Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.000
Filtrar
1.
Psychopharmacology (Berl) ; 241(6): 1111-1124, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38702473

RESUMEN

RATIONALE: Evidence on the effect of dopamine D1-like and D2-like receptor antagonists on licking microstructure and the forced swimming response led us to suggest that (i) dopamine on D1-like receptors plays a role in activating reward-directed responses and (ii) the level of response activation is reboosted based on a process of evaluation of response efficacy requiring dopamine on D2-like receptors. A main piece of evidence in support of this hypothesis is the observation that the dopamine D2-like receptor antagonist raclopride induces a within-session decrement of burst number occurring after the contact with the reward. The few published studies with a detailed analysis of the time-course of this measure were conducted in our laboratory. OBJECTIVES: The aim of this review is to recapitulate and discuss the evidence in support of the analysis of the within-session burst number as a behavioural substrate for the study of the mechanisms governing ingestion, behavioural activation and the related evaluation processes, and its relevance in the analysis of drug effects on ingestion. CONCLUSIONS: The evidence gathered so far suggests that the analysis of the within-session time-course of burst number provides an important behavioural substrate for the study of the mechanisms governing ingestion, behavioural activation and the related evaluation processes, and might provide decisive evidence in the analysis of the effects of drugs on ingestion. However, further evidence from independent sources is necessary to validate the use and the proposed interpretation of this measure.


Asunto(s)
Dopamina , Receptores de Dopamina D1 , Receptores de Dopamina D2 , Dopamina/metabolismo , Animales , Humanos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/efectos de los fármacos , Factores de Tiempo , Antagonistas de Dopamina/farmacología , Recompensa , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Conducta de Ingestión de Líquido/efectos de los fármacos , Conducta de Ingestión de Líquido/fisiología , Antagonistas de los Receptores de Dopamina D2/farmacología , Antagonistas de los Receptores de Dopamina D2/administración & dosificación
2.
Eur J Neurosci ; 59(10): 2535-2548, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720367

RESUMEN

The maturation of forebrain dopamine circuitry occurs over multiple developmental periods, extending from early postnatal life until adulthood, with the precise timing of maturation defined by the target region. We recently demonstrated in the adult mouse brain that axon terminals arising from midbrain dopamine neurons innervate the anterior corpus callosum and that oligodendrocyte lineage cells in this white matter tract express dopamine receptor transcripts. Whether corpus callosal dopamine circuitry undergoes maturational changes between early adolescence and adulthood is unknown but may be relevant to understanding the dramatic micro- and macro-anatomical changes that occur in the corpus callosum of multiple species during early adolescence, including in the degree of myelination. Using quantitative neuroanatomy, we show that dopamine innervation in the forceps minor, but not the rostral genu, of the corpus callosum, is greater during early adolescence (P21) compared to adulthood (>P90) in wild-type mice. We further demonstrate with RNAscope that, as in the adult, Drd1 and Drd2 transcripts are expressed at higher levels in oligodendrocyte precursor cells (OPCs) and decline as these cells differentiate into oligodendrocytes. In addition, the number of OPCs that express Drd1 transcripts during early adolescence is double the number of those expressing the transcript during early adulthood. These data further implicate dopamine in axon myelination and myelin regulation. Moreover, because developmental (activity-independent) myelination peaks during early adolescence, with experience-dependent (activity-dependent) myelination greatest during early adulthood, our data suggest that potential roles of dopamine on callosal myelination shift between early adolescence and adulthood, from a developmental role to an experience-dependent role.


Asunto(s)
Cuerpo Calloso , Ratones Endogámicos C57BL , Receptores de Dopamina D1 , Receptores de Dopamina D2 , Animales , Ratones , Cuerpo Calloso/metabolismo , Cuerpo Calloso/crecimiento & desarrollo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Masculino , Neuronas Dopaminérgicas/metabolismo , Dopamina/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Femenino
3.
PLoS Comput Biol ; 20(5): e1012082, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38701077

RESUMEN

Many self-motivated and goal-directed behaviours display highly flexible, approximately 4 hour ultradian (shorter than a day) oscillations. Despite lacking direct correspondence to physical cycles in the environment, these ultradian rhythms may be involved in optimizing functional interactions with the environment and reflect intrinsic neural dynamics. Current evidence supports a role of mesostriatal dopamine (DA) in the expression and propagation of ultradian rhythmicity, however, the biochemical processes underpinning these oscillations remain to be identified. Here, we use a mathematical model to investigate D2 autoreceptor-dependent DA self-regulation as the source of ultradian behavioural rhythms. DA concentration at the midbrain-striatal synapses is governed through a dual-negative feedback-loop structure, which naturally gives rise to rhythmicity. This model shows the propensity of striatal DA to produce an ultradian oscillation characterized by a flexible period that is highly sensitive to parameter variations. Circadian (approximately 24 hour) regulation consolidates the ultradian oscillations and alters their response to the phase-dependent, rapid-resetting effect of a transient excitatory stimulus. Within a circadian framework, the ultradian rhythm orchestrates behavioural activity and enhances responsiveness to an external stimulus. This suggests a role for the circadian-ultradian timekeeping hierarchy in governing organized behaviour and shaping daily experience through coordinating the motivation to engage in recurring, albeit not highly predictable events, such as social interactions.


Asunto(s)
Dopamina , Receptores de Dopamina D2 , Ritmo Ultradiano , Dopamina/metabolismo , Dopamina/fisiología , Receptores de Dopamina D2/metabolismo , Ritmo Ultradiano/fisiología , Animales , Modelos Neurológicos , Humanos , Ritmo Circadiano/fisiología , Cuerpo Estriado/fisiología , Cuerpo Estriado/metabolismo , Biología Computacional
4.
Behav Neurosci ; 138(2): 85-93, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38661668

RESUMEN

Rodent behavioral studies have largely focused on male animals, which has limited the generalizability and conclusions of neuroscience research. Working with humans and rodents, we studied sex effects during interval timing that requires participants to estimate an interval of several seconds by making motor responses. Interval timing requires attention to the passage of time and working memory for temporal rules. We found no differences between human females and males in interval timing response times (timing accuracy) or the coefficient of variance of response times (timing precision). Consistent with prior work, we also found no differences between female and male rodents in timing accuracy or precision. In female rodents, there was no difference in interval timing between estrus and diestrus cycle stages. Because dopamine powerfully affects interval timing, we also examined sex differences with drugs targeting dopaminergic receptors. In both female and male rodents, interval timing was delayed after administration of sulpiride (D2-receptor antagonist), quinpirole (D2-receptor agonist), and SCH-23390 (D1-receptor antagonist). By contrast, after administration of SKF-81297 (D1-receptor agonist), interval timing shifted earlier only in male rodents. These data illuminate sex similarities and differences in interval timing. Our results have relevance for rodent models of both cognitive function and brain disease by increasing representation in behavioral neuroscience. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Asunto(s)
Percepción del Tiempo , Femenino , Masculino , Animales , Percepción del Tiempo/fisiología , Percepción del Tiempo/efectos de los fármacos , Humanos , Caracteres Sexuales , Dopamina/metabolismo , Ratas , Receptores de Dopamina D2/metabolismo , Sulpirida/farmacología , Quinpirol/farmacología , Agonistas de Dopamina/farmacología , Agonistas de Dopamina/administración & dosificación , Antagonistas de Dopamina/farmacología , Antagonistas de Dopamina/administración & dosificación , Adulto , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/fisiología , Benzazepinas/farmacología , Adulto Joven , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inhibidores , Memoria a Corto Plazo/fisiología , Memoria a Corto Plazo/efectos de los fármacos
5.
Dis Model Mech ; 17(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616770

RESUMEN

Dystonia is thought to arise from abnormalities in the motor loop of the basal ganglia; however, there is an ongoing debate regarding cerebellar involvement. We adopted an established cerebellar dystonia mouse model by injecting ouabain to examine the contribution of the cerebellum. Initially, we examined whether the entopeduncular nucleus (EPN), substantia nigra pars reticulata (SNr), globus pallidus externus (GPe) and striatal neurons were activated in the model. Next, we examined whether administration of a dopamine D1 receptor agonist and dopamine D2 receptor antagonist or selective ablation of striatal parvalbumin (PV, encoded by Pvalb)-expressing interneurons could modulate the involuntary movements of the mice. The cerebellar dystonia mice had a higher number of cells positive for c-fos (encoded by Fos) in the EPN, SNr and GPe, as well as a higher positive ratio of c-fos in striatal PV interneurons, than those in control mice. Furthermore, systemic administration of combined D1 receptor agonist and D2 receptor antagonist and selective ablation of striatal PV interneurons relieved the involuntary movements of the mice. Abnormalities in the motor loop of the basal ganglia could be crucially involved in cerebellar dystonia, and modulating PV interneurons might provide a novel treatment strategy.


Asunto(s)
Cuerpo Estriado , Modelos Animales de Enfermedad , Distonía , Interneuronas , Parvalbúminas , Proteínas Proto-Oncogénicas c-fos , Receptores de Dopamina D2 , Animales , Interneuronas/metabolismo , Interneuronas/efectos de los fármacos , Parvalbúminas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Distonía/patología , Distonía/metabolismo , Distonía/fisiopatología , Cuerpo Estriado/patología , Cuerpo Estriado/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D1/metabolismo , Cerebelo/patología , Cerebelo/metabolismo , Ouabaína/farmacología , Ratones Endogámicos C57BL , Ratones , Masculino
6.
J Affect Disord ; 356: 672-680, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657771

RESUMEN

BACKGROUND: Depression is a chronic psychiatric disorder related to diminished dopaminergic neurotransmission. Deep brain stimulation (DBS) has shown effectiveness in treating patients with treatment-refractory depression (TRD). This study aimed to evaluate the effect of DBS on dopamine D2 receptor binding in patients with TRD. METHODS: Six patients with TRD were treated with bed nucleus of the stria terminalis (BNST)-nucleus accumbens (NAc) DBS were recruited. Ultra-high sensitivity [11C]raclopride dynamic total-body positron emission tomography (PET) imaging was used to assess the brain D2 receptor binding. Each patient underwent a [11C]raclopride PET scan for 60-min under DBS OFF and DBS ON, respectively. A simplified reference tissue model was used to generate parametric images of binding potential (BPND) with the cerebellum as reference tissue. RESULTS: Depression and anxiety symptoms improved after 3-6 months of DBS treatment. Compared with two-day-nonstimulated conditions, one-day BNST-NAc DBS decreased [11C]raclopride BPND in the amygdala (15.9 %, p < 0.01), caudate nucleus (15.4 %, p < 0.0001) and substantia nigra (10.8 %, p < 0.01). LIMITATIONS: This study was limited to the small sample size and lack of a healthy control group. CONCLUSIONS: Chronic BNST-NAc DBS improved depression and anxiety symptoms, and short-term stimulation decreased D2 receptor binding in the amygdala, caudate nucleus, and substantia nigra. The findings suggest that DBS relieves depression and anxiety symptoms possibly by regulating the dopaminergic system.


Asunto(s)
Estimulación Encefálica Profunda , Trastorno Depresivo Resistente al Tratamiento , Núcleo Accumbens , Tomografía de Emisión de Positrones , Racloprida , Receptores de Dopamina D2 , Humanos , Receptores de Dopamina D2/metabolismo , Estimulación Encefálica Profunda/métodos , Masculino , Femenino , Persona de Mediana Edad , Trastorno Depresivo Resistente al Tratamiento/terapia , Trastorno Depresivo Resistente al Tratamiento/metabolismo , Trastorno Depresivo Resistente al Tratamiento/diagnóstico por imagen , Núcleo Accumbens/metabolismo , Núcleo Accumbens/diagnóstico por imagen , Adulto , Núcleos Septales/metabolismo , Núcleos Septales/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Resultado del Tratamiento
7.
J Chem Inf Model ; 64(6): 1778-1793, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38454785

RESUMEN

Effective rational drug discovery hinges on understanding the functional states of the target protein and distinguishing it from homologues. However, for the G protein coupled receptors, both activation-related conformational changes (ACCs) and intrinsic divergence among receptors can be misled or obscured by ligand-specific conformational changes (LCCs). Here, we unraveled ACCs and intrinsic divergence from LCCs of the dopamine D3 and D2 receptors (D3R and D2R), by analyzing their experimentally determined structures and the molecular dynamics (MD) simulation results of the receptors bound with various ligands. In addition to the ACCs common to other aminergic receptors, we revealed unique ACCs for these two receptors, including the extracellular portion of TM5 (TM5e) and TM6e shifting away from TM2e and TM3e, with a subtle rotation of TM5e. In identifying intrinsic divergence, we found more outward tilting of TM6e in the D2R compared to the D3R in both the experimental structures and simulations bound with ligands in different scaffolds. However, this difference was drastically reduced in the simulations bound with nonselective agonist quinpirole, suggesting a misleading effect of LCCs. Further, in the quinpirole-bound simulations, TM1 showed a greater disparity between these receptors, indicating that LCCs may also obscure intrinsic divergence. Importantly, our MD simulations revealed divergence in the dynamics of these receptors. Specifically, the D2R exhibited heightened flexibility compared to the D3R in the extracellular loops and TMs 5e, 6e, and 7e, associated with its greater ligand binding site plasticity. Our results lay the groundwork for crafting ligands specifically targeting the D2R and D3R with more precise pharmacological profiles.


Asunto(s)
Dopamina , Receptores de Dopamina D2 , Ligandos , Quinpirol , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/química , Receptores de Dopamina D3/metabolismo
8.
Neuropharmacology ; 249: 109893, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38428482

RESUMEN

Hyperalgesia resulting from sleep deprivation (SD) poses a significant a global public health challenge with limited treatment options. The nucleus accumbens (NAc) plays a crucial role in the modulation of pain and sleep, with its activity regulated by two distinct types of medium spiny neurons (MSNs) expressing dopamine 1 or dopamine 2 (D1-or D2) receptors (referred to as D1-MSNs and D2-MSNs, respectively). However, the specific involvement of the NAc in SD-induced hyperalgesia remains uncertain. Cannabidiol (CBD), a nonpsychoactive phytocannabinoid, has demonstrated analgesic effects in clinical and preclinical studies. Nevertheless, its potency in addressing this particular issue remains to be determined. Here, we report that SD induced a pronounced pronociceptive effect attributed to the heightened intrinsic excitability of D2-MSNs within the NAc in Male C57BL/6N mice. CBD (30 mg/kg, i.p.) exhibited an anti-hyperalgesic effect. CBD significantly improved the thresholds for thermal and mechanical pain and increased wakefulness by reducing delta power. Additionally, CBD inhibited the intrinsic excitability of D2-MSNs both in vitro and in vivo. Bilateral microinjection of the selective D2 receptor antagonist raclopride into the NAc partially reversed the antinociceptive effect of CBD. Thus, these findings strongly suggested that SD activates NAc D2-MSNs, contributing heightened to pain sensitivity. CBD exhibits antinociceptive effects by activating D2R, thereby inhibiting the excitability of D2-MSNs and promoting wakefulness under SD conditions.


Asunto(s)
Cannabidiol , Ratones , Animales , Masculino , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Privación de Sueño/complicaciones , Privación de Sueño/tratamiento farmacológico , Dopamina/farmacología , Ratones Endogámicos C57BL , Receptores de Dopamina D2/metabolismo , Núcleo Accumbens , Dolor , Receptores de Dopamina D1/metabolismo , Analgésicos/farmacología , Analgésicos/uso terapéutico , Ratones Transgénicos
9.
Nat Commun ; 15(1): 2543, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514654

RESUMEN

Accumulating evidence points to dysregulations of the Nucleus Accumbens (NAc) in eating disorders (ED), however its precise contribution to ED symptomatic dimensions remains unclear. Using chemogenetic manipulations in male mice, we found that activity of dopamine D1 receptor-expressing neurons of the NAc core subregion facilitated effort for a food reward as well as voluntary exercise, but decreased food intake, while D2-expressing neurons have opposite effects. These effects are congruent with D2-neurons being more active than D1-neurons during feeding while it is the opposite during running. Chronic manipulations of each subpopulations had limited effects on energy balance. However, repeated activation of D1-neurons combined with inhibition of D2-neurons biased behavior toward activity-related energy expenditure, whilst the opposite manipulations favored energy intake. Strikingly, concomitant activation of D1-neurons and inhibition of D2-neurons precipitated weight loss in anorexia models. These results suggest that dysregulations of NAc dopaminoceptive neurons might be at the core of EDs.


Asunto(s)
Núcleo Accumbens , Receptores de Dopamina D2 , Ratones , Masculino , Animales , Núcleo Accumbens/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Neuronas/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Metabolismo Energético
10.
J Neurosci ; 44(18)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38485256

RESUMEN

The ventral pallidum (VP) is a central hub in the reward circuitry with diverse projections that have different behavioral roles attributed mostly to the connectivity with the downstream target. However, different VP projections may represent, as in the striatum, separate neuronal populations that differ in more than just connectivity. In this study, we performed in mice of both sexes a multimodal dissection of four major projections of the VP-to the lateral hypothalamus (VP→LH), ventral tegmental area (VP→VTA), lateral habenula (VP→LHb), and mediodorsal thalamus (VP→MDT)-with physiological, anatomical, genetic, and behavioral tools. We also tested for physiological differences between VP neurons receiving input from nucleus accumbens medium spiny neurons (MSNs) that express either the D1 (D1-MSNs) or the D2 (D2-MSNs) dopamine receptor. We show that each VP projection (1) when inhibited during a cocaine conditioned place preference (CPP) test affects performance differently, (2) receives a different pattern of inputs using rabies retrograde labeling, (3) shows differentially expressed genes using RNA sequencing, and (4) has projection-specific characteristics in excitability and synaptic input characteristics using whole-cell patch clamp. VP→LH and VP→VTA projections have different effects on CPP and show low overlap in circuit tracing experiments, as VP→VTA neurons receive more striatal input, while VP→LH neurons receive more olfactory input. Additionally, VP→VTA neurons are less excitable, while VP→LH neurons are more excitable than the average VP neuron, a difference driven mainly by D2-MSN-responding neurons. Thus, VP→VTA and VP→LH neurons may represent largely distinct populations of VP neurons.


Asunto(s)
Prosencéfalo Basal , Cocaína , Vías Nerviosas , Recompensa , Animales , Ratones , Prosencéfalo Basal/fisiología , Masculino , Cocaína/farmacología , Cocaína/administración & dosificación , Femenino , Vías Nerviosas/fisiología , Ratones Endogámicos C57BL , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Área Tegmental Ventral/fisiología , Área Tegmental Ventral/citología
11.
Pharmacol Biochem Behav ; 239: 173754, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38537873

RESUMEN

BACKGROUND: Pituitary lactotrophs are under tonic dopaminergic inhibitory control and bromocriptine treatment blocks prolactin secretion. METHODS: Sleep and local field potential were addressed for 72 h after bromocriptine treatments applied during the different stages of the estrus cycle and for 24 h in the early- and middle postpartum period characterized by spontaneously different dynamics of prolactin release in female rats. RESULTS: Sleep changes showed strong dependency on the estrus cycle phase of the drug application. Strongest increase of wakefulness and reduction of slow wave sleep- and rapid eye movements sleep appeared during diestrus-proestrus and middle postpartum treatments. Stronger sleep-wake effects appeared in the dark phase in case of the estrus cycle treatments, but in the light phase in postpartum treatments. Slow wave sleep and REM sleep loss in case of estrus cycle treatments was not compensated at all and sleep loss seen in the first day post-injection was gained further later. In opposition, slow wave sleep loss in the light phase after bromocriptine injections showed compensation in the postpartum period treatments. Bromocriptine treatments resulted in a depression of local field potential delta power during slow wave sleep while an enhancement in beta and gamma power during wakefulness regardless of the treatment timing. CONCLUSIONS: These results can be explained by the interplay of dopamine D2 receptor agonism, lack of prolactin release and the spontaneous homeostatic sleep drive being altered in the different stages of the estrus cycle and the postpartum period.


Asunto(s)
Bromocriptina , Agonistas de Dopamina , Ciclo Estral , Periodo Posparto , Ratas Wistar , Receptores de Dopamina D2 , Sueño , Animales , Bromocriptina/farmacología , Femenino , Periodo Posparto/efectos de los fármacos , Ratas , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo , Agonistas de Dopamina/farmacología , Ciclo Estral/efectos de los fármacos , Sueño/efectos de los fármacos , Vigilia/efectos de los fármacos , Prolactina
12.
J Neurosci ; 44(19)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38553046

RESUMEN

Exercise is known to benefit motor skill learning in health and neurological disease. Evidence from brain stimulation, genotyping, and Parkinson's disease studies converge to suggest that the dopamine D2 receptor, and shifts in the cortical excitation and inhibition (E:I) balance, are prime candidates for the drivers of exercise-enhanced motor learning. However, causal evidence using experimental pharmacological challenge is lacking. We hypothesized that the modulatory effect of the dopamine D2 receptor on exercise-induced changes in the E:I balance would determine the magnitude of motor skill acquisition. To test this, we measured exercise-induced changes in excitation and inhibition using paired-pulse transcranial magnetic stimulation (TMS) in 22 healthy female and male humans, and then had participants learn a novel motor skill-the sequential visual isometric pinch task (SVIPT). We examined the effect of D2 receptor blockade (800 mg sulpiride) on these measures within a randomized, double-blind, placebo-controlled design. Our key result was that motor skill acquisition was driven by an interaction between the D2 receptor and E:I balance. Specifically, poorer skill learning was related to an attenuated shift in the E:I balance in the sulpiride condition, whereas this interaction was not evident in placebo. Our results demonstrate that exercise-primed motor skill acquisition is causally influenced by D2 receptor activity on motor cortical circuits.


Asunto(s)
Ejercicio Físico , Corteza Motora , Destreza Motora , Receptores de Dopamina D2 , Estimulación Magnética Transcraneal , Humanos , Masculino , Femenino , Receptores de Dopamina D2/metabolismo , Adulto , Destreza Motora/fisiología , Destreza Motora/efectos de los fármacos , Estimulación Magnética Transcraneal/métodos , Adulto Joven , Corteza Motora/fisiología , Corteza Motora/efectos de los fármacos , Ejercicio Físico/fisiología , Método Doble Ciego , Inhibición Neural/fisiología , Inhibición Neural/efectos de los fármacos , Aprendizaje/fisiología , Potenciales Evocados Motores/fisiología , Potenciales Evocados Motores/efectos de los fármacos , Sulpirida/farmacología , Antagonistas de Dopamina/farmacología
13.
Nature ; 628(8006): 180-185, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38480886

RESUMEN

The gut microbiome has major roles in modulating host physiology. One such function is colonization resistance, or the ability of the microbial collective to protect the host against enteric pathogens1-3, including enterohaemorrhagic Escherichia coli (EHEC) serotype O157:H7, an attaching and effacing (AE) food-borne pathogen that causes severe gastroenteritis, enterocolitis, bloody diarrhea and acute renal failure4,5 (haemolytic uremic syndrome). Although gut microorganisms can provide colonization resistance by outcompeting some pathogens or modulating host defence provided by the gut barrier and intestinal immune cells6,7, this phenomenon remains poorly understood. Here, we show that activation of the neurotransmitter receptor dopamine receptor D2 (DRD2) in the intestinal epithelium by gut microbial metabolites produced upon dietary supplementation with the essential amino acid L-tryptophan protects the host against Citrobacter rodentium, a mouse AE pathogen that is widely used as a model for EHEC infection8,9. We further find that DRD2 activation by these tryptophan-derived metabolites decreases expression of a host actin regulatory protein involved in C. rodentium and EHEC attachment to the gut epithelium via formation of actin pedestals. Our results reveal a noncanonical colonization resistance pathway against AE pathogens that features an unconventional role for DRD2 outside the nervous system in controlling actin cytoskeletal organization in the gut epithelium. Our findings may inspire prophylactic and therapeutic approaches targeting DRD2 with dietary or pharmacological interventions to improve gut health and treat gastrointestinal infections, which afflict millions globally.


Asunto(s)
Citrobacter rodentium , Mucosa Intestinal , Receptores de Dopamina D2 , Triptófano , Animales , Femenino , Humanos , Masculino , Ratones , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Carga Bacteriana/efectos de los fármacos , Citrobacter rodentium/crecimiento & desarrollo , Citrobacter rodentium/metabolismo , Citrobacter rodentium/patogenicidad , Suplementos Dietéticos , Modelos Animales de Enfermedad , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/prevención & control , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/prevención & control , Escherichia coli O157/patogenicidad , Escherichia coli O157/fisiología , Mucosa Intestinal/citología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Receptores de Dopamina D2/metabolismo , Triptófano/administración & dosificación , Triptófano/metabolismo , Triptófano/farmacología
14.
Sci Rep ; 14(1): 4820, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413694

RESUMEN

Originally, apomorphine was a broad-spectrum dopamine agonist with an affinity for all subtypes of the Dopamine D1 receptor to the D5 receptor. We previously identified apomorphine as a potential therapeutic agent for mitochondrial diseases by screening a chemical library of fibroblasts from patients with mitochondrial diseases. In this study, we showed that apomorphine prevented ferroptosis in fibroblasts from various types of mitochondrial diseases as well as in normal controls. Well-known biomarkers of ferroptosis include protein markers such as prostaglandin endoperoxide synthase 2 (PTGS2), a key gene for ferroptosis-related inflammation PTGS2, lipid peroxidation, and reactive oxygen species. Our findings that apomorphine induced significant downregulation of PTSG2 and suppressed lipid peroxide to the same extent as other inhibitors of ferroptosis also indicate that apomorphine suppresses ferroptosis. To our knowledge, this is the first study to report that the anti-ferroptosis effect of apomorphine is not related to dopamine receptor agonist action and that apomorphine is a potent inhibitor of ferroptotic cell death independent of dopaminergic receptors.


Asunto(s)
Ferroptosis , Enfermedades Mitocondriales , Humanos , Apomorfina/farmacología , Ciclooxigenasa 2/genética , Receptores de Dopamina D2/metabolismo , Agonistas de Dopamina/farmacología
15.
Eur J Neurosci ; 59(7): 1558-1566, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38308520

RESUMEN

The excitation-inhibition imbalance manifesting as epileptic activities in Alzheimer's disease is gaining more and more attention, and several potentially involved cellular and molecular pathways are currently under investigation. Based on in vitro studies, dopamine D1-type receptors in the anterior cingulate cortex and the hippocampus have been proposed to participate in this peculiar co-morbidity in mouse models of amyloidosis. Here, we tested the implication of dopaminergic transmission in vivo in the Tg2576 mouse model of Alzheimer's disease by monitoring epileptic activities via intracranial EEG before and after treatment with dopamine antagonists. Our results show that neither the D1-like dopamine receptor antagonist SCH23390 nor the D2-like dopamine receptor antagonist haloperidol reduces the frequency of epileptic activities. While requiring further investigation, our results indicate that on a systemic level, dopamine receptors are not significantly contributing to epilepsy observed in vivo in this mouse model of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Epilepsia , Ratones , Animales , Antagonistas de Dopamina/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Receptores de Dopamina D2/metabolismo , Benzazepinas/farmacología , Benzazepinas/uso terapéutico , Receptores de Dopamina D1/metabolismo , Epilepsia/tratamiento farmacológico , Modelos Animales de Enfermedad , Amiloidosis/tratamiento farmacológico
16.
Neuroimage Clin ; 41: 103578, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38395027

RESUMEN

PURPOSE: Aberrant dopaminergic function is linked with motor, psychotic, and affective symptoms, but studies have typically compared a single patient group with healthy controls. METHODS: Here, we investigated the variation in striatal (caudate nucleus, nucleus accumbens, and putamen) and thalamic type 2 dopamine receptor (D2R) availability using [11C]raclopride positron emission tomography (PET) data from a large sample of 437 humans including healthy controls, and subjects with Parkinson's disease (PD), antipsychotic-naïve schizophrenia, severe violent behavior, pathological gambling, depression, and overweight. We analyzed regional group differences in D2R availability. We also analyzed the interregional correlation in D2R availability within each group. RESULTS: Subjects with PD showed the clearest decline in D2R availability. Overall, the groups showed high interregional correlation in D2R availability, while this pattern was weaker in violent offenders. Subjects with schizophrenia, pathological gambling, depression, or overweight did not show clear changes in either the regional receptor availability or the interregional correlation. CONCLUSION: We conclude that the dopaminergic changes in neuropsychiatric conditions might not only affect the overall receptor availability but also how coupled regions are across people. The region-specific receptor availability more profoundly links to the motor symptoms, while the between-region coupling might be disrupted in violence.


Asunto(s)
Sobrepeso , Enfermedad de Parkinson , Humanos , Receptores de Dopamina D2/metabolismo , Tomografía Computarizada por Rayos X , Tomografía de Emisión de Positrones , Cuerpo Estriado , Dopamina
17.
Chem Asian J ; 19(8): e202400067, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38334332

RESUMEN

The inhibitory effects of veralipride, a benzamide-class antipsychotic acting as dopamine D2 receptors antagonist incorporates a primary sulfonamide moiety and was investigated for its interactions with carbonic anhydrase (CA) isoforms. In vitro profiling using the stopped-flow technique revealed that veralipride exhibited potent inhibitory activity across all tested hCA isoforms, with exception of hCA III. Comparative analysis with standard inhibitors, acetazolamide (AAZ), and sulpiride, provided insights for understanding the relative efficacy of veralipride as CA inhibitor. The study reports the X-ray crystal structure analysis of the veralipride adduct with three human (h) isoforms, hCA I, II, and CA XII mimic, allowing the understanding of the molecular interactions rationalizing its inhibitory effects against each isoform. These findings contribute to our understanding of veralipride pharmacological properties and for the design of structural analogs endowed with polypharmacological properties.


Asunto(s)
Inhibidores de Anhidrasa Carbónica , Anhidrasas Carbónicas , Humanos , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/síntesis química , Cristalografía por Rayos X , Anhidrasas Carbónicas/metabolismo , Anhidrasas Carbónicas/química , Antagonistas de los Receptores de Dopamina D2/farmacología , Antagonistas de los Receptores de Dopamina D2/química , Antagonistas de los Receptores de Dopamina D2/síntesis química , Benzamidas/química , Benzamidas/farmacología , Benzamidas/síntesis química , Receptores de Dopamina D2/metabolismo , Estructura Molecular , Modelos Moleculares , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Relación Estructura-Actividad
18.
Psychopharmacology (Berl) ; 241(6): 1205-1212, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38376511

RESUMEN

RATIONALE: Withdrawal syndrome (WDS) has been described after discontinuation of antipsychotics. WDS could be the consequence of an over-activation of the dopaminergic pathway. Antipsychotics with a higher affinity for dopamine D2 receptors could be associated with a higher risk of WDS. This study aims to address this statement and evaluate the risk difference for withdrawal syndrome between antipsychotics based on pharmacovigilance data. METHODS: We collected individual reports registered in Vigibase® between 01/01/2000 and 31/12/2022 of patients treated with antipsychotics and who had presented WDS. A disproportionality analysis was performed to evaluate the risk of reporting WDS with each antipsychotic compared to all other antipsychotics. We performed a correlation analysis to assess the correlation between the risk of reporting WDS for each antipsychotic in relation with their pKi for D2 and 5HT2A receptors. RESULTS: The most frequent psychiatric withdrawal symptoms after antipsychotic discontinuation were insomnia, anxiety and depression. Tremor, headache and dizziness were among the most frequently reported neurologic withdrawal symptoms. Tiotixene had the highest risk of reporting WDS (ROR 7.08; 95%CI 3.49 - 14.35) followed by pimozide (ROR 4.35; 95%CI 1.93 - 9.77), quetiapine (ROR 4.24; 95%CI 3.87 - 4.64), thioridazine (ROR 4.17; 95%CI 2.50-6.98) and ziprasidone (ROR 2.98; 95%CI 2.41-3.67). We found a poor correlation between D2/5HT2A binding affinity and the risk of reporting withdrawal syndrome (R2 = 0,094). CONCLUSION: Our results suggest that there might be a risk difference for WDS between antipsychotics. Tiotixene, pimozide and quetiapine were associated with a higher risk of reporting a WDS whereas this risk was lower with chlorpromazine, clozapine and fluphenazine. We could not address the issue of withdrawal psychosis, withdrawal dyskinesia, rebound psychosis or supersensitivity psychosis due to the lack of specific WHO medDRA coded terms to identify potential cases.


Asunto(s)
Antipsicóticos , Bases de Datos Factuales , Farmacovigilancia , Síndrome de Abstinencia a Sustancias , Humanos , Antipsicóticos/efectos adversos , Antipsicóticos/administración & dosificación , Síndrome de Abstinencia a Sustancias/epidemiología , Femenino , Masculino , Persona de Mediana Edad , Adulto , Anciano , Sistemas de Registro de Reacción Adversa a Medicamentos/estadística & datos numéricos , Receptores de Dopamina D2/metabolismo , Adulto Joven
19.
Psychopharmacology (Berl) ; 241(5): 963-974, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38183429

RESUMEN

RATIONALE: The nucleus accumbens (NAc) core gates motivationally relevant behavioral action sequences through afferents from cortical and subcortical brain regions. While the role of the NAc core in reward and effort-based decision making is well established, its role in working memory (WM) processes is incompletely understood. The odor span task (OST) has been proposed as a measure of non-spatial working memory capacity (WMC) as it requires rodents to select a novel odor from an increasing number of familiar odors to obtain a food reward. OBJECTIVE: To assess the role of the NAc core in the OST using (1) reversible chemical inactivation and (2) selective blockade of dopamine D1 and D2 receptors in the area. METHODS: Well-trained male rats were tested on the OST following intra-NAc core infusions of muscimol/baclofen, the D1 receptor antagonist SCH-23390 (1 µg/hemisphere) and the D2 receptor antagonist eticlopride (1 µg/hemisphere). Behavioral measurements included the average odor span, maximum odor span, choice latency, searching vigor, and patterns of responding during foraging that may relate to impulsivity. RESULTS: Chemical inactivation of the NAc core significantly decreased odor span relative to sham and vehicle conditions. Selective antagonism of D2, but not D1, receptors in the NAc core also produced deficits in odor span. We found that secondary behavioral measures of choice latency, searching vigor, and responding to the first odor stimulus encountered were largely unaffected by treatment. CONCLUSIONS: These findings suggest that D2 receptors in the NAc core are required for OST performance.


Asunto(s)
Núcleo Accumbens , Receptores de Dopamina D2 , Ratas , Masculino , Animales , Receptores de Dopamina D2/metabolismo , Odorantes , Antagonistas de Dopamina/farmacología , Dopamina/farmacología , Receptores de Dopamina D1/metabolismo
20.
Chembiochem ; 25(2): e202300659, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37942961

RESUMEN

The family of dopamine D2 -like receptors represents an interesting target for a variety of neurological diseases, e. g. Parkinson's disease (PD), addiction, or schizophrenia. In this study we describe the synthesis of a new set of fluorescent ligands as tools for visualization of dopamine D2 -like receptors. Pharmacological characterization in radioligand binding studies identified UR-MN212 (20) as a high-affinity ligand for D2 -like receptors (pKi (D2long R)=8.24, pKi (D3 R)=8.58, pKi (D4 R)=7.78) with decent selectivity towards D1 -like receptors. Compound 20 is a neutral antagonist in a Go1 activation assay at the D2long R, D3 R, and D4 R, which is an important feature for studies using whole cells. The neutral antagonist 20, equipped with a 5-TAMRA dye, displayed rapid association to the D2long R in binding studies using confocal microscopy demonstrating its suitability for fluorescence microscopy. Furthermore, in molecular brightness studies, the ligand's binding affinity could be determined in a single-digit nanomolar range that was in good agreement with radioligand binding data. Therefore, the fluorescent compound can be used for quantitative characterization of native D2 -like receptors in a broad variety of experimental setups.


Asunto(s)
Dopamina , Receptores de Dopamina D2 , Receptores de Dopamina D2/metabolismo , Antagonistas de Dopamina/farmacología , Ligandos , Ensayo de Unión Radioligante , Colorantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA