity in terms of typical amylin-induced responses including reduction of food intake, weight loss and gluco-regulatory capacities. A randomised double-blind placebo-controlled single ascending dose study was performed with six dose levels of KBP-042 (5, 7.5, 10, 20, 20 (evening), 40 ug) in healthy male adults. KBP-042 or placebo was administered as a single dose after an overnight fast, followed by a standardized lunch after 4 hours. KBP-042 was associated with dose-dependent complaints of nausea and vomiting, with a lack of tolerability at doses of 20 µg and above. Doses of 5-40 µg KBP-042 behaved according to a linear pharmacokinetic profile. Indications of target receptor engagement were observed at the level of glucose control and lowering of bone resorption, compared to placebo. The results of this study showed that doses up to 40 µg were safe, although tolerability was not present at the highest doses. The study confirmed target receptor engagement at the studied doses.


Asunto(s)
Agonistas de los Receptores de Amilina , Agonistas de los Receptores de Amilina/farmacología , Calcitonina/análogos & derivados , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Humanos , Masculino , Receptores de Calcitonina/agonistas
11.
BMC Endocr Disord ; 21(1): 10, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413317

RESUMEN

BACKGROUND: Weight loss therapy is becoming more and more important, and two classes of molecules, namely amylin receptor and GLP-1 receptor agonists, have shown promise in this regard. Interestingly, these molecules have several overlapping pharmacological effects, such as suppression of gastric emptying, reduction of glucagon secretion and weight loss in common; however, they also have distinct effects on prandial insulin secretion. Hence, a combination of these two mechanisms is of significant interest. METHODS: In this study, we investigated the add-on potential of the dual amylin and calcitonin receptor agonist (DACRA) KBP-089 in combination with the GLP-1 receptor agonist liraglutide as obesity treatment in high-fat diet (HFD) fed rats. RESULTS: Increasing doses of KBP-089 and liraglutide alone and in combination were studied with respect to their effects on body weight, food intake and glucose metabolism during a 9-week intervention study conducted in HFD rats. Further, the gastric emptying rate during an oral glucose tolerance was assessed. Treatment with KBP-089 and liraglutide dose-dependently lowered body weight 15% (at 2.5 µg/kg/day) and 7% (at 400 µg/kg/day) in HFD rats, respectively, while the combination resulted in a 21% body weight reduction, which was mirrored by reduction in fat depot sizes. Gastric emptying and glucose metabolism were improved, primarily by KBP-089, although liraglutide led to a reduction in fasting plasma glucagon. CONCLUSION: DACRAs complement GLP-1 on food intake, body weight, and glucose tolerance indicating the potential for an add-on therapy.


Asunto(s)
Agonistas de los Receptores de Amilina/farmacología , Receptor del Péptido 1 Similar al Glucagón/agonistas , Péptidos Similares al Glucagón/farmacología , Liraglutida/farmacología , Obesidad/tratamiento farmacológico , Receptores de Calcitonina/agonistas , Receptores de Polipéptido Amiloide de Islotes Pancreáticos/química , Pérdida de Peso/efectos de los fármacos , Animales , Glucemia/análisis , Dieta Alta en Grasa/efectos adversos , Quimioterapia Combinada , Prueba de Tolerancia a la Glucosa , Hipoglucemiantes/farmacología , Masculino , Metaboloma , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Ratas , Ratas Sprague-Dawley
12.
Mol Metab ; 46: 101109, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33166741

RESUMEN

BACKGROUND: Therapies for metabolic diseases are numerous, yet improving insulin sensitivity beyond that induced by weight loss remains challenging. Therefore, search continues for novel treatment candidates that can stimulate insulin sensitivity and increase weight loss efficacy in combination with current treatment options. Calcitonin gene-related peptide (CGRP) and amylin belong to the same peptide family and have been explored as treatments for metabolic diseases. However, their full potential remains controversial. SCOPE OF REVIEW: In this article, we introduce this rather complex peptide family and its corresponding receptors. We discuss the physiology of the peptides with a focus on metabolism and insulin sensitivity. We also thoroughly review the pharmacological potential of amylin, calcitonin, CGRP, and peptide derivatives as treatments for metabolic diseases, emphasizing their ability to increase insulin sensitivity based on preclinical and clinical studies. MAJOR CONCLUSIONS: Amylin receptor agonists and dual amylin and calcitonin receptor agonists are relevant treatment candidates, especially because they increase insulin sensitivity while also assisting weight loss, and their unique mode of action complements incretin-based therapies. However, CGRP and its derivatives seem to have only modest if any metabolic effects and are no longer of interest as therapies for metabolic diseases.


Asunto(s)
Calcitonina/agonistas , Polipéptido Amiloide de los Islotes Pancreáticos/agonistas , Enfermedades Metabólicas/tratamiento farmacológico , Receptores de Péptido Relacionado con el Gen de Calcitonina/agonistas , Animales , Péptido Relacionado con Gen de Calcitonina/farmacología , Humanos , Resistencia a la Insulina , Obesidad/tratamiento farmacológico , Receptores de Calcitonina/agonistas , Receptores de Superficie Celular/efectos de los fármacos , Pérdida de Peso
13.
Basic Clin Pharmacol Toxicol ; 127(3): 163-177, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32363722

RESUMEN

The prevalence of obesity and associated comorbidities such as type 2 diabetes and cardiovascular disease is increasing globally. Body-weight loss reduces the risk of morbidity and mortality in obese individuals, and thus, pharmacotherapies that induce weight loss can be of great value in improving the health and well-being of people living with obesity. Treatment with amylin and calcitonin receptor agonists reduces food intake and induces weight loss in several animal models, and a number of companies have started clinical testing for peptide analogues in the treatment of obesity and/or type 2 diabetes. Studies predominantly performed in rodent models show that amylin and the dual amylin/calcitonin receptor agonist salmon calcitonin achieve their metabolic effects by engaging areas in the brain associated with regulating homeostatic energy balance. In particular, signalling via neuronal circuits in the caudal hindbrain and the hypothalamus is implicated in mediating effects on food intake and energy expenditure. We review the current literature investigating the interaction of amylin/calcitonin receptor agonists with neurocircuits that induce the observed metabolic effects. Moreover, the status of drug development of amylin and calcitonin receptor agonists for the treatment of metabolic diseases is summarized.


Asunto(s)
Agonistas de los Receptores de Amilina/farmacología , Agonistas de los Receptores de Amilina/uso terapéutico , Enfermedades Metabólicas/tratamiento farmacológico , Receptores de Calcitonina/agonistas , Receptores de Calcitonina/uso terapéutico , Animales , Metabolismo Energético , Humanos , Hipotálamo , Polipéptido Amiloide de los Islotes Pancreáticos/fisiología , Leptina , Ratones , Ratas , Rombencéfalo
14.
J Pharmacol Exp Ther ; 374(1): 74-83, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32317372

RESUMEN

Amylin treatment improves body weight and glucose control, although it is limited by a short action and need for high doses. Dual amylin and calcitonin receptor agonists (DACRAs) are dual amylin and calcitonin receptor agonists with beneficial effects beyond those of amylin. However, to what extent the additional benefits reside in their higher potency or their targeting of the calcitonin receptor remains unclear. Here we deconstruct the receptors involved in the effects of a DACRA, KBP-088, by comparing it to rat amylin (rAMY), rat calcitonin (rCT), and their combination in obese high-fat diet (HFD) and diabetic Zucker diabetic fatty (ZDF) rats. HFD-fed Sprague-Dawley rats and ZDF rats were treated for 4 weeks with KBP-088 (5 µg/kg per day), rAMY (300 µg/kg per day), rCT (300 µg/kg per day), and the combination of rAMY and rCT (300+300 µg/kg per day) using infusion pumps. Body weight, food intake, fasting glycemia, glycated hemoglobin type A1c levels, and glucose tolerance were assessed. In obese HFD-fed rats, KBP-088, rAMY, and the combination of rAMY and rCT significantly reduced body weight and improved glucose tolerance, whereas rCT alone had no effect. In diabetic ZDF rats, rCT was efficient in lowering fasting glycemia similar to rAMY, whereas dual activation by KBP-088 and the combination of rAMY and rCT were superior to activating either receptor alone. In conclusion, calcitonin therapy regulates fasting blood glucose in a diabetic rat model, thereby underscoring the importance of calcitonin receptor activation as well as the known role of amylin receptor agonism in the potent metabolic benefits of this group of peptides. SIGNIFICANCE STATEMENT: We deconstruct the receptors activated by dual amylin and calcitonin receptor agonist (DACRA) therapy to elucidate through which receptor the beneficial metabolic effects of the DACRAs are mediated. We show that calcitonin receptor activation is important for blood glucose regulation in diabetes. This is in addition to the known metabolic beneficial role of amylin receptor activation. These data help in understanding the potent metabolic benefits of the DACRAs and underline the potential of DACRAs as treatment for diabetes and obesity.


Asunto(s)
Glucosa/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Receptores de Calcitonina/agonistas , Animales , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Ingestión de Alimentos/efectos de los fármacos , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Ratas
15.
J Pharmacol Exp Ther ; 373(2): 269-278, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32071103

RESUMEN

Dual amylin and calcitonin receptor agonists (DACRAs) are novel candidates for treatment of type 2 diabetes and obesity because of their beneficial effects on body weight, blood glucose, insulin sensitivity, and food preference, at least short-term. DACRAs activate the receptors for a prolonged time period, resulting in metabolic effects superior to those of amylin. Because of the prolonged receptor activation, different dosing intervals and, hence, less frequent receptor activation might change the efficacy of DACRA treatment in terms of weight loss and food preference. In this study, we compared daily dosing to dosing every other day with the aim of understanding the optimal balance between efficacy and tolerability. Obese and lean male Sprague-Dawley rats were treated with the DACRA KBP-088, applying two different dosing intervals (1.5 nmol/kg once daily and 3 nmol/kg every other day) to assess the effect on body weight, food intake, glucose tolerance, and food preference when given the choice between chow (13% fat) and a high-fat diet (60% fat). Treatment with KBP-088 induced significant weight loss, reduction in adiposity, improvement in glucose control, and altered food preference toward food that is less calorie-dense. KBP-088 dosed every other day (3 nmol/kg) was superior to KBP-088 once daily (1.5 nmol/kg) in terms of weight loss and improvement of food preference. The beneficial effects were evident in both lean and obese rats. Hence, dosing KBP-088 every other day positively affects overall efficacy on metabolic parameters regardless of the lean/obese state, suggesting that less-frequent dosing with KBP-088 could be feasible. SIGNIFICANCE STATEMENT: Here, we show that food preference can be altered chronically toward choices that are less calorie-dense by pharmacological treatment. Further, pharmacological dosing regimens affect the efficacy differently, as dosing every other day improved body weight loss and alterations in food preference compared with daily dosing. This suggest that alterations of the dosing regimens could be feasible in the treatment of obesity.


Asunto(s)
Agonistas de los Receptores de Amilina/farmacología , Preferencias Alimentarias/efectos de los fármacos , Obesidad/tratamiento farmacológico , Péptidos/farmacología , Receptores de Calcitonina/agonistas , Pérdida de Peso/efectos de los fármacos , Agonistas de los Receptores de Amilina/uso terapéutico , Animales , Esquema de Medicación , Masculino , Péptidos/uso terapéutico , Ratas , Ratas Sprague-Dawley
16.
Bioorg Chem ; 96: 103596, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32004895

RESUMEN

The natural calcitonin (CT) receptor and its peptide agonists are considered validated targets for drug discovery. A small molecule agonist, SUN-B8155, has previously been shown to efficiently activate cellular CTR. Herein, we report the synthesis of a series of compounds (S8155 1-9) derived from SUN-B8155, and investigate the structural-functional relationship, bias properties and their cellular activity profile. We discover that the N-hydroxyl group from the pyridone ring is required for G protein activity and its affinity to the CT receptor. Among the compounds studied, S8155-7 exhibits improved G protein activity while S8155-4 displays a significant ß-arrestin-2 signaling bias. Finally, we show that both S8155-4 and S8155-7 inhibit tumour cell invasion through CTR activation. These two compounds are anticipated to find extensive applications in chemical biology research as well drug development efforts targeting CT receptor.


Asunto(s)
Receptores de Calcitonina/agonistas , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Células HEK293 , Humanos , Células MCF-7 , Piridonas/química , Piridonas/farmacología , Receptores de Calcitonina/metabolismo , Transducción de Señal/efectos de los fármacos , beta-Arrestinas/metabolismo
17.
J Pharmacol Exp Ther ; 373(1): 92-102, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31992608

RESUMEN

Pharmacological treatment with dual amylin and calcitonin receptor agonists (DACRAs) cause significant weight loss and improvement of glucose homeostasis. In this study, the maximally efficacious dose of the novel DACRA, KeyBiosciencePeptide (KBP)-066, was investigated. Two different rat models were used: high-fat diet (HFD)-fed male Sprague-Dawley rats and male Zucker diabetic fatty (ZDF, fa/fa) rats to determine the maximum weight loss and glucose homeostatic effect, respectively. One acute study and one chronic study was performed in HFD rats. Two chronic studies were performed in ZDF rats: a preventive and an interventive. All studies covered a dose range of 5, 50, and 500 µg/kg KBP-066 delivered by subcutaneous injection. Treatment with KBP-066 resulted in a significant weight reduction of 13%-16% and improved glucose tolerance in HFD rats, which was independent of dose concentration. Dosing with 50 and 500 µg/kg led to a transient but significant increase in blood glucose, both in the acute and the chronic study in HFD rats. All doses of KBP-066 significantly improved glucose homeostasis in ZDF rats, both in the preventive and interventive study. Moreover, dosing with 50 and 500 µg/kg preserved insulin secretion to a greater extent than 5 µg/kg when compared with ZDF vehicle rats. Taken together, these results show that maximum weight loss is achieved with 5 µg/kg, which is within the range of previously reported DACRA dosing, whereas increasing dosing concentration to 50 and 500 µg/kg may further improve preservation of insulin secretion compared with 5 µg/kg in diabetic ZDF rats. SIGNIFICANCE STATEMENT: Here we show that KeyBiosciencePeptide (KBP)-066 induces an equally potent body weight loss across a broad dose range in obese rats. However, higher dosing of KBP-066 may improve insulin action in diabetic rats both as preventive and interventive treatment.


Asunto(s)
Agonistas de los Receptores de Amilina/farmacología , Resistencia a la Insulina/fisiología , Receptores de Calcitonina/agonistas , Receptores de Calcitonina/fisiología , Pérdida de Peso/efectos de los fármacos , Pérdida de Peso/fisiología , Animales , Dieta Alta en Grasa/efectos adversos , Relación Dosis-Respuesta a Droga , Masculino , Ratas , Ratas Sprague-Dawley , Ratas Zucker
18.
Osteoarthritis Cartilage ; 27(9): 1339-1346, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31176015

RESUMEN

OBJECTIVES: Pain and disability are the main clinical manifestations of osteoarthritis, for which only symptomatic therapies are available. Hence, there is a need for therapies that can simultaneously alter disease progression and provide pain relief. KBP is a dual amylin- and calcitonin-receptor agonist with antiresorptive and chondroprotective properties. In this study we investigated the effect of KBP in a rat model of osteoarthritis. METHODS: Medial meniscectomy (MNX) was performed in 39 rats, while 10 underwent sham surgery. Rats were treated with KBP and/or naproxen. Nociception was assessed by mechanical and cold allodynia, weight bearing asymmetry, and burrowing behavior. Blood samples were collected for biomarker measurements, and knees for histology. Cartilage histopathology was evaluated according to the advanced Osteoarthritis Research International (OARSI) score and KBPs in vitro antiresorptive effects were assessed using human osteoclasts cultured on bone. RESULTS: The MNX animals displayed an increased nociceptive behavior. Treatment with KBP attenuated the MNX-induced osteoarthritis-associated joint pain. The cartilage histopathology was significantly lower in rats treated with KBP than in MNX animals. Bone and cartilage degradation, assessed by CTX-I and CTX-II plasma levels, were decreased in all KBP-treated groups and KBP potently inhibited bone resorption in vitro. CONCLUSIONS: Our study demonstrates the effectiveness of KBP in ameliorating osteoarthritis-associated joint pain and in protecting the articular cartilage, suggesting KBP as a potential drug candidate for osteoarthritis.


Asunto(s)
Agonistas de los Receptores de Amilina/uso terapéutico , Cartílago Articular/patología , Osteoartritis/tratamiento farmacológico , Dolor/prevención & control , Animales , Calcitonina/análogos & derivados , Cartílago Articular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Osteoartritis/complicaciones , Osteoartritis/patología , Ratas , Ratas Endogámicas Lew , Receptores de Calcitonina/agonistas
19.
J Pharmacol Exp Ther ; 370(1): 35-43, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31028106

RESUMEN

KBP-088 (KeyBiosciencePeptide 088) is a potent dual amylin and calcitonin receptor agonist (DACRA). DACRAs are known to elicit potent activity in terms of typical amylin-induced responses, such as reducing food intake and body weight. However, to what extent amylin infusion can mimic the effects of the dual agonist KBP-088 is unknown. We studied the effect of acute dosing with KBP-088 (5 µg/kg) and rat amylin (100, 300, and 1000 µg/kg) and subsequently compared the chronic effect of KBP-088 (5 µg/kg per day) to increasing doses of rat amylin (100, 300, and 1000 µg/kg per day) delivered by continuous subcutaneous infusion, in high-fat diet (HFD) fed Long-Evans rats. Furthermore, acute amylin sensitivity was investigated. Single dose KBP-088 (5 µg/kg) potently reduced acute food intake for a prolonged period compared with amylin (100, 300, and 1000 µg/kg), confirming the difference in potency. Independent of dose, chronic amylin administration (100, 300, and 1000 µg/kg per day) was less effective than KBP-088 (5 µg/kg per day) in inducing body weight loss (15% with KBP-088, and 5%, 9%, and 8% with amylin, vehicle corrected) and reducing overall adiposity in HFD rats. Moreover, KBP-088 improved oral glucose tolerance with significantly reduced insulin levels (80% reduction) that were better than all doses of amylin (68%, 53%, and 7% reduction). Acute amylin sensitivity was independent of the chronic treatment. Dual activation of amylin and calcitonin receptors by KBP-088 is superior to amylin in reducing body weight and improving glucose tolerance, indicating a role for the calcitonin receptor.


Asunto(s)
Agonistas de los Receptores de Amilina/farmacología , Peso Corporal/efectos de los fármacos , Resistencia a la Insulina , Receptores de Calcitonina/agonistas , Receptores de Polipéptido Amiloide de Islotes Pancreáticos/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Relación Dosis-Respuesta a Droga , Ingestión de Alimentos/efectos de los fármacos , Vaciamiento Gástrico/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
20.
Arthritis Res Ther ; 21(1): 68, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30795801

RESUMEN

BACKGROUND: Pain is a debilitating symptom of rheumatoid arthritis (RA), caused by joint inflammation and cartilage and bone destruction. Nonsteroidal anti-inflammatory drugs (NSAIDs) are used to treat pain and inflammation in RA, but are not disease-modifying and do not prevent joint destruction when administered alone. KBPs (Key Bioscience peptides) are synthetic peptides based on salmon calcitonin and are expected to inhibit bone resorption and to be chondroprotective. In this study, we investigated if combining a standard of care NSAID (naproxen) with a KBP resulted in improvement in pain scores, as well as disease activity and structural damage in a rat model of RA. METHODS: Collagen-induced arthritis (CIA) was induced in 40 female Lewis rats by immunization with porcine type II collagen; 10 rats were given sham injections. CIA rats were treated with KBP and/or naproxen. Health scores and joint scores were evaluated daily. Mechanical and cold allodynia tests and burrowing tests were used to assess pain-like behaviors. Blood samples were collected for biomarker testing, and paws were collected for histology and microcomputed tomography. RESULTS: Naproxen monotherapy increased the time until humane endpoints was reached, and improved health score, pain assessments, and trabecular thickness, while KBP monotherapy did not result in improvements. Combination therapy had improved efficacy over naproxen monotherapy; combination therapy resulted in improved health scores, and importantly reduced mechanical and cold allodynia assessment. Furthermore, protection of articular cartilage structure and preservation of bone structure and bone volume were also observed. CONCLUSIONS: This study demonstrates that combining KBP and naproxen may be a relevant therapeutic strategy for RA, resulting in improvements to the overall health, pain, inflammation, and joint structure.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Calcitonina/farmacología , Polipéptido Amiloide de los Islotes Pancreáticos/farmacología , Naproxeno/farmacología , Dolor/prevención & control , Receptores de Calcitonina/agonistas , Agonistas de los Receptores de Amilina/farmacología , Animales , Antiinflamatorios no Esteroideos/farmacología , Artritis Experimental/inducido químicamente , Artritis Reumatoide/tratamiento farmacológico , Conservadores de la Densidad Ósea/farmacología , Calcitonina/química , Colágeno Tipo II , Modelos Animales de Enfermedad , Femenino , Humanos , Dimensión del Dolor , Ratas Endogámicas Lew , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...