Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Epilepsia ; 64(3): 553-566, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36645121

RESUMEN

There are only a few drugs that can seriously lay claim to the title of "wonder drug," and ivermectin, the world's first endectocide and forerunner of a completely new class of antiparasitic agents, is among them. Ivermectin, a mixture of two macrolytic lactone derivatives (avermectin B1a and B1b in a ratio of 80:20), exerts its highly potent antiparasitic effect by activating the glutamate-gated chloride channel, which is absent in vertebrate species. However, in mammals, ivermectin activates several other Cys-loop receptors, including the inhibitory γ-aminobutyric acid type A and glycine receptors and the excitatory nicotinic acetylcholine receptor of brain neurons. Based on these effects on vertebrate receptors, ivermectin has recently been proposed to constitute a multifaceted wonder drug for various novel neurological indications, including alcohol use disorders, motor neuron diseases, and epilepsy. This review critically discusses the preclinical and clinical evidence of antiseizure effects of ivermectin and provides several arguments supporting that ivermectin is not a suitable candidate drug for the treatment of epilepsy. First, ivermectin penetrates the mammalian brain poorly, so it does not exert any pharmacological effects via mammalian ligand-gated ion channels in the brain unless it is used at high, potentially toxic doses or the blood-brain barrier is functionally impaired. Second, ivermectin is not selective but activates numerous inhibitory and excitatory receptors. Third, the preclinical evidence for antiseizure effects of ivermectin is equivocal, and at least in part, median effective doses in seizure models are in the range of the median lethal dose. Fourth, the only robust clinical evidence of antiseizure effects stems from the treatment of patients with onchocerciasis, in which the reduction of seizures is due to a reduction in microfilaria densities but not a direct antiseizure effect of ivermectin. We hope that this critical analysis of available data will avert the unjustified hype associated with the recent use of ivermectin to control COVID-19 from recurring in neurological diseases such as epilepsy.


Asunto(s)
Anticonvulsivantes , Antiparasitarios , Epilepsia , Ivermectina , Antiparasitarios/química , Antiparasitarios/farmacocinética , Antiparasitarios/uso terapéutico , Antiparasitarios/toxicidad , Ivermectina/química , Ivermectina/farmacocinética , Ivermectina/uso terapéutico , Ivermectina/toxicidad , Epilepsia/tratamiento farmacológico , Humanos , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/agonistas , Anticonvulsivantes/química , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/uso terapéutico , Anticonvulsivantes/toxicidad , Encéfalo/metabolismo , Animales , Ratones
2.
Bioorg Med Chem Lett ; 27(15): 3207-3218, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28606760

RESUMEN

The vertebrate Cys-loop family of ligand-gated ion channels (LGICs) are comprised of nicotinic acetylcholine (nAChR), serotonin type 3 (5-HT3R), γ-aminobutyric acid (GABAAR), and glycine (GlyR) receptors. Here, we review efforts to discover selective small molecules targeting one or more Cys-loop receptors, with a focus on state-of-the-art modulators that have been reported over the past five years. Several highlighted compounds offer robust oral bioavailability and central exposure and have thus been useful in delineating pharmacokinetic/pharmacodynamic relationships in pre-clinical disease models. Others offer high levels of subtype and/or inter-superfamily selectivity and have facilitated understanding of complex SAR and pharmacodynamics.


Asunto(s)
Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/agonistas , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Administración Oral , Animales , Disponibilidad Biológica , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/química , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/metabolismo , Descubrimiento de Drogas , Humanos , Modelos Moleculares , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Bibliotecas de Moléculas Pequeñas/farmacocinética
3.
Br J Pharmacol ; 174(9): 781-795, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28146602

RESUMEN

BACKGROUND AND PURPOSE: Ionotropic GABA receptors are evolutionarily conserved proteins that mediate cellular and network inhibition in both vertebrates and invertebrates. A unique class of excitatory GABA receptors has been identified in several nematode species. Despite well-characterized functions in Caenorhabditis elegans, little is known about the pharmacology of the excitatory GABA receptors EXP-1 and LGC-35. Using a panel of compounds that differentially activate and modulate ionotropic GABA receptors, we investigated the agonist binding site and allosteric modulation of EXP-1 and LGC-35. EXPERIMENTAL APPROACH: We used two-electrode voltage clamp recordings to characterize the pharmacological profile of EXP-1 and LGC-35 receptors expressed in Xenopus laevis oocytes. KEY RESULTS: The pharmacology of EXP-1 and LGC-35 is different from that of GABAA and GABAA -ρ receptors. Both nematode receptors are resistant to the competitive orthosteric antagonist bicuculline and to classical ionotropic receptor pore blockers. The GABAA -ρ specific antagonist, TPMPA, was the only compound tested that potently inhibited EXP-1 and LGC-35. Neurosteroids have minimal effects on GABA-induced currents, but ethanol selectively potentiates LGC-35. CONCLUSIONS AND IMPLICATIONS: The pharmacological properties of EXP-1 and LGC-35 more closely resemble the ionotropic GABAA -ρ family. However, EXP-1 and LGC-35 exhibit a unique profile that differs from vertebrate GABAA and GABAA -ρ receptors, insect GABA receptors and nematode GABA receptors. As a pair, EXP-1 and LGC-35 may be utilized to further understand the differential molecular mechanisms of agonist, antagonist and allosteric modulation at ionotropic GABA receptors and may aid in the design of new and more specific anthelmintics that target GABA neurotransmission.


Asunto(s)
Proteínas de Caenorhabditis elegans/agonistas , Proteínas de Caenorhabditis elegans/metabolismo , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/agonistas , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/metabolismo , Receptores de GABA/metabolismo , Animales , Sitios de Unión/fisiología , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/genética , Relación Dosis-Respuesta a Droga , Femenino , Agonistas del GABA/metabolismo , Agonistas del GABA/farmacología , Receptores de GABA/genética , Xenopus laevis
4.
Nat Neurosci ; 15(10): 1374-81, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22922783

RESUMEN

Auxiliary subunits regulate the trafficking, localization or gating kinetics of voltage- and ligand-gated ion channels by associating tightly and specifically with pore-forming subunits. However, no auxiliary subunits have been identified for members of the Cys-loop receptor superfamily. Here we identify MOLO-1, a positive regulator of levamisole-sensitive acetylcholine receptors (L-AChRs) at the Caenorhabditis elegans neuromuscular junction. MOLO-1 is a one-pass transmembrane protein that contains a single extracellular globular domain-the TPM domain, found in bacteria, plants and invertebrates, including nonvertebrate chordates. Loss of MOLO-1 impairs locomotion and renders worms resistant to the anthelmintic drug levamisole. In molo-1 mutants, L-AChR-dependent synaptic transmission is reduced by half, while the number and localization of receptors at synapses remain unchanged. In a heterologous expression system, MOLO-1 physically interacts with L-AChRs and directly enhances channel gating without affecting unitary conductance. The identification of MOLO-1 expands the mechanisms for generating functional and pharmacological diversity in the Cys-loop superfamily.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/agonistas , Canales Iónicos/fisiología , Subunidades de Proteína/metabolismo , Receptores Colinérgicos/metabolismo , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Agonistas Colinérgicos/farmacología , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/genética , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/metabolismo , Resistencia a Medicamentos/genética , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Canales Iónicos/genética , Levamisol/farmacología , Locomoción , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Mutación , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/fisiología , Subunidades de Proteína/genética , Receptores Colinérgicos/genética , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
5.
PLoS One ; 6(2): e17152, 2011 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-21390329

RESUMEN

BACKGROUND: GABA(A) receptors are members of the Cys-loop family of neurotransmitter receptors, proteins which are responsible for fast synaptic transmission, and are the site of action of wide range of drugs. Recent work has shown that Cys-loop receptors are present on immune cells, but their physiological roles and the effects of drugs that modify their function in the innate immune system are currently unclear. We are interested in how and why anaesthetics increase infections in intensive care patients; a serious problem as more than 50% of patients with severe sepsis will die. As many anaesthetics act via GABA(A) receptors, the aim of this study was to determine if these receptors are present on immune cells, and could play a role in immunocompromising patients. PRINCIPAL FINDINGS: We demonstrate, using RT-PCR, that monocytes express GABA(A) receptors constructed of α1, α4, ß2, γ1 and/or δ subunits. Whole cell patch clamp electrophysiological studies show that GABA can activate these receptors, resulting in the opening of a chloride-selective channel; activation is inhibited by the GABA(A) receptor antagonists bicuculline and picrotoxin, but not enhanced by the positive modulator diazepam. The anaesthetic drugs propofol and thiopental, which can act via GABA(A) receptors, impaired monocyte function in classic immunological chemotaxis and phagocytosis assays, an effect reversed by bicuculline and picrotoxin. SIGNIFICANCE: Our results show that functional GABA(A) receptors are present on monocytes with properties similar to CNS GABA(A) receptors. The functional data provide a possible explanation as to why chronic propofol and thiopental administration can increase the risk of infection in critically ill patients: their action on GABA(A) receptors inhibits normal monocyte behaviour. The data also suggest a potential solution: monocyte GABA(A) receptors are insensitive to diazepam, thus the use of benzodiazepines as an alternative anesthetising agent may be advantageous where infection is a life threatening problem.


Asunto(s)
Anestésicos/efectos adversos , Enfermedades del Sistema Inmune/inducido químicamente , Sistema Inmunológico/efectos de los fármacos , Receptores de GABA-A/fisiología , Anestésicos/farmacología , Bicuculina/farmacología , Línea Celular , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/agonistas , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/genética , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/metabolismo , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/fisiología , Evaluación Preclínica de Medicamentos , Antagonistas del GABA/farmacología , Agonistas de Receptores de GABA-A/farmacología , Humanos , Sistema Inmunológico/metabolismo , Sistema Inmunológico/fisiología , Enfermedades del Sistema Inmune/genética , Enfermedades del Sistema Inmune/metabolismo , Huésped Inmunocomprometido/efectos de los fármacos , Huésped Inmunocomprometido/inmunología , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/fisiología , Muscimol/farmacología , Picrotoxina/farmacología , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA