Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Immunother Cancer ; 12(8)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39151930

RESUMEN

BACKGROUND: Antitumor effect of chimeric antigen receptor (CAR)-T cells against solid tumors is limited due to various factors, such as low infiltration rate, poor expansion capacity, and exhaustion of T cells within the tumor. NR4A transcription factors have been shown to play important roles in T-cell exhaustion in mice. However, the precise contribution of each NR4a factor to human T-cell differentiation remains to be clarified. METHODS: In this study, we deleted NR4A family factors, NR4A1, NR4A2, and NR4A3, in human CAR-T cells recognizing human epidermal growth factor receptor type 2 (HER2) by using the CRISPR/Cas9 system. We induced T-cell exhaustion in these cells in vitro through repeated co-culturing of CAR-T cells with Her2+A549 lung adenocarcinoma cells and evaluated cell surface markers such as memory and exhaustion phenotypes, proliferative capacity, cytokine production and metabolic activity. We validated the antitumor toxicity of NR4A1/2/3 triple knockout (TKO) CAR-T cells in vivo by transferring CAR-T cells into A549 tumor-bearing immunodeficient mice. RESULTS: Human NR4A-TKO CAR-T cells were resistant against exhaustion induced by repeated antigen stimulation in vitro, and maintained higher tumor-killing activity both in vitro and in vivo compared with control CAR-T cells. A comparison of the effectiveness of NR4A single, double, and TKOs demonstrated that triple KO was the most effective in avoiding exhaustion. Furthermore, a strong enhancement of antitumor effects by NR4A TKO was also observed in T cells from various donors including aged persons. Mechanistically, NR4A TKO CAR-T cells showed enhanced mitochondrial oxidative phosphorylation, therefore could persist for longer periods within the tumors. CONCLUSIONS: NR4A factors regulate CAR-T cell persistence and stemness through mitochondrial gene expression, therefore NR4A is a highly promising target for the generation of superior CAR-T cells against solid tumors.


Asunto(s)
Inmunoterapia Adoptiva , Mitocondrias , Receptores Quiméricos de Antígenos , Humanos , Animales , Ratones , Mitocondrias/metabolismo , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Receptores de Hormona Tiroidea/metabolismo , Receptores de Hormona Tiroidea/genética , Neoplasias/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Proteínas de Unión al ADN , Receptores de Esteroides
2.
Endocrinology ; 165(9)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39148446

RESUMEN

The nuclear receptors of thyroid hormone exert a broad influence on brain development and then on adult brain physiology. However, the cell-autonomous function of the receptors is combined with their indirect influence on cellular interactions. Mouse genetics allows one to distinguish between these 2 modes of action. It revealed that 1 of the main cell-autonomous functions of these receptors is to promote the maturation of GABAergic neurons. This review presents our current understanding of the action of thyroid hormone on this class of neurons, which are the main inhibitory neurons in most brain areas.


Asunto(s)
Neuronas GABAérgicas , Receptores de Hormona Tiroidea , Hormonas Tiroideas , Animales , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Receptores de Hormona Tiroidea/metabolismo , Receptores de Hormona Tiroidea/genética , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/fisiología , Humanos , Ratones , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo
3.
EBioMedicine ; 106: 105268, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39098108

RESUMEN

BACKGROUND: Atrial cardiomyopathy (ACM) is responsible for atrial fibrillation (AF) and thromboembolic events. Diabetes mellitus (DM) is an important risk factor for ACM. However, the potential mechanism between ACM and DM remains elusive. METHODS: Atrial tissue samples were obtained from patients diagnosed with AF or sinus rhythm (SR) to assess alterations in NR4A3 expression, and then two distinct animal models were generated by subjecting Nr4a3-/- mice and WT mice to a high-fat diet (HFD) and Streptozotocin (STZ), while db/db mice were administered AAV9-Nr4a3 or AAV9-ctrl. Subsequently, in vivo and in vitro experiments were conducted to assess the impact of NR4A3 on diabetes-induced atrial remodeling through electrophysiological, biological, and histological analyses. RNA sequencing (RNA-seq) and metabolomics analysis were employed to unravel the downstream mechanisms. FINDINGS: The expression of NR4A3 was significantly decreased in atrial tissues of both AF patients and diabetic mice compared to their respective control groups. NR4A3 deficiency exacerbated atrial hypertrophy and atrial fibrosis, and increased susceptibility to pacing-induced AF. Conversely, overexpression of NR4A3 alleviated atrial structural remodeling and reduced AF induction rate. Mechanistically, we confirmed that NR4A3 improves mitochondrial energy metabolism and reduces oxidative stress injury by preserving the transcriptional expression of Sdha, thereby exerting a protective influence on atrial remodeling induced by diabetes. INTERPRETATION: Our data confirm that NR4A3 plays a protective role in atrial remodeling caused by diabetes, so it may be a new target for treating ACM. FUNDING: This study was supported by the major research program of National Natural Science Foundation of China (NSFC) No: 82370316 (to Q-S. W.), No. 81974041 (to Y-P. W.), and No. 82270447 (to Y-P. W.) and Fundation of Shanghai Hospital Development Center (No. SHDC2022CRD044 to Q-S. W.).


Asunto(s)
Diabetes Mellitus Experimental , Metabolismo Energético , Estrés Oxidativo , Animales , Ratones , Humanos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Masculino , Ratones Noqueados , Receptores de Hormona Tiroidea/metabolismo , Receptores de Hormona Tiroidea/genética , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Fibrilación Atrial/metabolismo , Fibrilación Atrial/etiología , Fibrilación Atrial/prevención & control , Modelos Animales de Enfermedad , Mitocondrias/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/prevención & control , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Remodelación Atrial , Proteínas de Unión al ADN , Receptores de Esteroides
4.
Genes Genomics ; 46(8): 977-990, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38976216

RESUMEN

BACKGROUND: NR4A family genes play crucial roles in cancers. However, the role of NR4A family genes in cancers remains paradoxical as they promote or suppress tumorigenesis. OBJECTIVE: We aimed to conduct comprehensive analyses of the association between the expression of NR4A family genes and tumor microenvironment (TME) based on bioinformatics methods. METHODS: We collected RNA-seq data from 33 cancer types and 20 normal tissue sites from the TCGA and GTEx databases. Expression patterns of NR4A family genes and their associations with DNA methylation, miRNA, overall survival, drug responses, and tumor microenvironment were investigated. RESULTS: Significant downregulation of all NR4A family genes was observed in 15 cancer types. DNA promoter methylation and expression of NR4A family genes were negatively correlated in five cancers. The expression of 10 miRNAs targeting NR4A family genes was negatively correlated with the expression of NR4A family genes. High expression of all NR4A family genes was associated with poor prognosis in stomach adenocarcinoma and increased expressions of NR4A2 and NR4A3 were associated with poor prognosis in adrenocortical carcinoma. In addition, we found an elevated expression of NR4A2, which enhances the response to various chemotherapeutic drugs, whereas NR4A3 decreases drug sensitivity. Interestingly, in breast cancer, NR4A3 was significantly associated with C2 (IFN-γ dominant), C3 (inflammatory), and C6 (TGF-ß dominant) immune subtypes and infiltrated immune cell types, implying both oncogenic and tumor-suppressive functions of NR4A3 in breast cancer. CONCLUSION: The NR4A family genes have the potential to serve as a diagnostic, prognostic, and immunological marker of human cancers.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Pronóstico , Neoplasias/genética , Neoplasias/inmunología , Metilación de ADN/genética , MicroARNs/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
5.
Endocrinology ; 165(9)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39047059

RESUMEN

Thyroid hormone has profound effects on cardiovascular functions, including heart rate. These effects can be mediated directly, for example, by changing the expression of target genes in the heart through nuclear thyroid hormone receptors, or indirectly by altering the autonomic nervous systems output of the brain. The underlying molecular mechanisms as well as the cellular substrates, however, are far from being understood. In this review, we summarize the recent key findings on the individual contributions of the two thyroid hormone receptor isoforms on the regulation of heart rate, challenging the role of the pacemaker channel genes Hcn2 and Hcn4 as sole mediators of the hormone's effect. Furthermore, we discuss the possible actions of thyroid hormone on the autonomic nervous system affecting heart rate distribution, and highlight the possibility of permanent alterations in heart and brain by impaired thyroid hormone action during development as important factors to consider when analyzing or designing experiments.


Asunto(s)
Frecuencia Cardíaca , Receptores de Hormona Tiroidea , Hormonas Tiroideas , Humanos , Frecuencia Cardíaca/fisiología , Animales , Receptores de Hormona Tiroidea/metabolismo , Receptores de Hormona Tiroidea/genética , Hormonas Tiroideas/metabolismo , Sistema Nervioso Autónomo/fisiología , Sistema Nervioso Autónomo/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética
6.
Aging (Albany NY) ; 16(12): 10216-10238, 2024 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943627

RESUMEN

This study aimed to reveal the specific role of early growth response protein 1 (EGR1) and nuclear receptor 4A3 (NR4A3) in nucleus pulposus cells (NPCs) and the related molecular mechanism and to identify a new strategy for treating intervertebral disc degeneration (IVDD). Bioinformatics analysis was used to explore and predict IVDD-related differentially expressed genes, and chromatin immunoprecipitation sequencing (ChIP-seq) revealed NR4A3 as the EGR1 target gene. An in vitro NPC model induced by tributyl hydrogen peroxide (TBHP) and a rat model induced by fibrous ring acupuncture were established. Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemical staining, immunofluorescence staining, and flow cytometry were used to detect the effects of EGR1 and NR4A3 knockdown and overexpression on NPC apoptosis and the expression of extracellular matrix (ECM) anabolism-related proteins. Interactions between EGR1 and NR4A3 were analyzed via ChIP-qPCR and dual luciferase assays. EGR1 and NR4A3 expression levels were significantly higher in severely degenerated discs (SDD) than in mildly degenerated discs (MDD), indicating that these genes are important risk factors in IVDD progression. ChIP-seq and RNA-seq revealed NR4A3 as a direct downstream target of EGR1, and this finding was verified by ChIP-qPCR and dual luciferase reporter experiments. Remarkably, the rescue experiments showed that EGR1 promotes TBHP-induced NPC apoptosis and impairs ECM anabolism, dependent on elevated NR4A3 expression. In summary, the EGR1-NR4A3 axis mediates the progression of NPC apoptosis and ECM impairment and is a potential therapeutic target in IVDD.


Asunto(s)
Apoptosis , Proteína 1 de la Respuesta de Crecimiento Precoz , Degeneración del Disco Intervertebral , Núcleo Pulposo , Estrés Oxidativo , Receptores de Hormona Tiroidea , Adulto , Animales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ratas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/patología , Proteínas del Tejido Nervioso , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patología , Ratas Sprague-Dawley , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Receptores de Hormona Tiroidea/metabolismo , Receptores de Hormona Tiroidea/genética , Regulación hacia Arriba
7.
PLoS One ; 19(5): e0303528, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753618

RESUMEN

Arsenic has been identified as an environmental toxicant acting through various mechanisms, including the disruption of endocrine pathways. The present study assessed the ability of a single intraperitoneal injection of arsenic, to modify the mRNA expression levels of estrogen- and thyroid hormone receptors (ERα,ß; TRα,ß) and peroxisome proliferator-activated receptor gamma (PPARγ) in hypothalamic tissue homogenates of prepubertal mice in vivo. Mitochondrial respiration (MRR) was also measured, and the corresponding mitochondrial ultrastructure was analyzed. Results show that ERα,ß, and TRα expression was significantly increased by arsenic, in all concentrations examined. In contrast, TRß and PPARγ remained unaffected after arsenic injection. Arsenic-induced dose-dependent changes in state 4 mitochondrial respiration (St4). Mitochondrial morphology was affected by arsenic in that the 5 mg dose increased the size but decreased the number of mitochondria in agouti-related protein- (AgRP), while increasing the size without affecting the number of mitochondria in pro-opiomelanocortin (POMC) neurons. Arsenic also increased the size of the mitochondrial matrix per host mitochondrion. Complex analysis of dose-dependent response patterns between receptor mRNA, mitochondrial morphology, and mitochondrial respiration in the neuroendocrine hypothalamus suggests that instant arsenic effects on receptor mRNAs may not be directly reflected in St3-4 values, however, mitochondrial dynamics is affected, which predicts more pronounced effects in hypothalamus-regulated homeostatic processes after long-term arsenic exposure.


Asunto(s)
Arsénico , Hipotálamo , Mitocondrias , ARN Mensajero , Animales , Masculino , Ratones , Arsénico/toxicidad , Respiración de la Célula/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , PPAR gamma/metabolismo , PPAR gamma/genética , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/genética , Receptores de Hormona Tiroidea/metabolismo , Receptores de Hormona Tiroidea/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
Curr Oncol ; 31(5): 2364-2375, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38785457

RESUMEN

BACKGROUND: Breast cancer (BC) is frequently diagnosed among Canadian women. While targeted therapies are available for most BC patients; treatment resistance is common and novel therapeutic targets are of interest. Thyroid hormones (TH) bound to thyroid hormone receptors (THR) influence cell proliferation and differentiation; they are also involved in the growth and development of normal breast tissue. Evidence suggests that THRß is a tumor suppressor in various solid tumors. PURPOSE: This narrative review discusses retrospective studies regarding the clinical relevance of THRß as a potential prognostic biomarker and therapeutic target in BC. METHODS: We consulted with an information specialist to develop a search strategy to find all literature related to THRα expression as a potential prognostic and therapeutic biomarker in breast cancer. The primary search was developed for Medline and translated to Embase. The searches were conducted on the Ovid platform on 18 August 2023. RESULTS: Across seven retrospective studies identified, several have shown an association between higher THRß1 expression with a lower risk of BC recurrence and with longer overall survival. CONCLUSIONS: Some evidence suggests that THRß expression is associated with a lower risk of BC recurrence and death. Validation of THRß as an independent prognostic biomarker and possible predictive biomarker of response to endocrine therapy and/or chemotherapy is of interest. Given that THRß is upstream of the AKT/PI3K pathway, its potential as a predictive biomarker of response to AKT inhibitors and/or PI3K inhibitors may also be of value. Finally, the potential re-purposing of THRß agonists as anti-cancer agents warrants investigation.


Asunto(s)
Neoplasias de la Mama , Receptores de Hormona Tiroidea , Humanos , Neoplasias de la Mama/metabolismo , Femenino , Receptores de Hormona Tiroidea/metabolismo , Biomarcadores de Tumor/metabolismo , Pronóstico
9.
Ecotoxicol Environ Saf ; 276: 116259, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581905

RESUMEN

Gestational cadmium exposure increases the risk of preeclampsia. Placenta mitophagy was activated in preeclampsia. The aim of present study was to explore the mechanism of cadmium-induced mitophagy activation and its association with preeclampsia. Mitophagy markers expression levels were detected by quantitative real-time PCR, Western blot, immunofluorescence and immunochemistry in preeclampsia placenta. JEG3 cells were treated with CdCl2, iopanoic acid (IOP), 3-methyladenine and PGC1α SiRNA to verify mechanism of cadmium-induced mitophagy. Mitophagy marker LC3BII/I and P62 expression were increased and mitochondrial membrane receptor protein TOM20 and FUNDC1 expression were decreased in preeclampsia placenta as compared with that in normotension control. Mitophagy marker LC3BII/I and P62 expression were increased and TOM20 and FUNDC1 expression was decreased in CdCl2-treated JEG3 cells. Meanwhile, mitochondrial biogenesis regulator, PGC1α expression was decreased in preeclampsia and CdCl2-treated JEG3 cells. The expressions of LC3B and P62 were increased and the expressions of TOM20, FUNDC1 and PGC1α were decreased in IOP-treated cell. PGC1α SiRNA transfection led to increased expression of LC3BII/I and P62 and decreased expression of TOM20 and FUNDC1. The expression of sFlt1 was increased in preeclampsia placenta, CdCl2-treated cells, in IOP-treated cells and in PGC1α SiRNA transfected cells. 3-methyladenine treatment protected the increased expression of sFlt1 in CdCl2-treated cells, in IOP-treated cells and in PGC1α SiRNA transfected cells. Meanwhile, co-treatment of cadmium and IOP or PGC1αSiRNA led to a reduce expressions of OPA1, MFN1, MFN2 and FUNDC1 as compared to cadmium-treated, IOP-treated and PGC1α SiRNA-treated cells. These results elucidated that maternal cadmium exposure activated placenta mitophagy through downregulation of thyroid hormone receptor signal mediated decreased expression of PGC1α and was associated with the occurrence of preeclampsia.


Asunto(s)
Mitofagia , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Placenta , Preeclampsia , Receptores de Hormona Tiroidea , Humanos , Preeclampsia/inducido químicamente , Femenino , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Embarazo , Mitofagia/efectos de los fármacos , Placenta/efectos de los fármacos , Placenta/metabolismo , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/metabolismo , Cadmio/toxicidad , Regulación hacia Abajo/efectos de los fármacos , Adulto , Transducción de Señal/efectos de los fármacos
10.
Regul Toxicol Pharmacol ; 149: 105619, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614220

RESUMEN

The Xenopus Eleutheroembryonic Thyroid Assay (XETA) was recently published as an OECD Test Guideline for detecting chemicals acting on the thyroid axis. However, the OECD validation did not cover all mechanisms that can potentially be detected by the XETA. This study was therefore initiated to investigate and consolidate the applicability domain of the XETA regarding the following mechanisms: thyroid hormone receptor (THR) agonism, sodium-iodide symporter (NIS) inhibition, thyroperoxidase (TPO) inhibition, deiodinase (DIO) inhibition, glucocorticoid receptor (GR) agonism, and uridine 5'-diphospho-glucuronosyltransferase (UDPGT) induction. In total, 22 chemicals identified as thyroid-active or -inactive in Amphibian Metamorphosis Assays (AMAs) were tested using the XETA OECD Test Guideline. The comparison showed that both assays are highly concordant in identifying chemicals with mechanisms of action related to THR agonism, DIO inhibition, and GR agonism. They also consistently identified the UDPGT inducers as thyroid inactive. NIS inhibition, investigated using sodium perchlorate, was not detected in the XETA. TPO inhibition requires further mechanistic investigations as the reference chemicals tested resulted in opposing response directions in the XETA and AMA. This study contributes refining the applicability domain of the XETA, thereby helping to clarify the conditions where it can be used as an ethical alternative to the AMA.


Asunto(s)
Bioensayo , Disruptores Endocrinos , Metamorfosis Biológica , Simportadores , Glándula Tiroides , Animales , Glándula Tiroides/efectos de los fármacos , Glándula Tiroides/metabolismo , Metamorfosis Biológica/efectos de los fármacos , Bioensayo/métodos , Disruptores Endocrinos/toxicidad , Xenopus laevis , Receptores de Hormona Tiroidea/metabolismo , Receptores de Hormona Tiroidea/agonistas , Yoduro Peroxidasa/metabolismo
11.
Nat Metab ; 6(4): 639-650, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38671149

RESUMEN

Thyroid hormones (THs) are key hormones that regulate development and metabolism in mammals. In man, the major target tissues for TH action are the brain, liver, muscle, heart, and adipose tissue. Defects in TH synthesis, transport, metabolism, and nuclear action have been associated with genetic and endocrine diseases in man. Over the past few years, there has been renewed interest in TH action and the therapeutic potential of THs and thyromimetics to treat several metabolic disorders such as hypercholesterolemia, dyslipidaemia, non-alcoholic fatty liver disease (NAFLD), and TH transporter defects. Recent advances in the development of tissue and TH receptor isoform-targeted thyromimetics have kindled new hope for translating our fundamental understanding of TH action into an effective therapy. This review provides a concise overview of the historical development of our understanding of TH action, its physiological and pathophysiological effects on metabolism, and future therapeutic applications to treat metabolic dysfunction.


Asunto(s)
Hormonas Tiroideas , Humanos , Hormonas Tiroideas/metabolismo , Animales , Enfermedades Metabólicas/metabolismo , Receptores de Hormona Tiroidea/metabolismo
13.
Circ Res ; 134(11): 1427-1447, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38629274

RESUMEN

BACKGROUND: Medial arterial calcification is a chronic systemic vascular disorder distinct from atherosclerosis and is commonly observed in patients with chronic kidney disease, diabetes, and aging individuals. We previously showed that NR4A3 (nuclear receptor subfamily 4 group A member 3), an orphan nuclear receptor, is a key regulator in apo (apolipoprotein) A-IV-induced atherosclerosis progression; however, its role in vascular calcification is poorly understood. METHODS: We generated NR4A3-/- mice and 2 different types of medial arterial calcification models to investigate the biological roles of NR4A3 in vascular calcification. RNA-seq was performed to determine the transcriptional profile of NR4A3-/- vascular smooth muscle cells under ß-glycerophosphate treatment. We integrated Cleavage Under Targets and Tagmentation analysis and RNA-seq data to further investigate the gene regulatory mechanisms of NR4A3 in arterial calcification and target genes regulated by histone lactylation. RESULTS: NR4A3 expression was upregulated in calcified aortic tissues from chronic kidney disease mice, 1,25(OH)2VitD3 overload-induced mice, and human calcified aorta. NR4A3 deficiency preserved the vascular smooth muscle cell contractile phenotype, inhibited osteoblast differentiation-related gene expression, and reduced calcium deposition in the vasculature. Further, NR4A3 deficiency lowered the glycolytic rate and lactate production during the calcification process and decreased histone lactylation. Mechanistic studies further showed that NR4A3 enhanced glycolysis activity by directly binding to the promoter regions of the 2 glycolysis genes ALDOA and PFKL and driving their transcriptional initiation. Furthermore, histone lactylation promoted medial calcification both in vivo and in vitro. NR4A3 deficiency inhibited the transcription activation and expression of Phospho1 (phosphatase orphan 1). Consistently, pharmacological inhibition of Phospho1 attenuated calcium deposition in NR4A3-overexpressed vascular smooth muscle cells, whereas overexpression of Phospho1 reversed the anticalcific effect of NR4A3 deficiency in vascular smooth muscle cells. CONCLUSIONS: Taken together, our findings reveal that NR4A3-mediated histone lactylation is a novel metabolome-epigenome signaling cascade mechanism that participates in the pathogenesis of medial arterial calcification.


Asunto(s)
Histonas , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular , Miembro 3 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Calcificación Vascular , Animales , Calcificación Vascular/metabolismo , Calcificación Vascular/genética , Calcificación Vascular/patología , Ratones , Humanos , Histonas/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miembro 3 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Miembro 3 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Masculino , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Células Cultivadas , Proteínas de Unión al ADN , Proteínas del Tejido Nervioso , Receptores de Esteroides , Receptores de Hormona Tiroidea
14.
Environ Res ; 252(Pt 2): 118891, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599450

RESUMEN

One of the less studied in vitro biological activities in the aquatic environment are thyroid hormone receptor beta (TRß)-mediated agonistic and antagonistic activities and transthyretin (TTR) binding activity. They were measured mostly using active sampling methods, but rarely found. It is unclear if these activities co-occur, and the drivers of the (anti-)TRß activity are mostly unknown. Therefore, the main aim of the study was to determine (anti-)TRß activities as well as transthyretin (TTR) binding activity in passive samplers from Czech surface waters in combination with the search for the effect drivers based on liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis by applying suspect screening. Passive samplers (polar organic chemical integrative samplers, POCIS) were deployed at twenty-one sites (all ends of watersheds and other important sites in Elbe River) in the Czech rivers. The (anti-)TRß and TTR binding activity were measured using (anti-)TRß-CALUX and TTR-TRß-CALUX bioassays. Anti-TRß activity was found at eight sites, and TTR binding activity co-occurred there at six of these sites. The co-occurrence of TRß-mediated antagonistic activity and TTR binding indicate that they may have common effect drivers. No sample exhibited TRß agonistic activity. The extract from the site Bílina River, the most burdened with anti-TRß activity, was further successfully fractionated, and this activity was revealed in the fraction, where mid-polar compounds prevailed. However, the suspect LC-HRMS analysis did not reveal the chemical effect drivers. Our results showed that anti-TRß activity can be found in surface waters by employing passive sampling and frequently co-occurs with TTR binding activity. Overall, the fractionation procedure and non-target data acquisition used in this study can serve as a basis for searching the effect drivers in future research.


Asunto(s)
Monitoreo del Ambiente , Prealbúmina , Ríos , Prealbúmina/metabolismo , República Checa , Monitoreo del Ambiente/métodos , Ríos/química , Contaminantes Químicos del Agua/análisis , Receptores de Hormona Tiroidea/metabolismo , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos
15.
Am J Surg Pathol ; 48(6): 681-690, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38682454

RESUMEN

Acinic cell carcinoma of the salivary gland (AciCC) is a low-grade carcinoma characterized by the overexpression of the transcription factor nuclear receptor subfamily 4 group A member 3 (NR4A3). AciCC has been the subject of a few molecular research projects. This study delves into AciCC's molecular landscape to identify additional alterations and explore their clinical implications. RNA sequencing and immunohistochemical staining for markers NR4A3/NR4A2, DOG-1, S100, and mammaglobin were utilized on 41 AciCCs and 11 secretory carcinoma (SC) samples. NR4A3 was evident in 35 AciCCs, while the residual 6 were NR4A3-negative and NR4A2-positive; SC samples were consistently NR4A3-negative. A novel fusion, PON3 exon 1- LCN1 exon 5, was detected in 9/41 (21.9%) AciCCs, exhibiting a classical histologic pattern with serous cell components growing in solid sheets alongside the intercalated duct-like component. Clinical follow-up of 39 patients over a median of 59 months revealed diverse prognostic outcomes: 34 patients exhibited no disease evidence, whereas the remaining 5 experienced poorer prognosis, involving local recurrence, lymph node, and distant metastasis, and disease-associated death, 4 of which harbored the PON3::LCN1 fusion. In addition, the HTN3::MSANTD3 fusion was recurrently identified in 7/41 AciCC cases. SC patients lacked both fusions. Immunohistochemistry uncovered differential expression of DOG-1, S100, and mammaglobin across samples, providing nuanced insights into their roles in AciCC. This study accentuates PON3::LCN1 and HTN3::MSANTD3 fusions as recurrent molecular events in AciCC, offering potential diagnostic and prognostic utility and propelling further research into targeted therapeutic strategies.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Células Acinares , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Neoplasias de las Glándulas Salivales , Humanos , Masculino , Carcinoma de Células Acinares/genética , Carcinoma de Células Acinares/patología , Femenino , Neoplasias de las Glándulas Salivales/genética , Neoplasias de las Glándulas Salivales/patología , Neoplasias de las Glándulas Salivales/mortalidad , Neoplasias de las Glándulas Salivales/metabolismo , Neoplasias de las Glándulas Salivales/química , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Adulto , Anciano , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/análisis , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/análisis , Receptores de Hormona Tiroidea/metabolismo , Adulto Joven , Fusión Génica , Anciano de 80 o más Años , Proteínas de Unión al ADN/genética , Proteínas de Fusión Oncogénica/genética , Inmunohistoquímica
16.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474099

RESUMEN

Hypercapnia occurs when the partial pressure of carbon dioxide (CO2) in the blood exceeds 45 mmHg. Hypercapnia is associated with several lung pathologies and is transcriptionally linked to suppression of immune and inflammatory signalling through poorly understood mechanisms. Here we propose Orphan Nuclear Receptor Family 4A (NR4A) family members NR4A2 and NR4A3 as potential transcriptional regulators of the cellular response to hypercapnia in monocytes. Using a THP-1 monocyte model, we investigated the sensitivity of NR4A family members to CO2 and the impact of depleting NR4A2 and NR4A3 on the monocyte response to buffered hypercapnia (10% CO2) using RNA-sequencing. We observed that NR4A2 and NR4A3 are CO2-sensitive transcription factors and that depletion of NR4A2 and NR4A3 led to reduced CO2-sensitivity of mitochondrial and heat shock protein (Hsp)-related genes, respectively. Several CO2-sensitive genes were, however, refractory to depletion of NR4A2 and NR4A3, indicating that NR4As regulate certain elements of the cellular response to buffered hypercapnia but that other transcription factors also contribute. Bioinformatic analysis of conserved CO2-sensitive genes implicated several novel putative CO2-sensitive transcription factors, of which the ETS Proto-Oncogene 1 Transcription Factor (ETS-1) was validated to show increased nuclear expression in buffered hypercapnia. These data give significant insights into the understanding of immune responses in patients experiencing hypercapnia.


Asunto(s)
Receptores Nucleares Huérfanos , Receptores de Esteroides , Humanos , Receptores Nucleares Huérfanos/genética , Monocitos/metabolismo , Hipercapnia , Dióxido de Carbono , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Receptores de Esteroides/metabolismo , Proteínas de Unión al ADN , Receptores de Hormona Tiroidea
17.
Sci Rep ; 14(1): 7200, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531895

RESUMEN

Unlike other thyroid hormone receptors (THRs), the beta 2 isoform (THRB2) has a restricted expression pattern and is uniquely and abundantly phosphorylated at a conserved serine residue S101 (S102 in humans). Using tagged and or phosphorylation-defective (S101A) THRB2 mutant mice, we show that THRB2 is present in a large subset of POMC neurons and mitigates ROS accumulation during ROS-triggering events, such as fasting/refeeding or high fat diet (HFD). Excessive ROS accumulation in mutant POMC neurons was accompanied by a skewed production of orexigenic/anorexigenic hormones, resulting in elevated food intake. The prolonged exposure to pathogenic hypothalamic ROS levels during HFD feeding lead to a significant loss of POMC neurons in mutant versus wild-type (WT) mice. In cultured cells, the presence of WT THRB2 isoform, but not other THRs, or THRB2S101A, reduced ROS accumulation upon exogenous induction of oxidative stress by tert-butyl hydroperoxide. The protective function of phospho-THRB2 (pTHRB2) did not require thyroid hormone (TH), suggesting a TH-independent role of the THRB2 isoform, and phospho-S101 in particular, in regulating oxidative stress. We propose that pTHRB2 has a fundamental role in neuronal protection against ROS cellular damage, and mitigates hypothalamic pathological changes found in diet-induced obesity.


Asunto(s)
Hipotálamo , Proopiomelanocortina , Humanos , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Fosforilación , Proopiomelanocortina/metabolismo , Hipotálamo/metabolismo , Conducta Alimentaria , Hormonas Tiroideas/metabolismo , Dieta Alta en Grasa , Receptores de Hormona Tiroidea/metabolismo , Isoformas de Proteínas/metabolismo , Ratones Endogámicos C57BL
18.
Exp Cell Res ; 437(2): 114017, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38555013

RESUMEN

Thyroid hormone receptor ß (THRß) is a member of the nuclear receptor superfamily of ligand-modulated transcription factors. Upon ligand binding, THRß sequentially recruits the components of transcriptional machinery to modulate target gene expression. In addition to regulating diverse physiological processes, THRß plays a crucial role in hypothalamus-pituitary-thyroid axis feedback regulation. Anomalies in THRß gene/protein structure are associated with onset of diverse disease states. In this study, we investigated disease-inflicting truncated variants of THRß using in-silico analysis and cell-based assays. We examined the THRß truncated variants on multiple test parameters, including subcellular localization, ligand-receptor interactions, transcriptional functions, interaction with heterodimeric partner RXR, and receptor-chromatin interactions. Moreover, molecular dynamic simulation approaches predicted that shortened THRß-LBD due to point mutations contributes proportionally to the loss of structural integrity and receptor stability. Deviant subcellular localization and compromised transcriptional function were apparent with these truncated variants. Present study shows that 'mitotic bookmarking' property of some THRß variants is also affected. The study highlights that structural and conformational attributes of THRß are necessary for normal receptor functioning, and any deviations may contribute to the underlying cause of the inflicted diseases. We anticipate that insights derived herein may contribute to improved mechanistic understanding to assess disease predisposition.


Asunto(s)
Receptores beta de Hormona Tiroidea , Factores de Transcripción , Receptores beta de Hormona Tiroidea/genética , Ligandos , Factores de Transcripción/genética , Mutación Puntual , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/metabolismo
19.
Mod Pathol ; 37(5): 100474, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38508521

RESUMEN

Recurrent gene fusions have been observed in epithelioid and myxoid variants of uterine leiomyosarcoma. PGR::NR4A3 fusions were recently described in a subset of epithelioid leiomyosarcomas exhibiting rhabdoid morphology. In this study, we sought to expand the clinical, morphologic, immunohistochemical, and genetic features of gynecologic leiomyosarcomas harboring NR4A3 rearrangements with PGR and novel fusion partners. We identified 9 gynecologic leiomyosarcomas harboring PGR::NR4A3, CARMN::NR4A3, ACTB::NR4A3, and possible SLCO5A1::NR4A3 fusions by targeted RNA sequencing. Tumors frequently affected premenopausal women, involving the uterine corpus, uterine cervix, or pelvis. All were similarly characterized by lobules of monomorphic epithelioid and/or spindled cells arranged in sheets, cords, trabeculae, and micro- and macrocysts associated with abundant myxoid matrix and hemorrhage, creating labyrinth-like or pulmonary edema-like architecture. Myogenic differentiation with frequent estrogen receptor and progesterone receptor staining and no CD10 expression characterized all tumors. All cases showed high NR4A3 RNA expression levels and NOR1 (NR4A3) nuclear staining similar to salivary gland acinic cell carcinomas and a subset of extraskeletal myxoid chondrosarcomas harboring NR4A3 rearrangements. NOR1 (NR4A3) immunohistochemistry may serve as a useful diagnostic marker of NR4A3 fusion-positive gynecologic leiomyosarcomas.


Asunto(s)
Leiomiosarcoma , Receptores de Hormona Tiroidea , Humanos , Femenino , Leiomiosarcoma/genética , Leiomiosarcoma/patología , Persona de Mediana Edad , Adulto , Receptores de Hormona Tiroidea/genética , Receptores de Esteroides/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Proteínas de Unión al ADN/genética , Anciano , Neoplasias de los Genitales Femeninos/genética , Neoplasias de los Genitales Femeninos/patología , Receptores de Progesterona/metabolismo , Receptores de Progesterona/genética , Proteínas de Fusión Oncogénica/genética , Fusión Génica
20.
Biomolecules ; 14(2)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38397435

RESUMEN

Thyroid hormones (THs) are essential in normal brain development, and cognitive and emotional functions. THs act through a cascade of events including uptake by the target cells by specific cell membrane transporters, activation or inactivation by deiodinase enzymes, and interaction with nuclear thyroid hormone receptors. Several thyroid responsive genes have been described in the developing and in the adult brain and many studies have demonstrated a systemic or local reduction in TH availability in neurologic disease and after brain injury. In this review, the main factors and mechanisms associated with the THs in the normal and damaged brain will be evaluated in different regions and cellular contexts. Furthermore, the most common animal models used to study the role of THs in brain damage and cognitive impairment will be described and the use of THs as a potential recovery strategy from neuropathological conditions will be evaluated. Finally, particular attention will be given to the link observed between TH alterations and increased risk of Alzheimer's Disease (AD), the most prevalent neurodegenerative and dementing condition worldwide.


Asunto(s)
Lesiones Encefálicas , Glándula Tiroides , Animales , Glándula Tiroides/metabolismo , Hormonas Tiroideas/metabolismo , Encéfalo/metabolismo , Receptores de Hormona Tiroidea/metabolismo , Transporte Biológico , Proteínas de Transporte de Membrana/metabolismo , Lesiones Encefálicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...