Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.739
Filtrar
1.
CNS Neurosci Ther ; 30(5): e14761, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38739094

RESUMEN

BACKGROUND: This study aims to establish and validate a predictive nomogram for the short-term clinical outcomes of myasthenia gravis (MG) patients treated with low-dose rituximab. METHODS: We retrospectively reviewed 108 patients who received rituximab of 600 mg every 6 months in Huashan Hospital and Tangdu Hospital. Of them, 76 patients from Huashan Hospital were included in the derivation cohort to develop the predictive nomogram, which was externally validated using 32 patients from Tangdu Hospital. The clinical response is defined as a ≥ 3 points decrease in QMG score within 6 months. Both clinical and genetic characteristics were included to screen predictors via multivariate logistic regression. Discrimination and calibration were measured by the area under the receiver operating characteristic curve (AUC-ROC) and Hosmer-Lemeshow test, respectively. RESULTS: Disease duration (OR = 0.987, p = 0.032), positive anti-muscle-specific tyrosine kinase antibodies (OR = 19.8, p = 0.007), and genotypes in FCGR2A rs1801274 (AG: OR = 0.131, p = 0.024;GG:OR = 0.037, p = 0.010) were independently associated with clinical response of post-rituximab patients. The nomogram identified MG patients with clinical response with an AUC-ROC (95% CI) of 0.875 (0.798-0.952) in the derivation cohort and 0.741(0.501-0.982) in the validation cohort. Hosmer-Lemeshow test showed a good calibration (derivation: Chi-square = 3.181, p = 0.923; validation: Chi-square = 8.098, p = 0.424). CONCLUSIONS: The nomogram achieved an optimal prediction of short-term outcomes in patients treated with low-dose rituximab.


Asunto(s)
Miastenia Gravis , Nomogramas , Rituximab , Humanos , Rituximab/uso terapéutico , Rituximab/administración & dosificación , Miastenia Gravis/tratamiento farmacológico , Miastenia Gravis/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Adulto , Estudios Retrospectivos , Factores Inmunológicos/administración & dosificación , Factores Inmunológicos/uso terapéutico , Resultado del Tratamiento , Anciano , Adulto Joven , Receptores de IgG/genética
2.
Cell Mol Biol Lett ; 29(1): 76, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762740

RESUMEN

BACKGROUND: The role of the scavenger receptor CD36 in cell metabolism and the immune response has been investigated mainly in macrophages, dendritic cells, and T cells. However, its involvement in B cells has not been comprehensively examined. METHODS: To investigate the function of CD36 in B cells, we exposed Cd36fl/flMB1cre mice, which lack CD36 specifically in B cells, to apoptotic cells to trigger an autoimmune response. To validate the proteins that interact with CD36 in primary B cells, we conducted mass spectrometry analysis following anti-CD36 immunoprecipitation. Immunofluorescence and co-immunoprecipitation were used to confirm the protein interactions. RESULTS: The data revealed that mice lacking CD36 in B cells exhibited a reduction in germinal center B cells and anti-DNA antibodies in vivo. Mass spectrometry analysis identified 30 potential candidates that potentially interact with CD36. Furthermore, the interaction between CD36 and the inhibitory Fc receptor FcγRIIb was first discovered by mass spectrometry and confirmed through immunofluorescence and co-immunoprecipitation techniques. Finally, deletion of FcγRIIb in mice led to decreased expression of CD36 in marginal zone B cells, germinal center B cells, and plasma cells. CONCLUSIONS: Our data indicate that CD36 in B cells is a critical regulator of autoimmunity. The interaction of CD36-FcγRIIb has the potential to serve as a therapeutic target for the treatment of autoimmune disorders.


Asunto(s)
Enfermedades Autoinmunes , Linfocitos B , Antígenos CD36 , Receptores de IgG , Animales , Antígenos CD36/metabolismo , Antígenos CD36/genética , Receptores de IgG/metabolismo , Receptores de IgG/genética , Linfocitos B/metabolismo , Linfocitos B/inmunología , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/inmunología , Ratones , Centro Germinal/metabolismo , Centro Germinal/inmunología , Ratones Endogámicos C57BL , Unión Proteica , Ratones Noqueados , Autoinmunidad
3.
Sci Rep ; 14(1): 11020, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745067

RESUMEN

The absence of stimulator of interferon genes (STING) in 129.B6.Fcgr2b-deficient mice rescue lupus phenotypes. The administration of a STING inhibitor (ISD017) into the young 129.B6.Fcgr2b-deficient mice prevents lupus nephritis development. This study mainly aimed to evaluate the effects of STING inhibition (ISD107) on established SLE in mice to prove that ISD017 could be a good therapeutic drug to reverse the already set-up autoimmunity and kidney impairment. Twenty-four-week-old Fcgr2b-deficient mice were treated with cyclophosphamide (25 mg/kg, intraperitoneal, once per week), ISD017 (10 mg/kg, intraperitoneal, three times per week), or control vehicle for 8 weeks, and were analyzed for phenotypes. Both ISD017 and cyclophosphamide treatment increased long-term survival and reduced the severity of glomerulonephritis in Fcgr2b-deficient mice. While cyclophosphamide reduced activated B cells (B220+GL-7+), ISD017 decreased activated T cells (CD4+CD69+) and neutrophils (Ly6c+Ly6g+) in Fcgr2b-deficient mice. In addition, ISD017 reduced IL-1ß and interferon-inducible genes. In summary, ISD017 treatment in symptomatic 129.B6.Fcgr2b-deficient mice reduced the severity of glomerulonephritis and increased long-term survival. ISD017 worked comparably to cyclophosphamide for treating lupus nephritis in 129.B6.Fcgr2b-deficient mice. ISD017 reduced activated T cells and neutrophils, while cyclophosphamide targeted activated B cells. These results suggested that STING inhibitors can potentially be a new therapeutic drug for treating lupus.


Asunto(s)
Ciclofosfamida , Proteínas de la Membrana , Receptores de IgG , Animales , Ratones , Proteínas de la Membrana/genética , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Ciclofosfamida/farmacología , Receptores de IgG/genética , Receptores de IgG/metabolismo , Nefritis Lúpica/tratamiento farmacológico , Nefritis Lúpica/patología , Glomerulonefritis/tratamiento farmacológico , Ratones Noqueados , Femenino , Modelos Animales de Enfermedad , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Linfocitos B/inmunología , Lupus Eritematoso Sistémico/tratamiento farmacológico , Lupus Eritematoso Sistémico/genética , Ratones Endogámicos C57BL
4.
Front Immunol ; 15: 1355315, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558807

RESUMEN

Macrophage activation syndrome (MAS) is a life-threatening complication of systemic juvenile arthritis, accompanied by cytokine storm and hemophagocytosis. In addition, COVID-19-related hyperinflammation shares clinical features of MAS. Mechanisms that activate macrophages in MAS remain unclear. Here, we identify the role of miRNA in increased phagocytosis and interleukin-12 (IL-12) production by macrophages in a murine model of MAS. MAS significantly increased F4/80+ macrophages and phagocytosis in the mouse liver. Gene expression profile revealed the induction of Fcγ receptor-mediated phagocytosis (FGRP) and IL-12 production in the liver. Phagocytosis pathways such as High-affinity IgE receptor is known as Fc epsilon RI -signaling and pattern recognition receptors involved in the recognition of bacteria and viruses and phagosome formation were also significantly upregulated. In MAS, miR-136-5p and miR-501-3p targeted and caused increased expression of Fcgr3, Fcgr4, and Fcgr1 genes in FGRP pathway and consequent increase in phagocytosis by macrophages, whereas miR-129-1-3p and miR-150-3p targeted and induced Il-12. Transcriptome analysis of patients with MAS revealed the upregulation of FGRP and FCGR gene expression. A target analysis of gene expression data from a patient with MAS discovered that miR-136-5p targets FCGR2A and FCGR3A/3B, the human orthologs of mouse Fcgr3 and Fcgr4, and miR-501-3p targets FCGR1A, the human ortholog of mouse Fcgr1. Together, we demonstrate the novel role of miRNAs during MAS pathogenesis, thereby suggesting miRNA mimic-based therapy to control the hyperactivation of macrophages in patients with MAS as well as use overexpression of FCGR genes as a marker for MAS classification.


Asunto(s)
Síndrome de Activación Macrofágica , MicroARNs , Humanos , Animales , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Receptores de IgG/genética , Síndrome de Activación Macrofágica/genética , Fagocitosis/genética , Interleucina-12
5.
Immunogenetics ; 76(3): 213-217, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38602517

RESUMEN

There is tremendous interindividual and interracial variability in the outcome of SARS-CoV-2 infection, suggesting the involvement of host genetic factors. Here, we investigated whether IgG allotypes GM (γ marker) 3 and GM 17, genetic markers of IgG1, contributed to the severity of COVID-19. IgG1 plays a pivotal role in response against SARS-CoV-2 infection. We also investigated whether these GM alleles synergistically/epistatically with IGHG3 and FCGR2A alleles-which have been previously implicated in COVID-19-modulated the extent of COVID-19 severity. The study population consisted of 316 COVID-19 patients who needed treatment in the intensive care unit of Hospital Universitario Central de Asturias. All individuals were genotyped for GM 3/17, IGHG3 hinge length, and FCGR2A rs1801274 A/G polymorphisms. Among the 316 critical patients, there were 86 deaths. The risk of death among critical patients was significantly higher in subjects with GM 17 (IgG1) and short hinge length (IgG3). GM 17-carriers were at almost three-fold higher risk of death than non-carriers (p < 0.001; OR = 2.86, CI 1.58-5.16). Subjects with short hinge length of IgG3 had a two-fold higher risk of death than those with medium hinge length (p = 0.01; OR = 2.16, CI 1.19-3.90). GM 3/3 and IGHG3 (MM) genotypes were less frequent among death vs. survivors (9% vs 36%, p < 0.001) and associated with protective effect (OR = 0.18, 95% CI = 0.08-0.39). This is the first report implicating IgG1 allotypes in COVID-19-spurred death. It needs to be replicated in an independent study population.


Asunto(s)
COVID-19 , Inmunoglobulina G , Receptores de IgG , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Humanos , COVID-19/genética , COVID-19/inmunología , COVID-19/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Anciano , SARS-CoV-2/inmunología , Receptores de IgG/genética , Alotipos de Inmunoglobulina Gm/genética , Genotipo , Polimorfismo de Nucleótido Simple , Adulto , Genes de Inmunoglobulinas , Alelos
6.
Clin Immunol ; 263: 110206, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599263

RESUMEN

Patients suffering from sepsis-induced acute lung injury (ALI) exhibit a high mortality rate, and their prognosis is closely associated with infiltration of neutrophils into the lungs. In this study, we found a significant elevation of CD64+ neutrophils, which highly expressed p75 neurotrophin receptor (p75NTR) in peripheral blood of mice and patients with sepsis-induced ALI. p75NTR+CD64+ neutrophils were also abundantly expressed in the lung of ALI mice induced by lipopolysaccharide. Conditional knock-out of the myeloid lineage's p75NTR gene improved the survival rates, attenuated lung tissue inflammation, reduced neutrophil infiltration and enhanced the phagocytic functions of CD64+ neutrophils. In vitro, p75NTR+CD64+ neutrophils exhibited an upregulation and compromised phagocytic activity in blood samples of ALI patients. Blocking p75NTR activity by soluble p75NTR extracellular domain peptide (p75ECD-Fc) boosted CD64+ neutrophils phagocytic activity and reduced inflammatory cytokine production via regulation of the NF-κB activity. The findings strongly indicate that p75NTR+CD64+ neutrophils are a novel pathogenic neutrophil subpopulation promoting sepsis-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda , Ratones Endogámicos C57BL , Neutrófilos , Fagocitosis , Receptores de IgG , Receptores de Factor de Crecimiento Nervioso , Sepsis , Animales , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/etiología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Sepsis/inmunología , Sepsis/complicaciones , Humanos , Receptores de IgG/metabolismo , Receptores de IgG/genética , Receptores de IgG/inmunología , Ratones , Masculino , Fagocitosis/inmunología , Receptores de Factor de Crecimiento Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/inmunología , Ratones Noqueados , Lipopolisacáridos , Citocinas/metabolismo , Citocinas/inmunología , Pulmón/inmunología , Pulmón/patología , Femenino , FN-kappa B/metabolismo , FN-kappa B/inmunología , Proteínas del Tejido Nervioso
7.
Mult Scler Relat Disord ; 86: 105600, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38579568

RESUMEN

BACKGROUND: Rituximab (RTX), an anti-CD20 monoclonal antibody, has shown promise in managing neuromyelitis optica spectrum disorders (NMOSD) by depleting B cells and reducing relapses. However, there is no consensus on the optimal RTX dosing regimen, and genetic factors, such as FCGR3A-V158F polymorphism, may influence treatment outcomes. This study investigates how FCGR3A-V158F genotypes influence RTX efficacy in Chinese NMOSD patients under varying dosing regimens and aims to optimize treatment protocols. METHODS: We conducted a retrospective analysis of 25 Chinese NMOSD patients treated with RTX, grouped into standardized and low-dosage regimens. FCGR3A-V158F genotypes were determined, and treatment responses were evaluated, including relapse rates, time to first relapse (TFR), B-cell depletion, dose adjustments, and treatment retention. RESULTS: Among all patients, 15 received standardized dosages, while 10 received varied induction doses (500 mg to 1200 mg) in low-dose regimens. For FCGR3A-V158F genotypes, 15 had the FF genotype, and 10 were V carriers (3 VV genotype, 7 VF genotype). Regardless of dosing, FF genotype patients had a higher relapse rate post-RTX treatment compared to V carriers (P < 0.05). None of the 3 VV genotype patients in either dose group experienced relapses post-RTX. In both dose groups, FF genotype patients had significantly shorter TFR and required more RTX dose adjustments post-RTX treatment compared to V carriers in the standardized dosage group (P < 0.05). FF genotype patients in the low dosage group were more likely to experience insufficient B-cell depletion, had lower treatment retention rates, and more discontinuations than V carriers in the standardized dosage group (P < 0.05). Insufficient B-cell depletion significantly predicted clinical relapses after RTX treatment (P < 0.05). In survival analysis, FF genotype patients, regardless of dosing, experienced earlier relapses post-RTX treatment (P < 0.05). CONCLUSIONS: This study highlights the importance of RTX dosage selection in NMOSD treatment, particularly for FCGR3A-FF genotype patients. Standard-dose RTX therapy with vigilant monitoring of peripheral blood B-cell levels is recommended for these individuals to optimize treatment efficacy.


Asunto(s)
Factores Inmunológicos , Neuromielitis Óptica , Receptores de IgG , Rituximab , Humanos , Neuromielitis Óptica/tratamiento farmacológico , Neuromielitis Óptica/genética , Receptores de IgG/genética , Rituximab/administración & dosificación , Femenino , Adulto , Masculino , Estudios Retrospectivos , Persona de Mediana Edad , Factores Inmunológicos/administración & dosificación , Adulto Joven , China , Genotipo , Polimorfismo de Nucleótido Simple , Pueblos del Este de Asia
8.
Mol Med ; 30(1): 53, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649840

RESUMEN

OBJECTIVE: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with significant mortality rates. The role of Fcgr2b in the pathogenesis of ALI/ARDS is not fully elucidated. This study aimed to investigate the functions of Fcgr2b in ALI/ARDS and explore its underlying mechanisms. METHODS: Methods: In this study, rat models of ARDS and pulmonary microvascular endothelial cell (PMVEC) injury models were established through the administration of lipopolysaccharide (LPS). The expression levels of Fcgr2b and Elk1 were quantified in both LPS-induced ARDS rats and PMVECs. Subsequent gain- and loss-of-function experiments were conducted, followed by comprehensive assessments of lung tissue for pathomorphological changes, edema, glycogen storage, fibrosis, and infiltration of inflammatory cells. Additionally, bronchoalveolar lavage fluid was analyzed for T-helper 17 (Th17) cell infiltration, inflammatory response, and microvascular permeability to evaluate lung injury severity in ARDS models. Furthermore, the activity, cytotoxicity, apoptosis, and angiogenic potential of PMVECs were assessed to gauge cell injury. The interaction between Elk1 and Fcgr2b was also examined to confirm their regulatory relationship. RESULTS: In the context of LPS-induced ARDS and PMVEC injury, Fcgr2b expression was markedly reduced, whereas Elk1 expression was elevated. Overexpression of Fcgr2b led to a decrease in Th17 cell infiltration and mitigated lung tissue damage in ARDS models, in addition to reducing LPS-induced injury in PMVECs. Elk1 was found to suppress Fcgr2b transcription through the recruitment of histone 3 lysine 9 trimethylation (H3K9me3). Knockdown of Elk1 diminished Th17 cell infiltration and lung tissue damage in ARDS models, and alleviated LPS-induced injury in PMVECs, effects that were reversed upon Fcgr2b upregulation. CONCLUSION: Elk1 negatively regulates Fcgr2b transcription, thereby augmenting the inflammatory response and exacerbating lung injury in LPS-induced ALI/ARDS.


Asunto(s)
Lesión Pulmonar Aguda , Modelos Animales de Enfermedad , Células Endoteliales , Lipopolisacáridos , Receptores de IgG , Síndrome de Dificultad Respiratoria , Proteína Elk-1 con Dominio ets , Animales , Masculino , Ratas , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/etiología , Células Endoteliales/metabolismo , Proteína Elk-1 con Dominio ets/metabolismo , Proteína Elk-1 con Dominio ets/genética , Pulmón/patología , Pulmón/metabolismo , Ratas Wistar , Receptores de IgG/metabolismo , Receptores de IgG/genética , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/genética , Células Th17/metabolismo , Células Th17/inmunología , Transcripción Genética
9.
Nat Cell Biol ; 26(5): 719-730, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38594587

RESUMEN

During embryonic development, blood cells emerge from specialized endothelial cells, named haemogenic endothelial cells (HECs). As HECs are rare and only transiently found in early developing embryos, it remains difficult to distinguish them from endothelial cells. Here we performed transcriptomic analysis of 28- to 32-day human embryos and observed that the expression of Fc receptor CD32 (FCGR2B) is highly enriched in the endothelial cell population that contains HECs. Functional analyses using human embryonic and human pluripotent stem cell-derived endothelial cells revealed that robust multilineage haematopoietic potential is harboured within CD32+ endothelial cells and showed that 90% of CD32+ endothelial cells are bona fide HECs. Remarkably, these analyses indicated that HECs progress through different states, culminating in FCGR2B expression, at which point cells are irreversibly committed to a haematopoietic fate. These findings provide a precise method for isolating HECs from human embryos and human pluripotent stem cell cultures, thus allowing the efficient generation of haematopoietic cells in vitro.


Asunto(s)
Desarrollo Embrionario , Receptores de IgG , Humanos , Desarrollo Embrionario/genética , Receptores de IgG/metabolismo , Receptores de IgG/genética , Hemangioblastos/metabolismo , Hemangioblastos/citología , Diferenciación Celular , Células Endoteliales/metabolismo , Células Endoteliales/citología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Linaje de la Célula , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , Transcriptoma , Perfilación de la Expresión Génica , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/citología
10.
Cell Immunol ; 399-400: 104823, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38520831

RESUMEN

AAV-mediated gene transfer is a promising platform still plagued by potential host-derived, antagonistic immune responses to therapeutic components. CpG-mediated TLR9 stimulation activates innate immune cells and leads to cognate T cell activation and suppression of transgene expression. Here, we demonstrate that CpG depletion increased expression of an antibody transgene product by 2-3-fold as early as 24 h post-vector administration in mice. No significant differences were noted in anti-transgene product/ anti-AAV capsid antibody production or cytotoxic gene induction. Instead, CpG depletion significantly reduced the presence of a pDC-like myeloid cell population, which was able to directly bind the antibody transgene product via Fc-FcγR interactions. Thus, we extend the mechanisms of TLR9-mediated antagonism of transgene expression in AAV gene therapy to include the actions of a previously unreported pDC-like cell population.


Asunto(s)
Células Dendríticas , Dependovirus , Terapia Genética , Vectores Genéticos , Ratones Endogámicos C57BL , Receptor Toll-Like 9 , Transgenes , Animales , Células Dendríticas/inmunología , Dependovirus/genética , Ratones , Terapia Genética/métodos , Receptor Toll-Like 9/inmunología , Islas de CpG/genética , Islas de CpG/inmunología , Receptores de IgG/inmunología , Receptores de IgG/genética , Receptores de IgG/metabolismo
11.
Front Immunol ; 15: 1343602, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455048

RESUMEN

Introduction: Single nucleotide variations (SNVs) are specific genetic variations that commonly occur in a population and often do not manifest phenotypically. However, depending on their location and the type of nucleotide exchanged, an SNV can alter or inhibit the function of the gene in which it occurs. Immunoglobulin G (IgG) receptor genes have exhibited several polymorphisms, including rs1801274, which is found in the FcgRIIa gene. The replacement of A with T results in a Histidine (H) to Arginine (R) substitution, altering the affinity of the IgG receptor for IgG subtypes and C-reactive protein (CRP). In this study, we analyzed rs1801274 and its functional implications concerning L. Infantum uptake and cytokine production. Methods: We genotyped 201 individuals from an endemic area for visceral leishmaniasis to assess the presence of rs1801274 using Taqman probes for a candidate gene study. Additionally, we included seventy individuals from a non-endemic area for a functional study. Subsequently, we isolated and cultivated one-week adherent mononuclear cells (AMCs) derived from the peripheral blood of participants residing in the non-endemic region in the presence of L. infantum promastigotes, with and without antigen-specific IgG and/or CRP. We analyzed the rate of phagocytosis and the production of nitric oxide (NO), tumor necrosis factor (TNF)-a, interleukin (IL)-10, IL-12 p70, IL-1b, IL- 6, and IL-8 in the culture supernatants. Results and discussion: In participants from the endemic region, the A/G (H/R isoform) heterozygous genotype was significantly associated with susceptibility to the disease. Furthermore, SNVs induced a change in the phagocytosis rate in an opsonin-dependent manner. Opsonization with IgG increased the production of IL-10, TNF-a, and IL-6 in AMCs with the H/R isoform, followed by a decrease in NO production. The results presented here suggest that the rs1801274 polymorphism is linked to a higher susceptibility to visceral leishmaniasis.


Asunto(s)
Leishmania infantum , Leishmaniasis Visceral , Humanos , Leishmaniasis Visceral/genética , Leishmania infantum/genética , Receptores de IgG/genética , Interleucina-12 , Factor de Necrosis Tumoral alfa , Nucleótidos , Isoformas de Proteínas , Variación Genética , Inmunoglobulina G
12.
Eur J Immunol ; 54(4): e2350659, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38314895

RESUMEN

Like rheumatoid arthritis (RA) in humans, collagen-induced arthritis (CIA) in mice is associated with not only MHC class II genetic polymorphism but also, to some extent, with other loci including genes encoding Fc gamma receptors (FCGRs) and complement C5. In this study, we used a cartilage antibody-induced arthritis (CAIA) model in which arthritis develops within a 12-h timeframe, to determine the relative importance of FCGRs and C5 (Hc). In CAIA, inhibiting or deleting FCGR3 substantially hindered arthritis development, underscoring the crucial role of this receptor. Blocking FCGR3 also reduced the levels of FCGR4, and vice versa. When employing an IgG1 arthritogenic cocktail that exclusively interacts with FCGR2B and FCGR3, joint inflammation was promptly initiated in Fcgr2b-- mice but not in Fcgr3-- mice, suggesting that FCGR3 is sufficient for CAIA development. Regarding complement activation, Fcgr2b++.Hc** mice with C5 mutated were fully resistant to CAIA, whereas Fcgr2b--.Hc** mice developed arthritis rapidly. We conclude that FCGR3 is essential and sufficient for CAIA development, particularly when induced by IgG1 antibodies. The human ortholog of mouse FCGR3, FCGR2A, may be associated with RA pathogenesis. FCGR2B deficiency allows for rapid arthritis progression and overrides the resistance conferred by C5 deficiency.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Animales , Ratones , Cartílago/patología , Complemento C5/genética , Inmunoglobulina G , Receptores de IgG/genética
13.
Rev Assoc Med Bras (1992) ; 70(2): e20230872, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38422319

RESUMEN

OBJECTIVE: The purpose of this study was to assess the association between clinical, laboratory, and functional analyses and polymorphism in the FCGR3A gene in individuals with functional NK cell deficiency. METHODS: A total of 15 functional NK cell deficiency patients and 10 age-matched healthy controls underwent NK cell subgroup, cytotoxicity, and FCGR3A whole-exome analysis with next-generation sequencing. RESULTS: Three different NK cell subsets (CD56brightCD16neg, CD56brightCD16int, and CD56dimCD16hi) were identified. No statistically significant difference was found in the ratio of CD56brightCD16neg cells between patients and controls. CD56brightCD16int and CD56dimCD16hi ratios were found to be significantly lower in patients. As a result of NK cell cytotoxicity analysis, a proportional decrease of K562 amount between patients and controls was found to be statistically significant (p<0.001). In the FCGR3A whole-exome analysis, all patients were found to be homozygous mutant for the c.526G > T (p.V176F) in exon 4, while three patients were homozygous wild type and 12 patients were heterozygous for the c.197T>A (p.L66H) in exon 3. CONCLUSION: In this study, a group of pediatric patients with suspected functional NK cell deficiency were evaluated and the findings indicated that NK subsets, cytotoxicity results, and FCGR3A gene polymorphism were found to be correlated with the clinical features. We conclude that this kind of study might contribute to follow-up the patients in time.


Asunto(s)
Células Asesinas Naturales , Polimorfismo Genético , Humanos , Niño , Heterocigoto , Receptores de IgG/genética
14.
J Proteome Res ; 23(3): 1088-1101, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38363599

RESUMEN

Fc γ-receptors (FcγRs) on leukocytes bind immunoglobulin G (IgG) immune complexes to mediate effector functions. Dysregulation of FcγR-mediated processes contributes to multiple inflammatory diseases, including rheumatoid arthritis, lupus, and immune thrombocytopenia. Critically, immunoregulatory N-glycan modifications on both FcγRs and IgGs alter FcγR-IgG binding affinity. Rapid methods for the characterization of N-glycans across multiple Fcγ receptors are needed to propel investigations into disease-specific contributions of FcγR N-glycans. Here, we utilize nanoliquid chromatography tandem mass spectrometry (nLC-MS/MS) to characterize FcγR glycosylation and report quantitative and site-specific N-glycan characterization of recombinant human FcγRI, FcγRIIIA V158, and FcγRIIIA F158 from CHO cells and murine FcγRI, FcγRIII, and FcγRIV from NS0 cells. Data are available via ProteomeXchange with identifier PXD043966. Broad glycoform distribution (≥30) was observed at mouse FcγRIV site N159 and human FcγRIIIA site N162, an evolutionarily conserved site. Further, mouse FcγRIII N-glycopeptides spanning all four predicted N-glycosylation sequons were detected. Glycoform relative abundances for hFcγRIIIA V/F158 polymorphic variants are reported, demonstrating the clinical potential of this workflow to measure differences in glycosylation between common human FcγRIIIA allelic variants with disease-associated outcomes. The multi-Fcγ receptor glycoproteomic workflow reported here will empower studies focused on the role of FcγR N-glycosylation in autoimmune diseases.


Asunto(s)
Receptores de IgG , Espectrometría de Masas en Tándem , Humanos , Animales , Ratones , Cricetinae , Glicosilación , Receptores de IgG/genética , Cricetulus , Inmunoglobulina G/genética , Polisacáridos
15.
J Immunol Methods ; 526: 113628, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38331313

RESUMEN

The importance of structural genetic variants, such as copy number variations (CNVs), in modulating human disease is being increasingly recognized. Several clinical conditions require investigation of human neutrophil antigen (HNA-1), which is encoded by the Fc gamma receptor IIIb gene (FCGR3B), including suspicion of neutropenia, infections, and proactive testing of blood component donors to reduce the potential risk in transfusion. In this study, we compared real-time quantitative polymerase chain reaction (qPCR) with two digital PCR (dPCR) platforms, namely droplet digital PCR and an array-based platform, to determine copy numbers (CNs) in FCGR3B. We initially tested 400 anonymous blood donors with qPCR using a commercially available TaqMan probe assay (Applied Biosystems) on a Quant Studio 12 Flex. CNs was determined for all 400 tested individuals with CNs ranging from zero to four. Zero copies were detected in 0.2% (1/400), one copy was detected in 3.8% (15/400), two copies were detected in 87.8% (351/400), three copies were detected in 8.0% (32/400), and four copies were detected in 0.2% (1/400) of tested individuals. From this cohort, we selected 32 donors with CNs from zero to four for analyses with Digital Real-Time PCR (dPCR) using Lab on an array (LOAA) on an On-Point analyzer from Optolane Technologies Inc. and the Droplet Digital PCR (ddPCR) platform from Bio-Rad Laboratories. We compared the obtained CNs of FCGR3B on the three platforms and found full concordance between the CNs obtained. We therefore conclude that all three platforms can be used for quantification of CNs for FCGR3B, and although dPCR has some advantages over qPCR, it was not necessary for reliably estimating CNs of the FCGR3B gene.


Asunto(s)
Variaciones en el Número de Copia de ADN , Receptores de IgG , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de IgG/genética , Estudios de Casos y Controles , Proteínas Ligadas a GPI/genética
16.
J Immunol ; 212(7): 1196-1206, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38380986

RESUMEN

FcγR is a significant opsonin receptor located on the surface of immune cells, playing a crucial role in Ab-dependent cell-mediated immunity. Our previous work revealed opposite expression trends of FcγRII and FcγRIII in flounder mIgM+ B lymphocytes after phagocytosis of antiserum-opsonized Edwardsiella tarda. This observation suggests that FcγRII and FcγRIII might serve distinct functions in Ig-opsonized immune responses. In this study, we prepared rFcγRIII as well as its corresponding Abs to investigate the potential roles of FcγRII and FcγRIII in the Ab-dependent immune response of IgM+ B cells. Our findings indicate that, unlike FcγRII, FcγRIII does not participate in Ab-dependent cellular phagocytosis. Instead, it is involved in cytokine production and bacterial killing in mIgM+ B lymphocytes. Additionally, we identified platelet-derived ADAM17 as a key factor in regulating FcγRIII shedding and cytokine release in mIgM+ B lymphocytes. These results elucidate the functions of FcγRII and FcγRIII in the innate immunology of mIgM+ B lymphocytes and contribute to an improved understanding of the regulatory roles of FcγRs in the phagocytosis of teleost B lymphocytes.


Asunto(s)
Lenguado , Receptores de IgG , Animales , Receptores de IgG/genética , Receptores Fc , Sistema Inmunológico , Citocinas
17.
Bioengineered ; 15(1): 2302246, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38214443

RESUMEN

Most anti-CD40 antibodies show robust agonism only upon binding to FcγR+ cells, such as B cells, macrophages, or DCs, but a few anti-CD40 antibodies display also strong intrinsic agonism dependent on the recognized epitope and/or isotype. It is worth mentioning, however, that also the anti-CD40 antibodies with intrinsic agonism can show a further increase in agonistic activity when bound by FcγR-expressing cells. Thus, conventional antibodies appear not to be sufficient to trigger the maximum possible CD40 activation independent from FcγR-binding. We proved here the hypothesis that oligomeric and oligovalent anti-CD40 antibody variants generated by genetic engineering display high intrinsic, thus FcγR-independent, agonistic activity. We generated tetra-, hexa- and dodecavalent variants of six anti-CD40 antibodies and a CD40-specific nanobody. All these oligovalent variants, even when derived of bivalent antagonistic anti-CD40 antibodies, showed strongly enhanced CD40 agonism compared to their conventional counterparts. In most cases, the CD40 agonism reached the maximum response induced by FcγR-bound anti-CD40 antibodies or membrane CD40L, the natural engager of CD40. In sum, our data show that increasing the valency of anti-CD40 antibody constructs by genetic engineering regularly results in molecules with high intrinsic agonism and level out the specific limitations of the parental antibodies.


Asunto(s)
Inmunoglobulina G , Receptores de IgG , Inmunoglobulina G/genética , Receptores de IgG/genética , Antígenos CD40/genética , Ligando de CD40/genética , Ingeniería Genética
18.
Nat Commun ; 15(1): 319, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38296975

RESUMEN

Here we report the largest Asian genome-wide association study (GWAS) for systemic sclerosis performed to date, based on data from Japanese subjects and comprising of 1428 cases and 112,599 controls. The lead SNP is in the FCGR/FCRL region, which shows a penetrating association in the Asian population, while a complete linkage disequilibrium SNP, rs10917688, is found in a cis-regulatory element for IRF8. IRF8 is also a significant locus in European GWAS for systemic sclerosis, but rs10917688 only shows an association in the presence of the risk allele of IRF8 in the Japanese population. Further analysis shows that rs10917688 is marked with H3K4me1 in primary B cells. A meta-analysis with a European GWAS detects 30 additional significant loci. Polygenic risk scores constructed with the effect sizes of the meta-analysis suggest the potential portability of genetic associations beyond populations. Prioritizing the top 5% of SNPs of IRF8 binding sites in B cells improves the fitting of the polygenic risk scores, underscoring the roles of B cells and IRF8 in the development of systemic sclerosis. The results also suggest that systemic sclerosis shares a common genetic architecture across populations.


Asunto(s)
Predisposición Genética a la Enfermedad , Esclerodermia Sistémica , Humanos , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Receptores de IgG/genética , Puntuación de Riesgo Genético , Esclerodermia Sistémica/genética , Polimorfismo de Nucleótido Simple , Factores Reguladores del Interferón/genética , Sitios Genéticos
19.
Nat Rev Cancer ; 24(1): 51-71, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38062252

RESUMEN

The discovery of both cytotoxic T lymphocyte-associated antigen 4 (CTLA4) and programmed cell death protein 1 (PD1) as negative regulators of antitumour immunity led to the development of numerous immunomodulatory antibodies as cancer treatments. Preclinical studies have demonstrated that the efficacy of immunoglobulin G (IgG)-based therapies depends not only on their ability to block or engage their targets but also on the antibody's constant region (Fc) and its interactions with Fcγ receptors (FcγRs). Fc-FcγR interactions are essential for the activity of tumour-targeting antibodies, such as rituximab, trastuzumab and cetuximab, where the killing of tumour cells occurs at least in part due to these mechanisms. However, our understanding of these interactions in the context of immunomodulatory antibodies designed to boost antitumour immunity remains less explored. In this Review, we discuss our current understanding of the contribution of FcγRs to the in vivo activity of immunomodulatory antibodies and the challenges of translating results from preclinical models into the clinic. In addition, we review the impact of genetic variability of human FcγRs on the activity of therapeutic antibodies and how antibody engineering is being utilized to develop the next generation of cancer immunotherapies.


Asunto(s)
Neoplasias , Receptores de IgG , Humanos , Receptores de IgG/genética , Receptores de IgG/metabolismo , Inmunoglobulina G/metabolismo , Inmunomodulación , Inmunoterapia , Neoplasias/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA