Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.715
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38673909

RESUMEN

Recruitment and accumulation of reactive astrocytes around senile plaques are common pathological features of Alzheimer's disease (AD), with unclear mechanisms. Chemerin, an adipokine implicated in neuroinflammation, acts through its receptor, chemokine-like receptor 1 (CMKLR1), which also functions as a receptor for amyloid ß (Aß). The impact of the chemerin/CMKLR1 axis on astrocyte migration towards Aß plaques is unknown. Here we investigated the effect of CMKLR1 on astrocyte migration around Aß deposition in APP/PS1 mice with Cmklr1 knockout (APP/PS1-Cmklr1-/-). CMKLR1-expressed astrocytes were upregulated in the cortices and hippocampi of 9-month-old APP/PS1 mice. Chemerin mainly co-localized with neurons, and its expression was reduced in the brains of APP/PS1 mice, compared to WT mice. CMKLR1 deficiency decreased astrocyte colocalization with Aß plaques in APP/PS1-Cmklr1-/- mice, compared to APP/PS1 mice. Activation of the chemerin/CMKLR1 axis promoted the migration of primary cultured astrocytes and U251 cells, and reduced astrocyte clustering induced by Aß42. Mechanistic studies revealed that chemerin/CMKLR1 activation induced STING phosphorylation. Deletion of STING attenuated the promotion of the chemerin/CMKLR1 axis relative to astrocyte migration and abolished the inhibitory effect of chemerin on Aß42-induced astrocyte clustering. These findings suggest the involvement of the chemerin/CMKLR1/STING pathway in the regulation of astrocyte migration and recruitment to Aß plaques/Aß42.


Asunto(s)
Enfermedad de Alzheimer , Astrocitos , Quimiocinas , Péptidos y Proteínas de Señalización Intercelular , Placa Amiloide , Receptores de Quimiocina , Animales , Astrocitos/metabolismo , Quimiocinas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Receptores de Quimiocina/metabolismo , Receptores de Quimiocina/genética , Placa Amiloide/metabolismo , Placa Amiloide/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Humanos , Péptidos beta-Amiloides/metabolismo , Ratones Noqueados , Movimiento Celular , Transducción de Señal , Ratones Transgénicos , Ratones Endogámicos C57BL
2.
Infect Immun ; 92(5): e0000624, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38629806

RESUMEN

Enterococci are common commensal bacteria that colonize the gastrointestinal tracts of most mammals, including humans. Importantly, these bacteria are one of the leading causes of nosocomial infections. This study examined the role of colonic macrophages in facilitating Enterococcus faecalis infections in mice. We determined that depletion of colonic phagocytes resulted in the reduction of E. faecalis dissemination to the gut-draining mesenteric lymph nodes. Furthermore, we established that trafficking of monocyte-derived CX3CR1-expressing macrophages contributed to E. faecalis dissemination in a manner that was not reliant on CCR7, the conventional receptor involved in lymphatic migration. Finally, we showed that E. faecalis mutants with impaired intracellular survival exhibited reduced dissemination, suggesting that E. faecalis can exploit host immune cell migration to disseminate systemically and cause disease. Our findings indicate that modulation of macrophage trafficking in the context of antibiotic therapy could serve as a novel approach for preventing or treating opportunistic infections by disseminating enteric pathobionts like E. faecalis.


Asunto(s)
Receptor 1 de Quimiocinas CX3C , Colon , Enterococcus faecalis , Macrófagos , Receptores CCR2 , Receptores de Quimiocina , Animales , Receptor 1 de Quimiocinas CX3C/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Macrófagos/microbiología , Macrófagos/inmunología , Ratones , Colon/microbiología , Colon/inmunología , Receptores CCR2/metabolismo , Receptores CCR2/genética , Receptores de Quimiocina/metabolismo , Receptores de Quimiocina/genética , Infecciones por Bacterias Grampositivas/inmunología , Infecciones por Bacterias Grampositivas/microbiología , Ratones Endogámicos C57BL , Ganglios Linfáticos/microbiología , Ganglios Linfáticos/inmunología , Receptores CCR7/metabolismo , Receptores CCR7/genética
3.
Medicine (Baltimore) ; 103(11): e37484, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489730

RESUMEN

Colorectal cancer (CRC) is one of the most prevalent types of malignant tumors. It's vital to explore new biomarkers and potential therapeutic targets in CRC lung metastasis through adopting integrated bioinformatics tools. Multiple cohort datasets and databases were integrated to clarify and verify potential key candidate biomarkers and signal transduction pathways in CRC lung metastasis. DAVID, STRING, UALCAN, GEPIA, TIMER, cBioPortal, THE HUMAN PROTEIN ATLAS, GSEA 4.3.2, FUNRICH 3.1.3, and R 4.2.3 were utilized in this study. The enriched biological processes and pathways modulated by the differentially expressed genes (DEGs) were determined with Gene Ontology, Kyoto Encyclopedia of Genes and Genomes. The search tool Retrieval of Interacting Genes and Cytoscape were used to construct a protein-protein interaction network among DEGs. Four hundred fifty-nine colorectal primary cancer and lung metastatic gene expression profiles were screened from 3 gene expression profiles (GSE41258, GSE68468, and GSE41568). Forty-one upregulated genes and 8 downregulated genes were identified from these 3 gene expression profiles and verified by the transcriptional levels of hub genes in other GEO datasets and The Cancer Genome Atlas database. Two pathways (immune responses and chemokine receptors bind chemokines), 13 key DEGs, 6 hub genes (MMP3, SFTPD, ABCA3, CLU, APOE, and SPP1), and 2 biomarkers (APOE, SPP1) with significantly prognostic values were screened. Forty-nine DEGs were identified as potential candidate diagnostic biomarkers for patients with CRC lung metastasis in present study. Enrichment analysis indicated that immune responses and chemokine receptors bind chemokines may play a leading role in lung metastasis of CRC, and further studies are needed to validate these findings.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Pulmonares , Humanos , Pronóstico , Perfilación de la Expresión Génica , Biomarcadores , Neoplasias Pulmonares/genética , Neoplasias Colorrectales/genética , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , Quimiocinas/metabolismo , Apolipoproteínas E/genética , Biología Computacional , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica
4.
Eur J Immunol ; 54(1): e2350658, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37816219

RESUMEN

Expression levels of the chemokine receptor CX3CR1 serve as high-resolution marker delineating functionally distinct antigen-experienced T-cell states. The factors that influence CX3CR1 expression in T cells are, however, incompletely understood. Here, we show that in vitro priming of naïve CD8+ T cells failed to robustly induce CX3CR1, which highlights the shortcomings of in vitro priming settings in recapitulating in vivo T-cell differentiation. Nevertheless, in vivo generated memory CD8+ T cells maintained CX3CR1 expression during culture. This allowed us to investigate whether T-cell receptor ligation, cell death, and CX3CL1 binding influence CX3CR1 expression. T-cell receptor stimulation led to downregulation of CX3CR1. Without stimulation, CX3CR1+ CD8+ T cells had a selective survival disadvantage, which was enhanced by factors released from necrotic but not apoptotic cells. Exposure to CX3CL1 did not rescue their survival and resulted in a dose-dependent loss of CX3CR1 surface expression. At physiological concentrations of CX3CL1, CX3CR1 surface expression was only minimally reduced, which did not hamper the interpretability of T-cell differentiation states delineated by CX3CR1. Our data further support the broad utility of CX3CR1 surface levels as T-cell differentiation marker and identify factors that influence CX3CR1 expression and the maintenance of CX3CR1 expressing CD8+ T cells.


Asunto(s)
Linfocitos T CD8-positivos , Receptores de Quimiocina , Linfocitos T CD8-positivos/metabolismo , Receptores de Quimiocina/genética , Microambiente Celular , Receptores de Antígenos de Linfocitos T/metabolismo , Receptor 1 de Quimiocinas CX3C/metabolismo
5.
Nat Commun ; 14(1): 7940, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040762

RESUMEN

The C-C motif chemokine receptor 8 (CCR8) is a class A G-protein coupled receptor that has emerged as a promising therapeutic target in cancer. Targeting CCR8 with an antibody has appeared to be an attractive therapeutic approach, but the molecular basis for chemokine-mediated activation and antibody-mediated inhibition of CCR8 are not fully elucidated. Here, we obtain an antagonist antibody against human CCR8 and determine structures of CCR8 in complex with either the antibody or the endogenous agonist ligand CCL1. Our studies reveal characteristic antibody features allowing recognition of the CCR8 extracellular loops and CCL1-CCR8 interaction modes that are distinct from other chemokine receptor - ligand pairs. Informed by these structural insights, we demonstrate that CCL1 follows a two-step, two-site binding sequence to CCR8 and that antibody-mediated inhibition of CCL1 signaling can occur by preventing the second binding event. Together, our results provide a detailed structural and mechanistic framework of CCR8 activation and inhibition that expands our molecular understanding of chemokine - receptor interactions and offers insight into the development of therapeutic antibodies targeting chemokine GPCRs.


Asunto(s)
Quimiocinas CC , Receptores de Quimiocina , Humanos , Quimiocinas CC/metabolismo , Quimiocinas CC/farmacología , Receptores CCR8/genética , Ligandos , Quimiocina CCL1/metabolismo , Receptores de Quimiocina/genética , Anticuerpos
6.
Genes (Basel) ; 14(10)2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37895310

RESUMEN

Chemokines and their receptors play an important role in immune monitoring and immune defense during tumor growth and metastasis. However, their prognostic roles in pan-cancer have not been elucidated. In this work, we screened all chemokine receptors in pan-cancer and discovered X-C Motif Chemokine Receptor 1 (XCR1) as a reliable immunological and prognostic biomarker in pan-cancer using bioinformation. The TCGA database served as the foundation for the primary research database analysis in this work. XCR1 was downregulated in tumors. Patients with reduced XCR1 showed worse prognoses and a concomitant decrease in immune cell infiltration (DCs and CD8+ T cells). According to a gene enrichment study, XCR1 enhanced immune system performance by promoting T-cell infiltration through the C-X-C Motif Chemokine Ligand 9 (CXCL9)- C-X-C Motif Chemokine Receptor 3 (CXCR3) axis. In addition, XCR1 is mainly expressed in infiltrated DCs and some malignant cells in tumor tissues. Our data revealed the important role of XCR1 in remodeling the tumor microenvironment and predicting the survival prognosis, which could also be used as a sensitive biomarker for tumor immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Humanos , Biomarcadores , Neoplasias/genética , Pronóstico , Receptores de Quimiocina/genética , Microambiente Tumoral/genética
7.
EBioMedicine ; 96: 104811, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37741009

RESUMEN

BACKGROUND: Natural killer (NK) cells have a unique capability of spontaneous cytotoxicity against malignant cells and hold promise for off-the-shelf cell therapy against cancer. One of the key challenges in the field is to improve NK cell homing to solid tumors. METHODS: To gain a deeper understanding of the cellular mechanisms regulating trafficking of NK cells into the tumor, we used high-dimensional flow cytometry, mass cytometry, and single-cell RNA-sequencing combined with functional assays, creating a comprehensive map of human NK cell migration phenotypes. FINDINGS: We found that the chemokine receptor repertoire of peripheral blood NK cells changes in a coordinated manner becoming progressively more diversified during NK cell differentiation and correlating tightly with the migratory response of the distinct NK cell subsets. Simultaneous ligation of CXCR1/2 and CX3CR1, synergistically potentiated the migratory response of NK cells. Analysis of 9471 solid cancers from publicly available TCGA/TARGET repositories revealed dominant chemokine patterns that varied across tumor types but with no tumor group expressing ligands for more than one chemokine receptor present on mature NK cells. INTERPRETATION: The finding that chemokine stimulation can elicit a synergistic migratory response in NK cells combined with the identified lack of naturally occurring pairs of chemokines-chemokine receptors in human cancers may explain the systematic exclusion of NK cells from the tumor microenvironment and provides a basis for engineering next-generation NK cell therapies against malignancies. FUNDING: The Polish Ministry of Science and Higher Education, the National Science Centre, Poland, The Norwegian Cancer Society, the Norwegian Research Council, the South-Eastern Norway Regional Health Authority, The Swedish Cancer Society, the Swedish Children's Cancer Foundation, The Swedish Research Council, The Center of Excellence: Precision Immunotherapy Alliance, Knut and Alice Wallenberg Foundation and National Cancer Institute.


Asunto(s)
Neoplasias , Receptores de Quimiocina , Niño , Humanos , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , Células Asesinas Naturales/metabolismo , Neoplasias/patología , Quimiocinas/metabolismo , Inmunoterapia Adoptiva , Microambiente Tumoral
8.
Sci Rep ; 13(1): 13021, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563282

RESUMEN

Ischemic stroke (IS) is associated with changes in gene expression patterns in the ischemic penumbra and extensive neurovascular inflammation. However, the key molecules related to the inflammatory response in the acute phase of IS remain unclear. To address this knowledge gap, conducted a study using Gene Set Enrichment Analysis (GSEA) on two gene expression profiles, GSE58720 and GSE202659, downloaded from the GEO database. We screened differentially expressed genes (DEGs) using GEO2R and analyzed 170 differentially expressed intersection genes for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) analysis. We also used Metascape, DAVID, STRING, Cytoscape, and TargetScan to identify candidate miRNAs and genes. The targeted genes and miRNA molecule were clarified using the mice middle cerebral artery occlusion-reperfusion (MCAO/R) model. Our findings revealed that 170 genes were correlated with cytokine production and inflammatory cell activation, as determined by GO and KEGG analyses. Cluster analysis identified 11 hub genes highly associated with neuroinflammation: Ccl7, Tnf, Ccl4, Timp1, Ccl3, Ccr1, Sele, Ccr2, Tlr4, Ptgs2, and Il6. TargetScan results suggested that Ptgs2, Tlr4, and Ccr2 might be regulated by miR-202-3p. In the MCAO/R model, the level of miR-202-3p decreased, while the levels of Ptgs2, Tlr4, and Ccr2 increased compared to the sham group. Knockdown of miR-202-3p exacerbated ischemic reperfusion injury (IRI) through neuroinflammation both in vivo and in vitro. Our study also demonstrated that mRNA and protein levels of Ptgs2, Tlr4, and Ccr2 increased in the MCAO/R model with miR-202-3p knockdown. These findings suggest that differentially expressed genes, including Ptgs2, Tlr4, and Ccr2 may play crucial roles in the neuroinflammation of IS, and their expression may be negatively regulated by miR-202-3p. Our study provides new insights into the regulation of neuroinflammation in IS.


Asunto(s)
Redes Reguladoras de Genes , MicroARNs , Animales , Ratones , Biología Computacional/métodos , Ciclooxigenasa 2/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Genes Esenciales , Infarto de la Arteria Cerebral Media/genética , MicroARNs/genética , Enfermedades Neuroinflamatorias , Receptores CCR2/genética , Receptores de Quimiocina/genética , Receptor Toll-Like 4/genética
9.
STAR Protoc ; 4(3): 102460, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37516969

RESUMEN

Chemokine receptors, a subfamily of G-protein-coupled receptors (GPCRs), are responsible for cell migration during physiological processes as well as in diseases like inflammation and cancers. Here, we present a protocol for solubilizing, purifying, and reconstituting complexes of chemokine receptors with their ligands in "nanodiscs," soluble lipid bilayers that mimic the native environment of membrane receptors. The protocol yields chemokine receptor complexes with sufficient purity and yield for structural and biophysical studies and should be applicable to other GPCRs.


Asunto(s)
Receptores de Quimiocina , Receptores Acoplados a Proteínas G , Humanos , Receptores de Quimiocina/genética , Receptores Acoplados a Proteínas G/metabolismo , Membrana Dobles de Lípidos/metabolismo
10.
Nat Commun ; 14(1): 4204, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452046

RESUMEN

Chemokines are key regulators of leukocyte trafficking and attractive targets for anti-inflammatory therapy. Evasins are chemokine-binding proteins from tick saliva, whose application as anti-inflammatory therapeutics will require manipulation of their chemokine target selectivity. Here we describe subclass A3 evasins, which are unique to the tick genus Amblyomma and distinguished from "classical" class A1 evasins by an additional disulfide bond near the chemokine recognition interface. The A3 evasin EVA-AAM1001 (EVA-A) bound to CC chemokines and inhibited their receptor activation. Unlike A1 evasins, EVA-A was not highly dependent on N- and C-terminal regions to differentiate chemokine targets. Structures of chemokine-bound EVA-A revealed a deep hydrophobic pocket, unique to A3 evasins, that interacts with the residue immediately following the CC motif of the chemokine. Mutations to this pocket altered the chemokine selectivity of EVA-A. Thus, class A3 evasins provide a suitable platform for engineering proteins with applications in research, diagnosis or anti-inflammatory therapy.


Asunto(s)
Garrapatas , Animales , Garrapatas/metabolismo , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , Quimiocinas/metabolismo , Quimiocinas CC/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo
11.
Int J Mol Sci ; 24(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298086

RESUMEN

Loss of the ß cell population is a crucial feature of type 2 diabetes. Restoring the ß cell mass by stimulating ß cell proliferation and preventing its apoptosis was proposed as a therapeutic approach to treating diabetes. Therefore, researchers have been increasingly interested in identifying exogenous factors that can stimulate ß cell proliferation in situ and in vitro. Adipokine chemerin, which is secreted from adipose tissue and the liver, has been identified as a chemokine that plays a critical role in the regulation of metabolism. In this study, we demonstrate that chemerin as a circulating adipokine promotes ß cell proliferation in vivo and in vitro. Chemerin serum levels and the expression of the main receptors within islets are highly regulated under a variety of challenging conditions, including obesity and type 2 diabetes. As compared to their littermates, mice overexpressing chemerin had a larger islet area and increased ß cell mass with both a normal and high-fat diet. Moreover, in chemerin-overexpressed mice, we observed improved mitochondrial homeostasis and increased insulin synthesis. In summary, our findings confirm the potential role of chemerin as an inducer of ß cell proliferation, and they provide novel insights into the helpful strategy to expand ß cell population.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ratones , Animales , Diabetes Mellitus Tipo 2/genética , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Quimiocinas/metabolismo , Adipoquinas , Homeostasis , Proliferación Celular
12.
J Immunol ; 210(12): 2016-2028, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37163318

RESUMEN

During endotoxin-induced acute lung injury (ALI), immune cell recruitment resulting from chemotaxis is mediated by CXC and CC chemokines and their receptors. In this study, we investigated the role of chemokines and their receptors in the regulation of myeloid cell populations in the circulation and the lungs of C57BL/6J mice exhibiting LPS-mediated ALI using single-cell RNA sequencing. During ALI, there was an increase in the myeloid cells, M1 macrophages, monocytes, neutrophils, and other granulocytes, whereas there was a decrease in the residential alveolar macrophages and M2 macrophages. Interestingly, LPS triggered the upregulation of CCL3, CCL4, CXCL2/3, and CXCL10 genes associated with cellular migration of various subsets of macrophages, neutrophils, and granulocytes. Furthermore, there was an increase in the frequency of myeloid cells expressing CCR1, CCR3, CCR5, and CXCR2 receptors during ALI. MicroRNA sequencing studies of vehicle versus LPS groups identified several dysregulated microRNAs targeting the upregulated chemokine genes. This study suggests that chemokine ligand-receptors interactions are responsible for myeloid cell heterogenicity and cellular recruitment to the lungs during ALI. The single-cell transcriptomics allowed for an in-depth assessment and characterization of myeloid cells involved in immune cell trafficking during ALI.


Asunto(s)
Lesión Pulmonar Aguda , Quimiotaxis , Animales , Ratones , Lipopolisacáridos , Ratones Endogámicos C57BL , Pulmón , Quimiocinas , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Células Mieloides , Receptores de Quimiocina/genética
13.
Cell Mol Immunol ; 20(7): 739-776, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37198402

RESUMEN

Over the past thirty years, the importance of chemokines and their seven-transmembrane G protein-coupled receptors (GPCRs) has been increasingly recognized. Chemokine interactions with receptors trigger signaling pathway activity to form a network fundamental to diverse immune processes, including host homeostasis and responses to disease. Genetic and nongenetic regulation of both the expression and structure of chemokines and receptors conveys chemokine functional heterogeneity. Imbalances and defects in the system contribute to the pathogenesis of a variety of diseases, including cancer, immune and inflammatory diseases, and metabolic and neurological disorders, which render the system a focus of studies aiming to discover therapies and important biomarkers. The integrated view of chemokine biology underpinning divergence and plasticity has provided insights into immune dysfunction in disease states, including, among others, coronavirus disease 2019 (COVID-19). In this review, by reporting the latest advances in chemokine biology and results from analyses of a plethora of sequencing-based datasets, we outline recent advances in the understanding of the genetic variations and nongenetic heterogeneity of chemokines and receptors and provide an updated view of their contribution to the pathophysiological network, focusing on chemokine-mediated inflammation and cancer. Clarification of the molecular basis of dynamic chemokine-receptor interactions will help advance the understanding of chemokine biology to achieve precision medicine application in the clinic.


Asunto(s)
COVID-19 , Medicina de Precisión , Humanos , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , COVID-19/genética , Quimiocinas/genética , Quimiocinas/metabolismo , Epigénesis Genética
14.
Funct Integr Genomics ; 23(2): 186, 2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37243790

RESUMEN

Osteoporosis is a common disease, especially among the elderly. This study aimed to comprehensively examine the roles of immune microenvironment in osteoporosis pathogenesis. Expression profiles of GSE35959, GSE7158, and GSE13850 datasets were used to analyze differential expression and identify hub genes related to immune features. Based on the single-cell RNA sequencing (scRNA-seq) data of an osteoporosis patient, different cell types were classified and the relation between immune environment and osteoporosis was explored. Twelve hub genes significantly associated with immune features were selected and 11 subgroups were defined using scRNA-seq data. The expression of two hub genes (CDKN1A and TEFM) was greatly altered during the transformation from mesenchymal stem cells (MSCs) to osteoblasts. Chemokines and chemokine receptors were differentially enriched in different cell types. CXCL12 was high-expressed in MSCs. This study emphasized that immune microenvironment played a critical role in the pathogenesis of osteoporosis. Chemokines and chemokine receptors can modify cell development and affect the interactions among different cell types, leading to unbalanced bone remodeling.


Asunto(s)
Osteoporosis , Humanos , Anciano , Células Cultivadas , Osteoporosis/genética , Quimiocinas/genética , Receptores de Quimiocina/genética , Análisis de Secuencia de ARN
15.
Viruses ; 15(3)2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36992420

RESUMEN

Human cytomegalovirus (HCMV) is a ubiquitous pathogen that infects the majority of the world population and causes lifelong latent infection. HCMV has been shown to exacerbate cardiovascular diseases, including myocarditis, vascular sclerosis, and transplant vasculopathy. Recently, we have shown that murine CMV (MCMV) recapitulates the cardiovascular dysfunction observed in patients with HCMV-induced myocarditis. To understand the viral mechanisms involved in CMV-induced heart dysfunction, we further characterized cardiac function in response to MCMV and examined virally encoded G-protein-coupled receptor homologs (vGPCRs) US28 and M33 as potential factors that promote infection in the heart. We hypothesized that the CMV-encoded vGPCRs could exacerbate cardiovascular damage and dysfunction. Three viruses were used to evaluate the role of vGPCRs in cardiac dysfunction: wild-type MCMV, a M33-deficient virus (∆M33), and a virus with the M33 open reading frame (ORF) replaced with US28, an HCMV vGPCR (i.e., US28+). Our in vivo studies revealed that M33 plays a role in promoting cardiac dysfunction by increasing viral load and heart rate during acute infection. During latency, ΔM33-infected mice demonstrated reduced calcification, altered cellular gene expression, and less cardiac hypertrophy compared with wild-type MCMV-infected mice. Ex vivo viral reactivation from hearts was less efficient in ΔM33-infected animals. HCMV protein US28 expression restored the ability of the M33-deficient virus to reactivate from the heart. US28+ MCMV infection caused damage to the heart comparable with wild-type MCMV infection, suggesting that the US28 protein is sufficient to complement the function of M33 in the heart. Altogether, these data suggest a role for vGPCRs in viral pathogenesis in the heart and thus suggest that vGPCRs promote long-term cardiac damage and dysfunction.


Asunto(s)
Infecciones por Citomegalovirus , Cardiopatías , Muromegalovirus , Miocarditis , Humanos , Animales , Ratones , Muromegalovirus/fisiología , Receptores de Quimiocina/genética , Proteínas Virales/metabolismo , Citomegalovirus/fisiología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
16.
JCI Insight ; 8(5)2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36883565

RESUMEN

Gastrointestinal graft-versus-host disease (GvHD) is a major cause of mortality and morbidity following allogeneic bone marrow transplantation (allo-BMT). Chemerin is a chemotactic protein that recruits leukocytes to inflamed tissues by interacting with ChemR23/CMKLR1, a chemotactic receptor expressed by leukocytes, including macrophages. During acute GvHD, chemerin plasma levels were strongly increased in allo-BM-transplanted mice. The role of the chemerin/CMKLR1 axis in GvHD was investigated using Cmklr1-KO mice. WT mice transplanted with an allogeneic graft from Cmklr1-KO donors (t-KO) had worse survival and more severe GvHD. Histological analysis demonstrated that the gastrointestinal tract was the organ mostly affected by GvHD in t-KO mice. The severe colitis of t-KO mice was characterized by massive neutrophil infiltration and tissue damage associated with bacterial translocation and exacerbated inflammation. Similarly, Cmklr1-KO recipient mice showed increased intestinal pathology in both allogeneic transplant and dextran sulfate sodium-induced colitis. Notably, the adoptive transfer of WT monocytes into t-KO mice mitigated GvHD manifestations by decreasing gut inflammation and T cell activation. In patients, higher chemerin serum levels were predictive of GvHD development. Overall, these results suggest that CMKLR1/chemerin may be a protective pathway for the control of intestinal inflammation and tissue damage in GvHD.


Asunto(s)
Trasplante de Médula Ósea , Colitis , Enfermedad Injerto contra Huésped , Animales , Ratones , Traslado Adoptivo/métodos , Traslocación Bacteriana/genética , Traslocación Bacteriana/inmunología , Trasplante de Médula Ósea/efectos adversos , Quimiocinas/sangre , Quimiocinas/genética , Quimiocinas/inmunología , Colitis/sangre , Colitis/genética , Colitis/inmunología , Colitis/patología , Colitis/terapia , Enfermedad Injerto contra Huésped/sangre , Enfermedad Injerto contra Huésped/genética , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/patología , Enfermedad Injerto contra Huésped/terapia , Inflamación/sangre , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Péptidos y Proteínas de Señalización Intercelular/sangre , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/inmunología , Monocitos/inmunología , Monocitos/trasplante , Infiltración Neutrófila/genética , Infiltración Neutrófila/inmunología , Receptores de Quimiocina/sangre , Receptores de Quimiocina/genética , Receptores de Quimiocina/inmunología , Trasplante Homólogo/efectos adversos
17.
Neuropharmacology ; 228: 109456, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36796675

RESUMEN

Following insults or injury, microglia cells are activated contributing to the cytotoxic response or by promoting an immune-mediated damage resolution. Microglia cells express HCA2R, a hydroxy carboxylic acid (HCA) receptor, which has been shown to mediate neuroprotective and anti-inflammatory effects. In this study we found that HCAR2 expression levels were increased in cultured rat microglia cells after Lipopolysaccharide (LPS) exposure. In a similar fashion, the treatment with MK 1903, a potent full agonist of HCAR2, increased the receptor protein levels. Moreover, HCAR2 stimulation prevented i) cells viability ii) morphological activation iii) pro/anti-inflammatory mediators production in LPS-treated cells. Likewise, HCAR2 stimulation reduced the proinflammatory mediators mRNA expression induced by neuronal chemokine fractalkine (FKN), a neuronal derived chemokine activating its unique receptor, chemokine receptor 1 (CX3CR1) on microglia surface. Interestingly, electrophysiological recordings in vivo revealed that MK1903 was able to prevent the increase of the nociceptive neurons (NS) firing activity mediated by the spinal FKN application in healthy rats. Collectively, our data demonstrate that HCAR2 is functionally expressed in microglia, by showing its capability to shift microglia toward an anti-inflammatory phenotype. Moreover, we indicated the contribute of HCAR2 in the FKN signaling and suggested a possible HCAR2/CX3CR1 functional interaction. This study paves the way for further investigations aimed at understanding the role HCAR2 as potential target in neuroinflammation-based CNS disorders. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".


Asunto(s)
Quimiocinas CXC , Microglía , Ratas , Animales , Quimiocinas CXC/metabolismo , Quimiocinas CXC/farmacología , Lipopolisacáridos/farmacología , Receptor 1 de Quimiocinas CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo
18.
Sci Signal ; 16(770): eabo4314, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36719944

RESUMEN

C-C chemokine receptor 2 (CCR2) is a dual-function receptor. Similar to other G protein-coupled chemokine receptors, it promotes monocyte infiltration into tissues in response to the chemokine CCL2, and, like atypical chemokine receptors (ACKRs), it scavenges chemokine from the extracellular environment. CCR2 therefore mediates CCL2-dependent signaling as a G protein-coupled receptor (GPCR) and also limits CCL2 signaling as a scavenger receptor. We investigated the mechanisms underlying CCR2 scavenging, including the involvement of intracellular proteins typically associated with GPCR signaling and internalization. Using CRISPR knockout cell lines, we showed that CCR2 scavenged by constitutively internalizing to remove CCL2 from the extracellular space and recycling back to the cell surface for further rounds of ligand sequestration. This process occurred independently of G proteins, GPCR kinases (GRKs), ß-arrestins, and clathrin, which is distinct from other "professional" chemokine scavenger receptors that couple to GRKs, ß-arrestins, or both. These findings set the stage for understanding the molecular regulators that determine CCR2 scavenging and may have implications for drug development targeting this therapeutically important receptor.


Asunto(s)
Quimiocinas , Receptores de Quimiocina , Ratones , Animales , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , Ratones Noqueados , Quimiocinas/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , beta-Arrestinas/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo
19.
AIDS ; 37(3): 477-488, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36695358

RESUMEN

OBJECTIVE: Prior genomewide association studies have identified variation in major histocompatibility complex (MHC) class I alleles and C-C chemokine receptor type 5 gene (CCR5Δ32) as genetic predictors of viral control, especially in 'elite' controllers, individuals who remain virally suppressed in the absence of therapy. DESIGN: Cross-sectional genomewide association study. METHODS: We analyzed custom whole exome sequencing and direct human leukocyte antigen (HLA) typing from 202 antiretroviral therapy (ART)-suppressed HIV+ noncontrollers in relation to four measures of the peripheral CD4+ T-cell reservoir: HIV intact DNA, total (t)DNA, unspliced (us)RNA, and RNA/DNA. Linear mixed models were adjusted for potential covariates including age, sex, nadir CD4+ T-cell count, pre-ART HIV RNA, timing of ART initiation, and duration of ART suppression. RESULTS: Previously reported 'protective' host genetic mutations related to viral setpoint (e.g. among elite controllers) were found to predict smaller HIV reservoir size. The HLA 'protective' B∗57:01 was associated with significantly lower HIV usRNA (q = 3.3 × 10-3), and among the largest subgroup, European ancestry individuals, the CCR5Δ32 deletion was associated with smaller HIV tDNA (P = 4.3 × 10-3) and usRNA (P = 8.7 × 10-3). In addition, genomewide analysis identified several single nucleotide polymorphisms in MX1 (an interferon stimulated gene) that were significantly associated with HIV tDNA (q = 0.02), and the direction of these associations paralleled MX1 gene eQTL expression. CONCLUSIONS: We observed a significant association between previously reported 'protective' MHC class I alleles and CCR5Δ32 with the HIV reservoir size in noncontrollers. We also found a novel association between MX1 and HIV total DNA (in addition to other interferon signaling relevant genes, PPP1CB, DDX3X). These findings warrant further investigation in future validation studies.


Asunto(s)
Infecciones por VIH , VIH-1 , Interferón Tipo I , Humanos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Alelos , Linfocitos T CD8-positivos , Estudios Transversales , VIH-1/genética , Antígenos de Histocompatibilidad Clase I/genética , Antígenos HLA , ARN , Complejo Mayor de Histocompatibilidad , Receptores de Quimiocina/genética , Interferón Tipo I/metabolismo , Carga Viral , Proteínas de Resistencia a Mixovirus
20.
Fish Shellfish Immunol ; 130: 114-131, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36084887

RESUMEN

Chemokines are a group of secreted small molecules which are essential for cell migration in physiological and pathological conditions by binding to specific chemokine receptors. They are structurally classified into five groups, namely CXC, CC, CX3C, XC and CX. CC chemokine group is the largest one among them. In this study, we identified and characterized 61 CC chemokines from allotetraploid common carp (Cyprinus carpio). The sequence analyses showed that the majority of CC chemokines had an N-terminal signal peptide, and an SCY domain, and all CC chemokines were located in the extracellular region. Phylogenetic, evolutionary and syntenic analyses confirmed that CC chemokines were annotated as 11 different types (CCL19, CCL20, CCL25, CCL27, CCL32, CCL33, CCL34, CCL35, CCL36, CCL39, and CCL44), which exhibited unique gene arrangement pattern and chromosomal location respectively. Furthermore, genome synteny analyses between common carp and four representative teleost species indicated expansion of common carp CC chemokines resulted from the whole genome duplication (WGD) event. Additionally, the continuous evolution of gene CCL25s in teleost afforded a novel viewpoint to explain the WGD event in teleost. Then, we predicted the three-dimensional structures and probable function regions of common carp CC chemokines. All the CC chemokines core structures were constituted of an N-loop, a three-stranded ß-sheet, and a C-terminal helix. Finally, 43 CC chemokines were predicted to have probable general antimicrobial activity. Their tertiary structures, cationic and amphiphilic physicochemical property supported the viewpoint. To verify the prediction, six recombinant CCL19s proteins were prepared and the antibacterial activity against Escherichia coli and Aeromonas hydrophila were verified. The results supported our prediction that rCCL19a.1s (rCCL19a.1_a, rCCL19a.1_b) and rCCL19bs (rCCL19b_a, rCCL19b_b), especially rCCL19bs, exhibited extremely significant inhibition to the growth of both E. coli and A. hydrophila. On the contrary, two rCCL19a.2s had no significant inhibitory effect. These studies suggested that CC chemokines were essential in immune system evolution and not monofunctional during pathogen infection.


Asunto(s)
Carpas , Animales , Antibacterianos , Carpas/genética , Carpas/metabolismo , Quimiocinas/genética , Quimiocinas CC/genética , Escherichia coli , Proteínas de Peces , Filogenia , Señales de Clasificación de Proteína/genética , Receptores de Quimiocina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA