RESUMEN
BACKGROUND: Hepatic fibrosis, a prevalent chronic liver condition, involves excessive extracellular matrix production associated with aberrant wound healing. Hepatic stellate cells (HSCs) play a pivotal role in liver fibrosis, activated by inflammatory factors such as sphingosine 1-phosphate (S1P). Despite S1P's involvement in fibrosis, its specific role and downstream pathway in HSCs remain controversial. METHODS: In this study, we investigated the regulatory role of S1P/S1P receptor (S1PR) in Hippo-YAP activation in both LX-2 cell lines and primary HSCs. Real-time PCR, western blot, pharmacological inhibitors, siRNAs, and Rho activity assays were adopted to address the molecular mechanisms of S1P mediated YAP activation. RESULTS: Serum and exogenous S1P significantly increased the expression of YAP target genes in HSCs. Pharmacologic inhibitors and siRNA-mediated knockdowns of S1P receptors showed S1P receptor 2 (S1PR2) as the primary mediator for S1P-induced CTGF expression in HSCs. Results using siRNA-mediated knockdown, Verteporfin, and Phospho-Tag immunoblots showed that S1P-S1PR2 signaling effectively suppressed the Hippo kinases cascade, thereby activating YAP. Furthermore, S1P increased RhoA activities in cells and ROCK inhibitors effectively blocked CTGF induction. Cytoskeletal-perturbing reagents were shown to greatly modulate CTGF induction, suggesting the important role of actin cytoskeleton in S1P-induced YAP activation. Exogeneous S1P treatment was enough to increase the expression of COL1A1 and α-SMA, that were blocked by YAP specific inhibitor. CONCLUSIONS: Our data demonstrate that S1P/S1PR2-Src-RhoA-ROCK axis leads to Hippo-YAP activation, resulting in the up-regulation of CTGF, COL1A1 and α-SMA expression in HSCs. Therefore, S1PR2 may represent a potential therapeutic target for hepatic fibrosis.
Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo , Células Estrelladas Hepáticas , Lisofosfolípidos , Transducción de Señal , Esfingosina , Factores de Transcripción , Proteínas Señalizadoras YAP , Quinasas Asociadas a rho , Proteína de Unión al GTP rhoA , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/genética , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Humanos , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/genética , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Línea Celular , Cirrosis Hepática/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Familia-src Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Receptores de Lisoesfingolípidos/metabolismo , Receptores de Lisoesfingolípidos/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Vía de Señalización HippoRESUMEN
Sphingosine-1-phosphate (S1P) receptor (S1PR) agonists, such as fingolimod (FTY720), alleviate nociception in preclinical pain models by either activation (agonism) or inhibition (functional antagonism) of S1PR type-1 (S1PR1). However, the dose-dependence and temporal relationship between reversal of nociception and modulation of S1PR1 signaling has not been systematically investigated. This study examined the relationship between FTY720-induced antinociception and S1PR1 adaptation using a sciatic nerve chronic constriction injury (CCI) model of neuropathic pain in male and female C57Bl/6J mice. Daily injections of FTY720 for 14 days dose-dependently reversed CCI-induced mechanical allodynia without tolerance development, and concomitantly resulted in a dose-dependent reduction of G-protein activation by the S1PR1-selective agonist SEW2871 in the lumbar spinal cord and brain. These findings indicate FTY720-induced desensitization of S1PR1 signaling coincides with its anti-allodynic effects. Consistent with this finding, a single injection of FTY720 reversed mechanical allodynia while concomitantly producing partial desensitization of S1PR1-stimulated G-protein activation in the CNS. However, mechanical allodynia returned 24-hr post injection, despite S1PR1 desensitization at that time, demonstrating a dissociation between these measures. Furthermore, CCI surgery led to elevations of sphingolipid metabolites, including S1P, which were unaffected by daily FTY720 administration, suggesting FTY720 reversed mechanical allodynia by targeting S1PR1 rather than sphingolipid metabolism. Supporting this hypothesis, acute administration of the S1PR1-selective agonist CYM-5442 mimicked the anti-allodynic effect of FTY720. In contrast, the S1PR1-selective antagonist NIBR-0213 prevented the anti-allodynic effect of FTY720, but NIBR-0213 given alone did not affect nociception. These results indicate that FTY720 alleviates CCI-induced allodynia through a mechanism distinct from functional antagonism.
Asunto(s)
Clorhidrato de Fingolimod , Hiperalgesia , Receptores de Esfingosina-1-Fosfato , Animales , Femenino , Masculino , Ratones , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Clorhidrato de Fingolimod/farmacología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Ratones Endogámicos C57BL , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Oxadiazoles/farmacología , Receptores de Lisoesfingolípidos/agonistas , Receptores de Lisoesfingolípidos/metabolismo , Nervio Ciático/lesiones , Nervio Ciático/efectos de los fármacos , Neuropatía Ciática/tratamiento farmacológico , Neuropatía Ciática/metabolismo , Esfingosina/análogos & derivados , Esfingosina/farmacología , Moduladores de los Receptores de fosfatos y esfingosina 1/farmacología , Receptores de Esfingosina-1-Fosfato/agonistas , Receptores de Esfingosina-1-Fosfato/metabolismoRESUMEN
Small molecules, including Janus kinase (JAK) inhibitors and sphingosine-1-phosphate receptor modulators (S1PRMs), are promising new treatments for inflammatory bowel disease (IBD). Small molecules exhibit more predictable pharmacokinetics than biologics, are less likely to induce immune responses, and can be administered orally. JAK inhibitors function by blocking the activity of JAK enzymes, which prevents the subsequent phosphorylation and activation of signal transducer and activator of transcription (STAT) proteins. Tofacitinib and filgotinib are approved for treating ulcerative colitis (UC), while upadacitinib is approved for UC and Crohn's disease. Nevertheless, JAK inhibitors can increase the risk of herpes zoster, cancer, major adverse cardiovascular events, and venous thromboembolism. S1PRMs bind to S1PRs, particularly S1PR1, on lymphocytes. This interaction inhibits lymphocytes from exiting the lymph nodes and migrating to the gut, thereby reducing inflammation and the immune response in the intestinal mucosa. Ozanimod and etrasimod are S1PRMs approved for the treatment of UC, but they can cause side effects such as bradycardia, conduction disorder, and macular edema. Overall, JAK inhibitors and S1PRMs offer significant benefits in managing IBD, although their potential side effects require careful monitoring.
Asunto(s)
Enfermedades Inflamatorias del Intestino , Inhibidores de las Cinasas Janus , Moduladores de los Receptores de fosfatos y esfingosina 1 , Humanos , Indanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Inhibidores de las Cinasas Janus/uso terapéutico , Inhibidores de las Cinasas Janus/farmacología , Oxadiazoles , Piridinas , Receptores de Lisoesfingolípidos/metabolismo , Receptores de Lisoesfingolípidos/antagonistas & inhibidores , Moduladores de los Receptores de fosfatos y esfingosina 1/farmacología , Moduladores de los Receptores de fosfatos y esfingosina 1/uso terapéutico , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inhibidores , TriazolesRESUMEN
Sepsis-induced acute lung injury (SALI) is the common complication of sepsis, resulting in high incidence and mortality rates. The primary pathogenesis of SALI is the interplay between acute inflammation and endothelial barrier damage. Studies have shown that kaempferol (KPF) has anti-sepsis properties. Sphingosine kinase 1 (SphK1)/sphingosine-1-phosphate (S1P) signaling pathway's significance in acute lung damage and S1P receptor 1 (S1PR1) agonists potential in myosin light chain 2 (MLC2) phosphorylation are documented. Whether KPF can regulate the SphK1/S1P/S1PR1/MLC2 signaling pathway to protect the lung endothelial barrier remains unclear. This study investigates the KPF's therapeutic effects and molecular mechanisms in repairing endothelial cell barrier damage in both LPS-induced sepsis mice and human umbilical vein endothelial cells (HUVECs). KPF significantly reduced lung tissue damage and showed anti-inflammatory effects by decreasing IL-6 and TNF-α synthesis in the sepsis mice model. Further, KPF administration can reduce the high permeability of the LPS-induced endothelial cell barrier and alleviate lung endothelial cell barrier injury. Mechanistic studies showed that KPF pretreatment can suppress MLC2 hyperphosphorylation and decrease SphK1, S1P, and S1PR1 levels. The SphK1/S1P/S1PR1/MLC2 signaling pathway controls the downstream proteins linked to endothelial barrier damage, and the Western blot (WB) showed that KPF raised the protein levels. These proteins include zonula occludens (ZO)-1, vascular endothelial (VE)-cadherin and Occludin. The present work revealed that in mice exhibiting sepsis triggered by LPS, KPF strengthened the endothelial barrier and reduced the inflammatory response. The SphK1/S1P/S1PR1/MLC2 pathway's modulation is the mechanism underlying this impact.
Asunto(s)
Lesión Pulmonar Aguda , Miosinas Cardíacas , Células Endoteliales de la Vena Umbilical Humana , Quempferoles , Pulmón , Lisofosfolípidos , Ratones Endogámicos C57BL , Cadenas Ligeras de Miosina , Sepsis , Transducción de Señal , Esfingosina , Animales , Sepsis/tratamiento farmacológico , Sepsis/complicaciones , Sepsis/metabolismo , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/patología , Humanos , Cadenas Ligeras de Miosina/metabolismo , Transducción de Señal/efectos de los fármacos , Ratones , Lisofosfolípidos/metabolismo , Quempferoles/farmacología , Quempferoles/uso terapéutico , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Esfingosina/farmacología , Masculino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Miosinas Cardíacas/metabolismo , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Lipopolisacáridos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Interleucina-6/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismoRESUMEN
Here we report our design and synthesis of 28 new fluorine-containing compounds as potential F-18 radiotracers for CNS imaging of sphingosine-1-phosphate receptor 1 (S1PR1), and determination of their in vitro binding potency and selectivity toward S1PR1 over other S1PR subtypes. Nine potent and selective compounds, 7c&d, 9a&c, 12b, 15b, and 18a-c with IC50 values ranging from 0.6-12.3 nM for S1PR1 and weak binding toward S1PR2, 3, 4, and 5, were further 18F-radiolabeled to produce [18F]7c&d, [18F]9a&c, [18F]12b, [18F]15b, and [18F]18a-c. Multi-step F-18 radiochemistry procedures were investigated for radiosynthesis of [18F]7c&d and [18F]9a&c, and the presumed intermediates were synthesized and authenticated by analytic HPLC. We then performed nonhuman primate (NHP) PET brain imaging studies for eight radiotracers: [18F]7c&d, [18F]9a, [18F]12b, [18F]15b, and [18F]18a-c. Three radiotracers, [18F]7c, [18F]7d, and [18F]15b, had high NHP brain uptake with standardized uptake values (SUVs) at 2 h post-injection of 2.42, 2.84, and 2.00, respectively, and good brain retention. Our ex vivo biodistribution study in rats confirmed [18F]7d had a high brain uptake with no in vivo defluorination. Radiometabolic analysis of [18F]7c and [18F]7d in rat plasma and brain samples found that [18F]7c has a more favorable metabolic profile than [18F]7d. However, the trend of increased brain uptake precludes [18F]7c as a suitable PET radiotracer for imaging S1PR1 in the brain. Further structural optmization is warranted to identify a highly S1PR1-specific radiotracer with rapid brain uptake kinetics.
Asunto(s)
Diseño de Fármacos , Radioisótopos de Flúor , Receptores de Esfingosina-1-Fosfato , Animales , Radioisótopos de Flúor/química , Receptores de Esfingosina-1-Fosfato/metabolismo , Ratas , Tomografía de Emisión de Positrones/métodos , Radiofármacos/síntesis química , Radiofármacos/química , Radiofármacos/farmacocinética , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Humanos , Distribución Tisular , Masculino , Macaca mulattaRESUMEN
BACKGROUND AND AIMS: S1P is an important factor regulating the function of the vascular endothelial barrier. SphK1 is an important limiting enzyme for the synthesis of S1P. However, the role of the SphK1/S1P-mediated vascular endothelial barrier function in atherosclerosis has not been fully revealed. This study explored the roles and mechanisms of SphK1 on atherosclerosis in vivo and in vitro. METHODS: In vivo, ApoE-/- and SphK1-/-ApoE-/- mice were fed a high-fat diet to induce atherosclerosis. In vitro, ox-LDL induced HUVECs to establish a cell model. Aortic histological changes were measured by H&E staining, Oil Red O staining, EVG staining, Sirius scarlet staining, immunofluorescence, and Evans Blue Assay. Western blotting was performed to explore the specific mechanism. RESULTS: We validated that deficiency of SphK1 resulted in a marked amelioration of atherosclerosis, as indicated by the decreased lipid accumulation, inflammatory factors, oxidative stress, aortic plaque area, inflammatory factor infiltration, VCAM-1 expression, and vascular endothelial permeability. Moreover, deficiency of SphK1 downregulated the expression of aortic S1PR3, Rhoa, ROCK, and F-actin. The results of administration with the SphK1 inhibitor PF-543 and the S1PR3 inhibitor VPC23019 in vitro further confirmed the conclusion that deficiency of SphK1 reduced S1P level and S1PR3 protein expression, inhibited Rhoa/ROCK signaling pathway, regulated protein expression of F-actin, improved vascular endothelial dysfunction and permeability, and exerted anti-atherosclerotic effects. CONCLUSIONS: This study revealed that deficiency of SphK1 relieved vascular endothelial barrier function in atherosclerosis mice via SphK1/S1P/S1PR signaling pathway.
Asunto(s)
Aterosclerosis , Células Endoteliales de la Vena Umbilical Humana , Fosfotransferasas (Aceptor de Grupo Alcohol) , Transducción de Señal , Receptores de Esfingosina-1-Fosfato , Quinasas Asociadas a rho , Proteína de Unión al GTP rhoA , Animales , Humanos , Masculino , Ratones , Apolipoproteínas E/deficiencia , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Dieta Alta en Grasa , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Lisofosfolípidos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Receptores de Lisoesfingolípidos/metabolismo , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismoRESUMEN
Platelet-derived growth factor receptor ß positive (PDGFRß+) pericytes detach from the microvascular wall and migrate into the injury center following spinal cord injury (SCI), which has been widely regarded as the main source of fibrotic scar, but the mechanism of migration and fibroblast transition remains elusive. Here we show the associated spatiotemporal distribution between microglia and pericytes at three and seven days post-injury (dpi). The increased expression of Sphingosine kinase-1 (SPHK1) in microglia significantly raised the concentration of Sphingosine-1-phosphate (S1P) in the spinal cord, which promotes migration and fibroblast transition of pericyte. In vitro experiments, we found the elevated Sphingosine 1-phosphate receptor 3 (S1P3), the S1P/S1PR3 axis inhibited the phosphorylation of YAP and promoted its nuclear translocation, which contributed to the formation of alpha-smooth muscle actin (α-SMA) and collagen type I (COL1) protein, This process can be blocked by an S1P3 specific inhibitor TY52156 in vitro. The S1P/S1P3/YAP pathway might be a potential target for treatment in SCI.
Asunto(s)
Movimiento Celular , Fibroblastos , Lisofosfolípidos , Microglía , Pericitos , Transducción de Señal , Receptores de Esfingosina-1-Fosfato , Esfingosina , Traumatismos de la Médula Espinal , Proteínas Señalizadoras YAP , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Transducción de Señal/fisiología , Lisofosfolípidos/metabolismo , Animales , Movimiento Celular/fisiología , Pericitos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Microglía/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Ratas , Fibroblastos/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Ratas Sprague-Dawley , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Células CultivadasRESUMEN
BACKGROUND: Inflammation and endothelial barrier dysfunction are the major pathophysiological changes in acute respiratory distress syndrome (ARDS). Sphingosine-1-phosphate receptor 3 (S1PR3), a G protein-coupled receptor, has been found to mediate inflammation and endothelial cell (EC) integrity. However, the function of S1PR3 in ARDS has not been fully elucidated. METHODS: We used a murine lipopolysaccharide (LPS)-induced ARDS model and an LPS- stimulated ECs model to investigate the role of S1PR3 in anti-inflammatory effects and endothelial barrier protection during ARDS. RESULTS: We found that S1PR3 expression was increased in the lung tissues of mice with LPS-induced ARDS. TY-52156, a selective S1PR3 inhibitor, effectively attenuated LPS-induced inflammation by suppressing the expression of proinflammatory cytokines and restored the endothelial barrier by repairing adherens junctions and reducing vascular leakage. S1PR3 inhibition was achieved by an adeno-associated virus in vivo and a small interfering RNA in vitro. Both the in vivo and in vitro studies demonstrated that pharmacological or genetic inhibition of S1PR3 protected against ARDS by inhibiting the NF-κB pathway and improving mitochondrial oxidative phosphorylation. CONCLUSIONS: S1PR3 inhibition protects against LPS-induced ARDS via suppression of pulmonary inflammation and promotion of the endothelial barrier by inhibiting NF-κB and improving mitochondrial oxidative phosphorylation, indicating that S1PR3 is a potential therapeutic target for ARDS.
Asunto(s)
Lipopolisacáridos , Ratones Endogámicos C57BL , Mitocondrias , FN-kappa B , Fosforilación Oxidativa , Síndrome de Dificultad Respiratoria , Receptores de Esfingosina-1-Fosfato , Animales , Humanos , Masculino , Ratones , Citocinas/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Inflamación/patología , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , FN-kappa B/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Sustancias Protectoras/farmacología , Receptores de Lisoesfingolípidos/metabolismo , Receptores de Lisoesfingolípidos/antagonistas & inhibidores , Síndrome de Dificultad Respiratoria/inducido químicamente , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inhibidoresRESUMEN
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) have been associated with potential cardiovascular benefits, partly attributed to their bioactive metabolites. However, the underlying mechanisms responsible for these advantages are not fully understood. We previously reported that metabolites of the cytochrome P450 pathway derived from eicosapentaenoic acid (EPA) mediated the atheroprotective effect of ω-3 PUFAs. Here, we show that 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and its receptor, sphingosine-1-phosphate receptor 1 (S1PR1), in endothelial cells (ECs) can inhibit oscillatory shear stress- or tumor necrosis factor-α-induced endothelial activation in cultured human ECs. Notably, the atheroprotective effect of 17,18-EEQ and purified EPA is circumvented in male mice with endothelial S1PR1 deficiency. Mechanistically, the anti-inflammatory effect of 17,18-EEQ relies on calcium release-mediated endothelial nitric oxide synthase (eNOS) activation, which is abolished upon inhibition of S1PR1 or Gq signaling. Furthermore, 17,18-EEQ allosterically regulates the conformation of S1PR1 through a polar interaction with Lys34Nter. Finally, we show that Vascepa, a prescription drug containing highly purified and stable EPA ethyl ester, exerts its cardiovascular protective effect through the 17,18-EEQ-S1PR1 pathway in male and female mice. Collectively, our findings indicate that the anti-inflammatory effect of 17,18-EEQ involves the activation of the S1PR1-Gq-Ca2+-eNOS axis in ECs, offering a potential therapeutic target against atherosclerosis.
Asunto(s)
Ácido Eicosapentaenoico , Receptores de Esfingosina-1-Fosfato , Animales , Ácido Eicosapentaenoico/farmacología , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/metabolismo , Humanos , Ratones , Receptores de Esfingosina-1-Fosfato/metabolismo , Masculino , Óxido Nítrico Sintasa de Tipo III/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/prevención & control , Receptores de Lisoesfingolípidos/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Ácidos AraquidónicosRESUMEN
Transcription factor 12 (TCF12) is a known oncogene in many cancers. However, whether TCF12 can regulate malignant phenotypes and angiogenesis in osteosarcoma is not elucidated. In this study, we demonstrated increased expression of TCF12 in osteosarcoma tissues and cell lines. High TCF12 expression was associated with metastasis and poor survival rate of osteosarcoma patients. Knockdown of TCF12 reduced the proliferation, migration, and invasion of osteosarcoma cells. TCF12 was found to bind to the promoter region of sphingosine kinase 1 (SPHK1) to induce transcriptional activation of SPHK1 expression and enhance the secretion of sphingosine-1-phosphate (S1P), which eventually resulted in the malignant phenotypes of osteosarcoma cells. In addition, S1P secreted by osteosarcoma cells promoted the angiogenesis of HUVECs by targeting S1PR4 on the cell membrane to activate the STAT3 signaling pathway. These findings suggest that TCF12 may induce transcriptional activation of SPHK1 to promote the synthesis and secretion of S1P. This process likely enhances the malignant phenotypes of osteosarcoma cells and induces angiogenesis via the S1PR4/STAT3 signaling pathway.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Lisofosfolípidos , Neovascularización Patológica , Osteosarcoma , Fosfotransferasas (Aceptor de Grupo Alcohol) , Factor de Transcripción STAT3 , Transducción de Señal , Esfingosina , Humanos , Osteosarcoma/genética , Osteosarcoma/metabolismo , Osteosarcoma/patología , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Lisofosfolípidos/metabolismo , Neovascularización Patológica/metabolismo , Neovascularización Patológica/genética , Línea Celular Tumoral , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neoplasias Óseas/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Activación Transcripcional/genética , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Receptores de Lisoesfingolípidos/metabolismo , Receptores de Lisoesfingolípidos/genética , Movimiento Celular/genética , Masculino , Animales , Femenino , AngiogénesisRESUMEN
AIM: Metabolic dysfunction-associated steatohepatitis (MASH) is one of the most prevalent liver diseases and is characterized by steatosis and the accumulation of bioactive lipids. This study aims to understand the specific lipid species responsible for the progression of liver fibrosis in MASH. METHODS: Changes in bioactive lipid levels were examined in the livers of MASH mice fed a choline-deficient diet (CDD). Additionally, sphingosine kinase (SphK)1 mRNA, which generates sphingosine 1 phosphate (S1P), was examined in the livers of patients with MASH. RESULTS: CDD induced MASH and liver fibrosis were accompanied by elevated levels of S1P and increased expression of SphK1 in capillarized liver sinusoidal endothelial cells (LSECs) in mice. SphK1 mRNA also increased in the livers of patients with MASH. Treatment of primary cultured mouse hepatic stellate cells (HSCs) with S1P stimulated their activation, which was mitigated by the S1P receptor (S1PR)2 inhibitor, JTE013. The inhibition of S1PR2 or its knockout in mice suppressed liver fibrosis without reducing steatosis or hepatocellular damage. CONCLUSION: S1P level is increased in MASH livers and contributes to liver fibrosis via S1PR2.
Asunto(s)
Hígado Graso , Células Estrelladas Hepáticas , Cirrosis Hepática , Lisofosfolípidos , Fosfotransferasas (Aceptor de Grupo Alcohol) , Receptores de Esfingosina-1-Fosfato , Esfingosina , Animales , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Lisofosfolípidos/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/genética , Cirrosis Hepática/etiología , Ratones , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Humanos , Receptores de Esfingosina-1-Fosfato/metabolismo , Hígado Graso/metabolismo , Hígado Graso/patología , Masculino , Ratones Noqueados , Ratones Endogámicos C57BL , Hígado/metabolismo , Hígado/patología , Deficiencia de Colina/complicaciones , Deficiencia de Colina/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Receptores de Lisoesfingolípidos/metabolismo , Receptores de Lisoesfingolípidos/genética , Pirazoles , PiridinasRESUMEN
Sepsis is characterized as life-threatening organ dysfunction caused by a dysregulated host response to an infection. Despite numerous clinical trials that addressed this syndrome, there is still no causative treatment available to dampen its severity. Curtailing the infection at an early stage with anti-infectives is the only effective treatment regime besides intensive care. In search for additional treatment options, we recently discovered the inhibition of the sphingosine 1-phosphate (S1P) lyase and subsequent activation of the S1P receptor type 3 (S1PR3) in pre-conditioning experiments as promising targets for sepsis prevention. Here, we demonstrate that treatment of septic mice with the direct S1P lyase inhibitor C31 or the S1PR3 agonist CYM5541 in the advanced phase of sepsis resulted in a significantly increased survival rate. A single dose of each compound led to a rapid decline of sepsis severity in treated mice and coincided with decreased cytokine release and increased lung barrier function with unaltered bacterial load. The survival benefit of both compounds was completely lost in S1PR3 deficient mice. Treatment of the murine macrophage cell line J774.1 with either C31 or CYM5541 resulted in decreased protein kinase B (Akt) and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) phosphorylation without alteration of the mitogen-activated protein kinase (MAPK) p38 and p44/42 phosphorylation. Thus, activation of S1PR3 in the acute phase of sepsis by direct agonism or S1P lyase inhibition dampened Akt and JNK phosphorylation, resulting in decreased cytokine release, improved lung barrier stability, rapid decline of sepsis severity and better survival in mice.
Asunto(s)
Aldehído-Liasas , Ratones Endogámicos C57BL , Sepsis , Receptores de Esfingosina-1-Fosfato , Animales , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inhibidores , Aldehído-Liasas/antagonistas & inhibidores , Aldehído-Liasas/metabolismo , Ratones , Receptores de Lisoesfingolípidos/agonistas , Receptores de Lisoesfingolípidos/metabolismo , Masculino , Modelos Animales de Enfermedad , Línea Celular , Proteínas Proto-Oncogénicas c-akt/metabolismo , Citocinas/metabolismo , Ratones NoqueadosRESUMEN
Ocular abnormal angiogenesis and edema are featured in several ocular diseases. S1P signaling via S1P1 likely is part of the negative feedback mechanism necessary to maintain vascular health. In this study, we conducted pharmacological experiments to determine whether ASP4058, a sphingosine 1-phosphate receptor 1/5 (S1P1/5) agonist, is useful in abnormal vascular pathology in the eye. First, human retinal microvascular endothelial cells (HRMECs) were examined using vascular endothelial growth factor (VEGF)-induced cell proliferation and hyperpermeability. ASP4058 showed high affinity and inhibited VEGF-induced proliferation and hyperpermeability of HRMECs. Furthermore, S1P1 expression and localization changes were examined in the murine laser-induced choroidal neovascularization (CNV) model, a mouse model of exudative age-related macular degeneration, and the efficacy of ASP4058 was verified. In the CNV model mice, S1P1 tended to decrease in expression immediately after laser irradiation and colocalized with endothelial cells and Müller glial cells. Oral administration of ASP4058 also suppressed vascular hyperpermeability and CNV, and the effect was comparable to that of the intravitreal administration of aflibercept, an anti-VEGF drug. Next, efficacy was also examined in a retinal vein occlusion (RVO) model in which retinal vascular permeability was increased. ASP4058 dose-dependently suppressed the intraretinal edema. In addition, it suppressed the expansion of the perfusion area observed in the RVO model. ASP4058 also suppressed the production of VEGF in the eye. Collectively, ASP4058 can be a potential therapeutic agent that normalizes abnormal vascular pathology, such as age-related macular degeneration and RVO, through its direct action on endothelial cells.
Asunto(s)
Neovascularización Coroidal , Modelos Animales de Enfermedad , Animales , Humanos , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/metabolismo , Neovascularización Coroidal/patología , Ratones , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/agonistas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proliferación Celular/efectos de los fármacos , Ratones Endogámicos C57BL , Receptores de Lisoesfingolípidos/agonistas , Receptores de Lisoesfingolípidos/metabolismo , MasculinoRESUMEN
Sphingosine-1-phosphate and its receptors (S1PRs) are involved in several diseases such as auto immunity, inflammation and cardiovascular disorders. The S1P analogue fingolimod (Gilenya®) is currently in use for the treatment of relapsing multiple sclerosis. S1PRs are also promising targets for clinical molecular imaging in vivo. The organ distribution of individual S1PRs can be potentially achieved by using S1PR subtype-specific (radiolabeled) chemical probes. Here, we report our efforts on synthesis and in vivo potency determination of new ligands for the S1P receptor 3 (S1P3) based on the S1P3 antagonist TY-52156 and in validation of a potential imaging tracer in vivo using Positron Emission Tomography (PET) after 18F-labelling. A p-fluorophenyl derivative exhibited excellent S1P3 antagonist activity in vitro, good serum stability, and medium lipophilicity. In vivo biodistribution experiments using 18F-PET exhibited significant uptake in the myocardium suggesting potential applications in cardiac imaging.
Asunto(s)
Clorhidrato de Fingolimod , Tomografía de Emisión de Positrones , Receptores de Esfingosina-1-Fosfato , Clorhidrato de Fingolimod/farmacología , Lisofosfolípidos , Tomografía de Emisión de Positrones/métodos , Receptores de Lisoesfingolípidos/metabolismo , Distribución TisularRESUMEN
Sphingosine-1-phosphate (S1P) plays multiple roles in bone metabolism and regeneration. Here, we have identified a novel S1P-regulated osteoanabolic mechanism functionally connecting osteoblasts (OBs) to the highly specialized bone vasculature. We demonstrate that S1P/S1PR3 signaling in OBs stimulates vascular endothelial growth factor a (VEGFa) expression and secretion to promote bone growth in an autocrine and boost osteogenic H-type differentiation of bone marrow endothelial cells in a paracrine manner. VEGFa-neutralizing antibodies and VEGF receptor inhibition by axitinib abrogated OB growth in vitro and bone formation in male C57BL/6J in vivo following S1P stimulation and S1P lyase inhibition, respectively. Pharmacological S1PR3 inhibition and genetic S1PR3 deficiency suppressed VEGFa production, OB growth in vitro, and inhibited H-type angiogenesis and bone growth in male mice in vivo. Together with previous work on the osteoanabolic functions of S1PR2 and S1PR3, our data suggest that S1P-dependent bone regeneration employs several nonredundant positive feedback loops between OBs and the bone vasculature. The identification of this yet unappreciated aspect of osteoanabolic S1P signaling may have implications for regular bone homeostasis as well as diseases where the bone microvasculature is affected such as age-related osteopenia and posttraumatic bone regeneration.
Sphingosine-1-phosphate (S1P) is a signaling lipid that regulates bone growth and regeneration. In the present study, a novel regenerative mechanism was connected to S1P signaling within the bone. Activation of its receptor S1PR3 in bone-forming osteoblasts led to secretion of vascular endothelial growth factor a (VEGFa), the most potent vessel-stimulating factor. This stimulated the development of specialized vessels of the bone marrow, the H-type vessels, that supported overall bone regeneration. These findings foster our understanding of regular bone metabolism and suggest that S1P-based drugs may help treat diseases such as age-related osteopenia and posttraumatic bone regeneration, conditions crucially dependent on functional bone microvasculature.
Asunto(s)
Lisofosfolípidos , Receptores de Lisoesfingolípidos , Esfingosina/análogos & derivados , Factor A de Crecimiento Endotelial Vascular , Masculino , Ratones , Animales , Receptores de Lisoesfingolípidos/metabolismo , Receptores de Esfingosina-1-Fosfato , Factor A de Crecimiento Endotelial Vascular/metabolismo , Osteogénesis , Células Endoteliales/metabolismo , Ratones Endogámicos C57BL , Osteoblastos/metabolismoRESUMEN
Secretory myeloid-derived growth factor (MYDGF) exerts beneficial effects on organ repair, probably via a plasma membrane receptor; however, the identity of the expected receptor has remained elusive. In a recent study, MYDGF was reported as an agonist of the sphingosine-1-phosphate receptor 2 (S1PR2), an A-class G protein-coupled receptor that mediates the functions of the signaling lipid, sphingosine-1-phosphate (S1P). In the present study, we conducted living cell-based functional assays to test whether S1PR2 is a receptor for MYDGF. In the NanoLuc Binary Technology (NanoBiT)-based ß-arrestin recruitment assay and the cAMP-response element (CRE)-controlled NanoLuc reporter assay, S1P could efficiently activate human S1PR2 overexpressed in human embryonic kidney (HEK) 293T cells; however, recombinant human MYDGF, overexpressed either from Escherichia coli or HEK293 cells, had no detectable effect. Thus, the results demonstrated that human MYDGF is not a ligand of human S1PR2. Considering the high conservation of MYDGF and S1PR2 in evolution, MYDGF is also probably not a ligand of S1PR2 in other vertebrates.
Asunto(s)
Factor Estimulante de Colonias de Granulocitos , Receptores de Lisoesfingolípidos , Esfingosina/análogos & derivados , Animales , Humanos , Receptores de Esfingosina-1-Fosfato , Receptores de Lisoesfingolípidos/genética , Receptores de Lisoesfingolípidos/metabolismo , Ligandos , Células HEK293 , Lisofosfolípidos/farmacologíaRESUMEN
BACKGROUND: Myeloid cells (MCs) reside in the aortic intima at regions predisposed to atherosclerosis. Systemic inflammation triggers reverse transendothelial migration (RTM) of intimal MCs into the arterial blood, which orchestrates a protective immune response that clears intracellular pathogens from the arterial intima. Molecular pathways that regulate RTM remain poorly understood. S1P (sphingosine-1-phosphate) is a lipid mediator that regulates immune cell trafficking by signaling via 5 G-protein-coupled receptors (S1PRs [S1P receptors]). We investigated the role of S1P in the RTM of aortic intimal MCs. METHODS: Intravenous injection of lipopolysaccharide was used to model a systemic inflammatory stimulus that triggers RTM. CD11c+ intimal MCs in the lesser curvature of the ascending aortic arch were enumerated by en face confocal microscopy. Local gene expression was evaluated by transcriptomic analysis of microdissected intimal cells. RESULTS: In wild-type C57BL/6 mice, lipopolysaccharide induced intimal cell expression of S1pr1, S1pr3, and Sphk1 (a kinase responsible for S1P production). Pharmacological modulation of multiple S1PRs blocked lipopolysaccharide-induced RTM and modulation of S1PR1 and S1PR3 reduced RTM in an additive manner. Cre-mediated deletion of S1pr1 in MCs blocked lipopolysaccharide-induced RTM, confirming a role for myeloid-specific S1PR1 signaling. Global or hematopoietic deficiency of Sphk1 reduced plasma S1P levels, the abundance of CD11c+ MCs in the aortic intima, and blunted lipopolysaccharide-induced RTM. In contrast, plasma S1P levels, the abundance of intimal MCs, and lipopolysaccharide-induced RTM were rescued in Sphk1-/- mice transplanted with Sphk1+/+ or mixed Sphk1+/+ and Sphk1-/- bone marrow. Stimulation with lipopolysaccharide increased endothelial permeability and intimal MC exposure to circulating factors such as S1P. CONCLUSIONS: Functional and expression studies support a novel role for S1P signaling in the regulation of lipopolysaccharide-induced RTM and the homeostatic maintenance of aortic intimal MCs. Our data provide insight into how circulating plasma mediators help orchestrate intimal MC dynamics.
Asunto(s)
Receptores de Lisoesfingolípidos , Migración Transendotelial y Transepitelial , Ratones , Animales , Receptores de Lisoesfingolípidos/genética , Receptores de Lisoesfingolípidos/metabolismo , Lipopolisacáridos/toxicidad , Ratones Endogámicos C57BL , Esfingosina/metabolismo , Células Mieloides/metabolismo , Lisofosfolípidos/metabolismo , Túnica Íntima/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismoRESUMEN
High-density lipoprotein (HDL) nanoparticles promote endothelial cell (EC) function and suppress inflammation, but their utility in treating EC dysfunction has not been fully explored. Here, we describe a fusion protein named ApoA1-ApoM (A1M) consisting of apolipoprotein A1 (ApoA1), the principal structural protein of HDL that forms lipid nanoparticles, and ApoM, a chaperone for the bioactive lipid sphingosine 1-phosphate (S1P). A1M forms HDL-like particles, binds to S1P, and is signaling competent. Molecular dynamics simulations showed that the S1P-bound ApoM moiety in A1M efficiently activated EC surface receptors. Treatment of human umbilical vein ECs with A1M-S1P stimulated barrier function either alone or cooperatively with other barrier-enhancing molecules, including the stable prostacyclin analog iloprost, and suppressed cytokine-induced inflammation. A1M-S1P injection into mice during sterile inflammation suppressed neutrophil influx and inflammatory mediator secretion. Moreover, systemic A1M administration led to a sustained increase in circulating HDL-bound S1P and suppressed inflammation in a murine model of LPS-induced endotoxemia. We propose that A1M administration may enhance vascular endothelial barrier function, suppress cytokine storm, and promote resilience of the vascular endothelium.
Asunto(s)
Apolipoproteínas , Lipocalinas , Humanos , Ratones , Animales , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacología , Lipocalinas/metabolismo , Lipocalinas/farmacología , Receptores de Lisoesfingolípidos/metabolismo , Apolipoproteínas M , Inflamación , Lipoproteínas HDL/farmacología , Lipoproteínas HDL/metabolismo , Lisofosfolípidos/farmacología , Lisofosfolípidos/metabolismo , EsfingosinaRESUMEN
Physics-based simulation methods can grant atomistic insights into the molecular origin of the function of biomolecules. However, the potential of such approaches has been hindered by their low efficiency, including in the design of selective agonists where simulations of myriad protein-ligand combinations are necessary. Here, we describe an automated input-free path searching protocol that offers (within 14 d using Graphics Processing Unit servers) a minimum free energy path (MFEP) defined in high-dimension configurational space for activating sphingosine-1-phosphate receptors (S1PRs) by arbitrary ligands. The free energy distributions along the MFEP for four distinct ligands and three S1PRs reached a remarkable agreement with Bioluminescence Resonance Energy Transfer (BRET) measurements of G-protein dissociation. In particular, the revealed transition state structures pointed out toward two S1PR3 residues F263/I284, that dictate the preference of existing agonists CBP307 and BAF312 on S1PR1/5. Swapping these residues between S1PR1 and S1PR3 reversed their response to the two agonists in BRET assays. These results inspired us to design improved agonists with both strong polar head and bulky hydrophobic tail for higher selectivity on S1PR1. Through merely three in silico iterations, our tool predicted a unique compound scaffold. BRET assays confirmed that both chiral forms activate S1PR1 at nanomolar concentration, 1 to 2 orders of magnitude less than those for S1PR3/5. Collectively, these results signify the promise of our approach in fine agonist design for G-protein-coupled receptors.