Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.724
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(42): e2403217121, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39378089

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a viral G protein-coupled receptor, KSHV-GPCR, that contributes to KSHV immune evasion and pathogenesis of Kaposi's sarcoma. KSHV-GPCR shares a high similarity with CXC chemokine receptors CXCR2 and can be activated by selected chemokine ligands. Like other herpesvirus-encoded GPCRs, KSHV-GPCR is characterized by its constitutive activity by coupling to various G proteins. We investigated the structural basis of ligand-dependent and constitutive activation of KSHV-GPCR, obtaining high-resolution cryo-EM structures of KSHV-GPCR-Gi complexes with and without the bound CXCL1 chemokine. Analysis of the apo-KSHV-GPCR-Gi structure (2.81 Å) unraveled the involvement of extracellular loop 2 in constitutive activation of the receptor. In comparison, the CXCL1-bound KSHV-GPCR-Gi structure (3.01 Å) showed a two-site binding mode and provided detailed information of CXCL1 binding to a chemokine receptor. The dual activation mechanism employed by KSHV-GPCR represents an evolutionary adaptation for immune evasion and contributes to the pathogenesis of Kaposi's sarcoma. Together with results from functional assays that confirmed the structural models, these findings may help to develop therapeutic strategies for KSHV infection.


Asunto(s)
Quimiocina CXCL1 , Herpesvirus Humano 8 , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/genética , Quimiocina CXCL1/metabolismo , Humanos , Proteínas Virales/metabolismo , Proteínas Virales/química , Microscopía por Crioelectrón , Unión Proteica , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Modelos Moleculares , Sarcoma de Kaposi/virología , Sarcoma de Kaposi/metabolismo , Receptores de Quimiocina
2.
Am J Obstet Gynecol ; 231(5): 539.e1-539.e13, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39442996

RESUMEN

BACKGROUND: Leukocytes are induced to migrate into the uterus at parturition, releasing cytokines and chemokines that activate it for delivery. A specific chemotactic signal is required for these actions, and published evidence suggests that it comes from the human fetal membranes and has a time-dependent component (ie, cells obtained at term in labor migrate more than cells obtained at term not yet in labor). The hypothesis that the fetal membrane chemoattractants activate the leukocytes to become responsive for migration was tested. OBJECTIVE: This study aimed to: (1) examine the changes in leukocyte migration-responsiveness longitudinally from the late third trimester, to in labor, to 3 days postpartum; (2) explore the specific week-to-week changes in migration before delivery; (3) define the timing of chemokine receptor expression patterns in leukocytes relative to migration and the changes in cytokine and chemokine concentrations in maternal serum; (4) examine the ability of term fetal membrane-conditioned medium and term maternal serum to increase cell responsiveness; and (5) test the potential of the leukocyte migration assay to predict delivery within 1 week. STUDY DESIGN: Leukocyte migration in response to a chemoattractive extract of term human fetal membranes was studied using a modified Boyden chamber. Flow cytometry assessed migrated cell phenotypes. The relationship between the expression of chemokine receptors and migration was tested using quantitative polymerase chain reaction, the bioassay, and regression analyses. Cytokines and chemokines in maternal serum were quantified using multiplex analysis. Conditioned medium from fetal membrane explants and maternal serum were evaluated for their abilities to enhance leukocyte migration using the bioassay. The ability of the bioassay to predict term delivery was assessed using receiver-operating characteristic curve and cost-curve analysis. RESULTS: The number of leukocytes that migrated at term delivery was increased relative to the late third trimester, followed by a significant fall in numbers that migrated at 3 days postpartum (P=.002). The largest increase in migrated cells occurred 1 to 2 weeks before delivery. The messenger RNA abundance of several chemokine receptors increased in peripheral leukocytes at term in labor relative to the third trimester, and this correlated with an increase in migrated cells in 5 of 6 cases (R=0.589 to 0.897; P<.03). The concentrations of several chemokines and cytokines in maternal serum increased with labor onset. Fetal membrane explant-conditioned medium and maternal serum obtained at term labor increased the responsiveness of leukocytes to fetal membrane chemoattractive extract. The bioassay was demonstrated to predict delivery within 7 days with excellent performance characteristics using a cohort prevalence of 71.7% (positive predictive value=96.1%; negative predictive value=58.5%; sensitivity=74.2%; specificity=92.3%; positive likelihood ratio=9.25; and negative likelihood ratio=0.28). A single determination was validated to have a high degree of confidence. CONCLUSION: Term human fetal membranes release chemoattractants near the end of pregnancy that increase in ability to activate and attract an increasing number of leukocytes as gestation advances.


Asunto(s)
Membranas Extraembrionarias , Trabajo de Parto , Leucocitos , Humanos , Femenino , Embarazo , Leucocitos/metabolismo , Membranas Extraembrionarias/metabolismo , Citocinas/metabolismo , Tercer Trimestre del Embarazo , Movimiento Celular , Receptores de Quimiocina/metabolismo , Adulto , Quimiocinas/metabolismo , Quimiocinas/sangre , Nacimiento a Término , Quimiotaxis de Leucocito
3.
Int Rev Cell Mol Biol ; 388: 124-161, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39260935

RESUMEN

Chemokines and their receptors are a family of chemotactic cytokines with important functions in the immune response in both health and disease. Their known physiological roles such as the regulation of leukocyte trafficking and the development of immune organs generated great interest when it was found that they were also related to the control of early and late inflammatory stages in the tumor microenvironment. In fact, in breast cancer, an imbalance in the synthesis of chemokines and/or in the expression of their receptors was attributed to be involved in the regulation of disease progression, including invasion and metastasis. Research in this area is progressing rapidly and the development of new agents based on chemokine and chemokine receptor antagonists are emerging as attractive alternative strategies. This chapter provides a snapshot of the different functions reported for chemokines and their receptors with respect to the potential to regulate breast cancer progression.


Asunto(s)
Neoplasias de la Mama , Progresión de la Enfermedad , Metástasis de la Neoplasia , Receptores de Quimiocina , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , Ligandos , Receptores de Quimiocina/metabolismo , Animales , Quimiocinas/metabolismo
4.
Int Rev Cell Mol Biol ; 388: 53-94, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39260938

RESUMEN

Chemokine receptors play diverse roles in the immune response against pathogens by recruiting innate and adaptive immune cells to sites of infection. However, their involvement could also be detrimental, causing tissue damage and exacerbating respiratory diseases by triggering histological alterations such as fibrosis and remodeling. This chapter reviews the role of chemokine receptors in the immune defense against SARS-CoV-2 infection. In COVID-19, CXCR3 is expressed mainly in T cells, and its upregulation is related to an increase in SARS-CoV-2-specific antibodies but also to COVID-19 severity. CCR5 is a key player in T-cell recruitment, and its suppression leads to reduced inflammation and viremia levels. Conversely, CXCR6 is implicated in the aberrant migration of memory T cells within airways. On the other hand, increased CCR4+ cells in the blood and decreased CCR4+ cells in lung cells are associated with severe COVID-19. Additionally, CCR2 is associated with an increase in macrophage recruitment to lung tissues. Elevated levels of CXCR1 and CXCR2, which are predominantly expressed in neutrophils, are associated with the severity of the disease, and finally, the expression of CX3CR1 in cytotoxic T lymphocytes affects the retention of these cells in lung tissues, thereby impacting the severity of COVID-19. Despite the efforts of many clinical trials to find effective therapies for COVID-19 using chemokine receptor inhibitors, no conclusive results have been found due to the small number of patients, redundancy, and co-expression of chemokine receptors by immune cells, which explains the difficulty in finding a single therapeutic target or effective treatment.


Asunto(s)
COVID-19 , Receptores de Quimiocina , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/metabolismo , COVID-19/patología , SARS-CoV-2/inmunología , Receptores de Quimiocina/metabolismo
5.
Int Rev Cell Mol Biol ; 388: 1-19, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39260934

RESUMEN

Chemokine receptors are a complex superfamily of surface G protein-coupled receptors present mostly in leukocytes. In this chapter, we review the presence and functions of chemokine receptors in the immune cells of the primary and secondary lymphoid organs. Those include bone marrow, thymus, spleen, lymph nodes, and Peyer's patches as the main components of the gut-associated lymphoid tissue. There are general groups of chemokine receptors: conventional and atypical. We will mostly cover the role of conventional chemokine receptors, which are divided into four classes (CC, CXC, CX3C, and XC). Some relevant members are CXCR4, CXCR5, CCR4 and CCR7. For example, CXCR4 is a key chemokine receptor in the bone marrow controlling from the homing of progenitor cells into the bone marrow, the development of B cells, to the homing of long-lived plasma cells to this primary lymphoid organ. CCR7 and CCR4 are two of the main players in the thymus. CCR7 along with CCR9 control the traffic of thymic seed progenitors into the thymus, while CCR4 and CCR7 are critical for the entry of thymocytes into the medulla and as controllers of the central tolerance in the thymus. CXCR4 and CXCR5 have major roles in the spleen, guiding the maturation and class-switching of B cells in the different areas of the germinal center. In the T-cell zone, CCR7 guides the differentiation of naïve T cells. CCR7 also controls and directs the entry of T cells, B cells, and dendritic cells into secondary lymphoid tissues, including the spleen and lymph nodes. As new technologies emerge, techniques such as high dimensional spectral flow cytometry or single-cell sequencing allow a more comprehensive knowledge of the chemokine receptor network and their ligands, as well as the discovery of new interactions mediating unknown and overlooked mechanisms in health and disease.


Asunto(s)
Tejido Linfoide , Receptores de Quimiocina , Humanos , Animales , Receptores de Quimiocina/metabolismo , Tejido Linfoide/metabolismo , Timo/metabolismo , Timo/citología
6.
Int Rev Cell Mol Biol ; 388: 20-52, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39260937

RESUMEN

Chemokine receptors are essential for the immune response in the oral and gut mucosa. The gastrointestinal mucosa is characterized by the presence of immune populations because it is susceptible to inflammatory and infectious diseases, necessitating immune surveillance. Chemokine receptors are expressed on immune cells and play a role in gastrointestinal tissue-homing, although other non-immune cells also express them for various biological functions. CCR9, CXCR3 and CXCR6 play an important role in the T cell response in inflammatory and neoplastic conditions of the gastrointestinal mucosa. However, CXCR6 could also be found in gastric cancer cells, highlighting the different roles of chemokine receptors in different pathologies. On the other hand, CCR4 and CCR8 are critical for Treg migration in gastrointestinal tissues, correlating with poor prognosis in mucosal cancers. Other chemokine receptors are also important in promoting myeloid infiltration with context-dependent roles. Further, CXCR4 and CXCR7 are also present in gastrointestinal tumor cells and are known to stimulate proliferation, migration, and invasion into other tissues, among other pro-tumorigenic functions. Determining the processes underlying mucosal immunity and creating tailored therapeutic approaches for gastrointestinal diseases requires an understanding of the complex interactions that occur between chemokine receptors and their ligands in these mucosal tissues.


Asunto(s)
Receptores de Quimiocina , Humanos , Receptores de Quimiocina/metabolismo , Animales , Mucosa Intestinal/metabolismo , Mucosa Intestinal/inmunología , Mucosa Gástrica/metabolismo , Mucosa Gástrica/inmunología
7.
Int Rev Cell Mol Biol ; 388: 95-123, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39260939

RESUMEN

Organ transplantation increases life expectancy and improves the quality of life of patients experiencing specific conditions such as terminal organ failure. Despite matching efforts between donor and recipient, immune activation can interfere with allograft survival after transplantation if immunosuppression is not used. With both innate and adaptive responses, this is a complicated immunological process. This can lead to organ rejection, or graft-versus-host disease (GVHD), depending on the origin of the immune response. Inflammatory factors, such as chemokine receptors and their ligands, are involved in a wide variety of immunological processes, including modulating transplant rejection or GVHD, therefore, chemokine biology has been a major focus of transplantation studies. These molecules attract circulating peripheral leukocytes to infiltrate into the allograft and facilitate dendritic and T cell trafficking between lymph nodes and the graft during the allogeneic response. In this chapter, we will review the most relevant chemokine receptors such as CXCR3 and CCR5, among others, and their ligands involved in the process of allograft rejection for solid organ transplantation and graft-versus-host disease in the context of hematopoietic cell transplantation.


Asunto(s)
Rechazo de Injerto , Enfermedad Injerto contra Huésped , Receptores de Quimiocina , Humanos , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/metabolismo , Rechazo de Injerto/inmunología , Animales , Receptores de Quimiocina/metabolismo
8.
Sci Signal ; 17(852): eads7460, 2024 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-39226375

RESUMEN

Negatively charged lipid bilayers enhance the interaction between a chemokine and an atypical chemokine receptor.


Asunto(s)
Membrana Dobles de Lípidos , Humanos , Membrana Dobles de Lípidos/metabolismo , Membrana Dobles de Lípidos/química , Quimiocinas/metabolismo , Receptores de Quimiocina/metabolismo
9.
Front Immunol ; 15: 1456405, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39206194

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common primary neoplasms of the liver and one of the most common solid tumors in the world. Its global incidence is increasing and it has become the third leading cause of cancer-related deaths. There is growing evidence that chemokines play an important role in the tumor microenvironment, regulating the migration and localization of immune cells in tissues and are critical for the function of the immune system. This review comprehensively analyses the expression and activity of chemokines in the TME of HCC and describes their interrelationship with hepatocarcinogenesis and progression. Special attention is given to the role of chemokine-chemokine receptors in the regulation of immune cell accumulation in the TME. Therapeutic strategies targeting tumor-promoting chemokines or the induction/release of beneficial chemokines are reviewed, highlighting the potential value of natural products in modulating chemokines and their receptors in the treatment of HCC. The in-depth discussion in this paper provides a theoretical basis for the treatment of HCC. It is an important reference for new drug development and clinical research.


Asunto(s)
Productos Biológicos , Carcinoma Hepatocelular , Quimiocinas , Neoplasias Hepáticas , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Microambiente Tumoral/inmunología , Quimiocinas/metabolismo , Productos Biológicos/uso terapéutico , Productos Biológicos/farmacología , Animales , Receptores de Quimiocina/metabolismo , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Transducción de Señal
10.
Sci Signal ; 17(851): eadn8727, 2024 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190708

RESUMEN

Establishing a nonproductive, quiescent infection within monocytes is essential for the spread of human cytomegalovirus (HCMV). We investigated the mechanisms through which HCMV establishes a quiescent infection in monocytes. US28 is a virally encoded G protein-coupled receptor (GPCR) that is essential for silent infections within cells of the myeloid lineage. We found that preformed US28 was rapidly delivered to monocytes by HCMV viral particles, whereas the de novo synthesis of US28 was delayed for several days. A recombinant mutant virus lacking US28 (US28Δ) was unable to establish a quiescent infection, resulting in a fully productive lytic infection able to produce progeny virus. Infection with US28Δ HCMV resulted in the phosphorylation of the serine and threonine kinase Akt at Ser473 and Thr308, in contrast with the phosphorylation of Akt only at Ser473 after WT viral infection. Inhibiting the dual phosphorylation of Akt prevented the lytic replication of US28Δ, and ectopic expression of a constitutively phosphorylated Akt variant triggered lytic replication of wild-type HCMV. Mechanistically, we found that US28 was necessary and sufficient to attenuate epidermal growth factor receptor (EGFR) signaling induced during the entry of WT virus, which led to the site-specific phosphorylation of Akt at Ser473. Thus, particle-delivered US28 fine-tunes Akt activity by limiting HCMV-induced EGFR activation during viral entry, enabling quiescent infection in monocytes.


Asunto(s)
Citomegalovirus , Receptores ErbB , Monocitos , Proteínas Proto-Oncogénicas c-akt , Proteínas Virales , Replicación Viral , Citomegalovirus/fisiología , Citomegalovirus/genética , Citomegalovirus/metabolismo , Humanos , Monocitos/virología , Monocitos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Fosforilación , Proteínas Virales/metabolismo , Proteínas Virales/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Virión/metabolismo , Virión/genética , Receptores de Quimiocina/metabolismo , Receptores de Quimiocina/genética , Infecciones por Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/virología , Infecciones por Citomegalovirus/genética , Transducción de Señal
11.
Nat Commun ; 15(1): 7097, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154007

RESUMEN

Converging evidence indicates that extra-embryonic yolk sac is the source of both macrophages and endothelial cells in adult mouse tissues. Prevailing views are that these embryonically derived cells are maintained after birth by proliferative self-renewal in their differentiated states. Here we identify clonogenic endothelial-macrophage (EndoMac) progenitor cells in the adventitia of embryonic and postnatal mouse aorta, that are independent of Flt3-mediated bone marrow hematopoiesis and derive from an early embryonic CX3CR1+ and CSF1R+ source. These bipotent progenitors are proliferative and vasculogenic, contributing to adventitial neovascularization and formation of perfused blood vessels after transfer into ischemic tissue. We establish a regulatory role for angiotensin II, which enhances their clonogenic and differentiation properties and rapidly stimulates their proliferative expansion in vivo. Our findings demonstrate that embryonically derived EndoMac progenitors participate in local vasculogenic responses in the aortic wall by contributing to the expansion of endothelial cells and macrophages postnatally.


Asunto(s)
Aorta , Macrófagos , Animales , Macrófagos/citología , Macrófagos/metabolismo , Aorta/citología , Ratones , Receptor 1 de Quimiocinas CX3C/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Células Endoteliales/citología , Células Endoteliales/metabolismo , Diferenciación Celular , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Angiotensina II , Proliferación Celular , Células Madre/citología , Células Madre/metabolismo , Ratones Endogámicos C57BL , Femenino , Neovascularización Fisiológica , Receptores de Quimiocina/metabolismo , Receptores de Quimiocina/genética , Masculino , Hematopoyesis/fisiología , Tirosina Quinasa 3 Similar a fms
12.
Immunol Cell Biol ; 102(9): 817-829, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39014534

RESUMEN

Adipokines play essential roles in regulating a range of biological processes, but growing evidence indicates that they are also fundamental in immunological mechanisms and, primarily, inflammatory responses. Adipokines mediate their actions through specific receptors. However, although adipokine receptors are widely distributed in many cell and tissue types, limited data are available on their expression in mast cells (MCs) and, consequently, adipokine's significance in the modulation of MC activity within the tissues. In this study, we demonstrate that rat peritoneal MCs constitutively express the leptin receptor (i.e. LEPR), adiponectin receptors (i.e. ADIPOR1 and ADIPOR2) and the chemerin receptor (i.e. CMKLR1). We also found that LEPR, ADIPOR1, ADIPOR2 and CMKLR1 expression in MCs changes in response to stimulation by their specific ligands and some cytokines with potent proinflammatory properties. Furthermore, the involvement of intracellular signaling molecules in leptin-, adiponectin- and chemerin-induced MC response was analyzed. Overall, our findings suggest that adipokines leptin, adiponectin and chemerin can significantly affect the activity of MCs in various processes, especially during inflammation. These observations may contribute significantly to understanding the relationship between adipokines, immune mechanisms and diseases or conditions with an inflammatory component.


Asunto(s)
Citocinas , Leptina , Mastocitos , Animales , Mastocitos/metabolismo , Mastocitos/inmunología , Citocinas/metabolismo , Ratas , Ligandos , Leptina/metabolismo , Masculino , Receptores de Quimiocina/metabolismo , Quimiocinas/metabolismo , Adiponectina/metabolismo , Receptores de Adiponectina/metabolismo , Receptores de Leptina/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Receptores de Adipoquina/metabolismo , Transducción de Señal , Mediadores de Inflamación/metabolismo , Adipoquinas/metabolismo , Células Cultivadas
13.
Eur J Neurosci ; 60(5): 4830-4842, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39044301

RESUMEN

Chemerin is an adipokine that contributes to metabolism regulation. Nucleus tractus solitarius (NTS) is the first relay station in the brain for accepting various visceral afferent activities for regulating cardiovascular activity. However, the roles of chemerin in the NTS in regulating sympathetic activity and blood pressure are almost unknown. This study aimed to determine the role and potential mechanism of chemerin in the NTS in modulating sympathetic outflow and blood pressure. Bilateral NTS microinjections were performed in anaesthetized adult male Sprague-Dawley rats. Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) were continuously recorded. Chemerin and its receptor chemokine-like receptor 1 (CMKLR1) were highly expressed in caudal NTS (cNTS). Microinjection of chemerin-9 to the cNTS increased RSNA, MAP and HR, which were prevented by CMKLR1 antagonist α-NETA, superoxide scavenger tempol or N-acetyl cysteine, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors diphenyleneiodonium or apocynin. Chemerin-9 increased superoxide production and NADPH oxidase activity in the cNTS. The increased superoxide production induced by chemerin-9 was inhibited by α-NETA. The effects of cNTS microinjection of chemerin-9 on the RSNA, MAP and HR were attenuated by the pretreatment with paraventricular nucleus (PVN) microinjection of NMDA receptor antagonist MK-801 rather than AMPA/kainate receptor antagonist CNQX. These results indicate that chemerin-9 in the NTS increases sympathetic outflow, blood pressure and HR via CMKLR1-mediated NADPH oxidase activation and subsequent superoxide production in anaesthetized normotensive rats. Glutamatergic inputs in the PVN are needed for the chemerin-9-induced responses.


Asunto(s)
Presión Sanguínea , Quimiocinas , Ratas Sprague-Dawley , Núcleo Solitario , Sistema Nervioso Simpático , Animales , Núcleo Solitario/efectos de los fármacos , Núcleo Solitario/fisiología , Núcleo Solitario/metabolismo , Masculino , Quimiocinas/metabolismo , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Sistema Nervioso Simpático/fisiología , Sistema Nervioso Simpático/efectos de los fármacos , Ratas , Receptores de Quimiocina/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Péptidos y Proteínas de Señalización Intercelular/farmacología , Péptidos y Proteínas de Señalización Intercelular/administración & dosificación , NADPH Oxidasas/metabolismo , Superóxidos/metabolismo
14.
Poult Sci ; 103(9): 103997, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002372

RESUMEN

Embryonic mortality is a significant problem in the commercial duck industry worldwide. Therefore, identification of new biomarkers for duck embryo development is necessary. In the chicken (order Galliformes), we previously showed that chemerin is a hormone locally produced by the reproductive tract in hens, particularly in the magnum area, leading to its accumulation in the egg white and within the embryo annexes during embryonic development. We therefore hypothesized that the chemerin concentration in egg white could be a biomarker of egg performance and reproductive parameters in Pekin ducks (order Anseriformes). Thus, we collected eggs from Pekin ducks over a 5-d period at three stages of the laying period (before the laying peak, after the laying peak, and at the end of the laying period) to measure the chemerin concentrations in egg white by enzyme-linked immunosorbent assay. The chemerin concentration in egg white decreased during the laying period and was not associated with reproductive parameters. We found negative correlations between the chemerin level in egg white and the albumen weight. Reverse-transcriptase quantitative polymerase chain reaction showed that chemerin and its three receptors CMKLR1, GPR1, and CCRL2 were expressed in the reproductive tract and within allantoic and amniotic annexes during embryo development. Chemerin concentrations strongly increased in amniotic fluid on embryonic day 16 (ED16) when the egg white was transferred into the amniotic sac. Finally, chemerin inhibition in egg white by in ovo injections of anti-chemerin antibodies (0.01, 0.1, and 1 µg) increased the embryo mortality rate. These data demonstrate the important role of the chemerin system during egg formation and embryo development in Pekin ducks, suggesting their potential use as biomarkers for determining the quality of poultry eggs and embryo development.


Asunto(s)
Proteínas Aviares , Quimiocinas , Patos , Desarrollo Embrionario , Animales , Patos/embriología , Patos/metabolismo , Patos/crecimiento & desarrollo , Quimiocinas/metabolismo , Quimiocinas/genética , Femenino , Proteínas Aviares/metabolismo , Proteínas Aviares/genética , Clara de Huevo/química , Receptores de Quimiocina/metabolismo , Receptores de Quimiocina/genética , Biomarcadores/metabolismo
15.
Sheng Li Xue Bao ; 76(3): 429-437, 2024 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-38939937

RESUMEN

As a multifunctional adipokine, chemerin plays a crucial role in various pathophysiological processes through endocrine and paracrine manner. It can bind to three known receptors (ChemR23, GPR1 and CCRL2) and participate in energy metabolism, glucose and lipid metabolism, and inflammation, especially in metabolic diseases. Polycystic ovary syndrome (PCOS) is one of the most common endocrine diseases, which seriously affects the normal life of women of childbearing age. Patients with PCOS have significantly increased serum levels of chemerin and high expression of chemerin in their ovaries. More and more studies have shown that chemerin is involved in the occurrence and development of PCOS by affecting obesity, insulin resistance, hyperandrogenism, oxidative stress and inflammatory response. This article mainly reviews the production, subtypes, function and receptors of chemerin protein, summarizes and discusses the research status of chemerin protein in PCOS from the perspectives of metabolism, reproduction and inflammation, and provides theoretical basis and reference for the clinical diagnosis and treatment of PCOS.


Asunto(s)
Quimiocinas , Péptidos y Proteínas de Señalización Intercelular , Síndrome del Ovario Poliquístico , Síndrome del Ovario Poliquístico/metabolismo , Humanos , Quimiocinas/metabolismo , Femenino , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Receptores de Quimiocina/metabolismo , Resistencia a la Insulina , Animales , Receptores Acoplados a Proteínas G/metabolismo , Factores Quimiotácticos/metabolismo
16.
Biochem Soc Trans ; 52(3): 1011-1024, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38856028

RESUMEN

Chemokine receptors are integral to the immune system and prime targets in drug discovery that have undergone extensive structural elucidation in recent years. We outline a timeline of these structural achievements, discuss the intracellular negative allosteric modulation of chemokine receptors, analyze the mechanisms of orthosteric receptor activation, and report on the emerging concept of biased signaling. Additionally, we highlight differences of G-protein binding among chemokine receptors. Intracellular allosteric modulators in chemokine receptors interact with a conserved motif within transmembrane helix 7 and helix 8 and exhibit a two-fold inactivation mechanism that can be harnessed for drug-discovery efforts. Chemokine recognition is a multi-step process traditionally explained by a two-site model within chemokine recognition site 1 (CRS1) and CRS2. Recent structural studies have extended our understanding of this complex mechanism with the identification of CRS1.5 and CRS3. CRS3 is implicated in determining ligand specificity and surrounds the chemokine by almost 180°. Within CRS3 we identified the extracellular loop 2 residue 45.51 as a key interaction mediator for chemokine binding. Y2917.43 on the other hand was shown in CCR1 to be a key determinant of signaling bias which, along with specific chemokine-dependent phosphorylation ensembles at the G-protein coupled receptors (GPCR's) C-terminus, seems to play a pivotal role in determining the direction of signal bias in GPCRs.


Asunto(s)
Receptores de Quimiocina , Transducción de Señal , Receptores de Quimiocina/metabolismo , Receptores de Quimiocina/química , Humanos , Quimiocinas/metabolismo , Quimiocinas/química , Unión Proteica , Regulación Alostérica , Modelos Moleculares , Animales , Sitios de Unión , Conformación Proteica , Ligandos
17.
Nucl Med Biol ; 134-135: 108912, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38691942

RESUMEN

Chemokine receptors are important components of cellular signaling and play a critical role in directing leukocytes during inflammatory reactions. Their importance extends to numerous pathological processes, including tumor differentiation, angiogenesis, metastasis, and associations with multiple inflammatory disorders. The necessity to monitor the in vivo interactions of cellular chemokine receptors has been driven the recent development of novel positron emission tomography (PET) imaging agents. This imaging modality provides non-invasive localization and quantitation of these receptors that cannot be provided through blood or tissue-based assays. Herein, we provide a review of PET imaging of the chemokine receptors that have been imaged to date, namely CXCR3, CXCR4, CCR2, CCR5, and CMKLR1. The quantification of these receptors can aid in understanding various diseases, including cancer, atherosclerosis, idiopathic pulmonary fibrosis, and acute respiratory distress syndrome. The development of specific radiotracers targeting these receptors will be discussed, including promising results for disease diagnosis and management. However, challenges persist in fully translating these imaging advancements into practical therapeutic applications. Given the success of CXCR4 PET imaging to date, future research should focus on clinical translation of these approaches to understand their role in the management of a wide variety of diseases.


Asunto(s)
Tomografía de Emisión de Positrones , Receptores de Quimiocina , Humanos , Tomografía de Emisión de Positrones/métodos , Animales , Receptores de Quimiocina/metabolismo
18.
Mech Ageing Dev ; 220: 111944, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38782074

RESUMEN

Age-related inflammation or inflammaging is a critical deciding factor of physiological homeostasis during aging. Cardiovascular diseases (CVDs) are exquisitely associated with aging and inflammation and are one of the leading causes of high mortality in the elderly population. Inflammaging comprises dysregulation of crosstalk between the vascular and cardiac tissues that deteriorates the vasculature network leading to development of atherosclerosis and atherosclerotic-associated CVDs in elderly populations. Leukocyte differentiation, migration and recruitment holds a crucial position in both inflammaging and atherosclerotic CVDs through relaying the activity of an intricate network of inflammation-associated protein-protein interactions. Among these interactions, small immunoproteins such as chemokines play a major role in the progression of inflammaging and atherosclerosis. Chemokines are actively involved in lymphocyte migration and severe inflammatory response at the site of injury. They relay their functions via chemokine-G protein-coupled receptors-glycosaminoglycan signaling axis and is a principal part for the detection of age-related atherosclerosis and related CVDs. This review focuses on highlighting the detailed intricacies of the effects of chemokine-receptor interaction and chemokine oligomerization on lymphocyte recruitment and its evident role in clinical manifestations of atherosclerosis and related CVDs. Further, the role of chemokine mediated signaling for formulating next-generation therapeutics against atherosclerosis has also been discussed.


Asunto(s)
Envejecimiento , Aterosclerosis , Quimiocinas , Inflamación , Humanos , Aterosclerosis/metabolismo , Aterosclerosis/inmunología , Envejecimiento/metabolismo , Envejecimiento/inmunología , Inflamación/metabolismo , Inflamación/inmunología , Quimiocinas/metabolismo , Animales , Transducción de Señal , Receptores de Quimiocina/metabolismo
19.
Nat Rev Immunol ; 24(10): 753-769, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38714818

RESUMEN

Leukocyte migration is a fundamental component of innate and adaptive immune responses as it governs the recruitment and localization of these motile cells, which is crucial for immune cell priming, effector functions, memory responses and immune regulation. This complex cellular trafficking system is controlled to a large extent via highly regulated production of secreted chemokines and the restricted expression of their membrane-tethered G-protein-coupled receptors. The activity of chemokines and their receptors is also regulated by a subfamily of molecules known as atypical chemokine receptors (ACKRs), which are chemokine receptor-like molecules that do not couple to the classical signalling pathways that promote cell migration in response to chemokine ligation. There has been a great deal of progress in understanding the biology of these receptors and their functions in the immune system in the past decade. Here, we describe the contribution of the various ACKRs to innate and adaptive immune responses, focussing specifically on recent progress. This includes recent findings that have defined the role for ACKRs in sculpting extracellular chemokine gradients, findings that broaden the spectrum of chemokine ligands recognized by these receptors, candidate new additions to ACKR family, and our increasing understanding of the role of these receptors in shaping the migration of innate and adaptive immune cells.


Asunto(s)
Inmunidad Adaptativa , Inmunidad Innata , Receptores de Quimiocina , Humanos , Animales , Receptores de Quimiocina/inmunología , Receptores de Quimiocina/metabolismo , Inmunidad Innata/inmunología , Inmunidad Adaptativa/inmunología , Quimiocinas/inmunología , Quimiocinas/metabolismo , Transducción de Señal/inmunología , Movimiento Celular/inmunología , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Leucocitos/inmunología , Leucocitos/metabolismo
20.
Life Sci Alliance ; 7(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38782603

RESUMEN

It is known that stress influences immune cell function. The underlying molecular mechanisms are unclear. We recently reported that many chemokine receptors (CRs) heteromerize with α1-adrenoceptors (α1-ARs) through which CRs are regulated. Here, we show that arginine vasopressin receptor 1A (AVPR1A) heteromerizes with all human CRs, except chemokine (C-X-C motif) receptor (CXCR)1, in recombinant systems and that such heteromers are detectable in THP-1 cells and human monocytes. We demonstrate that ligand-free AVPR1A differentially regulates the efficacy of CR partners to mediate chemotaxis and that AVPR1A ligands disrupt AVPR1A:CR heteromers, which enhances chemokine (C-C motif) receptor (CCR)1-mediated chemotaxis and inhibits CCR2-, CCR8-, and CXCR4-mediated chemotaxis. Using bioluminescence resonance energy transfer to monitor G protein activation and CRISPR/Cas9 gene-edited THP-1 cells lacking AVPR1A or α1B-AR, we show that CRs that share the propensity to heteromerize with α1B/D-ARs and AVPR1A exist and function within interdependent hetero-oligomeric complexes through which the efficacy of CRs to mediate chemotaxis is controlled. Our findings suggest that hetero-oligomers composed of CRs, α1B/D-ARs, and AVPR1A may enable stress hormones to regulate immune cell trafficking.


Asunto(s)
Quimiotaxis , Monocitos , Receptores de Quimiocina , Receptores de Vasopresinas , Humanos , Monocitos/metabolismo , Receptores de Quimiocina/metabolismo , Receptores de Quimiocina/genética , Receptores de Vasopresinas/metabolismo , Receptores de Vasopresinas/genética , Células THP-1 , Multimerización de Proteína , Células HEK293 , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Sistemas CRISPR-Cas , Transducción de Señal , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos alfa 1/genética , Ligandos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...