Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 972
Filtrar
1.
Viruses ; 16(5)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38793622

RESUMEN

The pathogenesis of viral infection is attributed to two folds: intrinsic cell death pathway activation due to the viral cytopathic effect, and immune-mediated extrinsic cellular injuries. The immune system, encompassing both innate and adaptive immunity, therefore acts as a double-edged sword in viral infection. Insufficient potency permits pathogens to establish lifelong persistent infection and its consequences, while excessive activation leads to organ damage beyond its mission to control viral pathogens. The innate immune response serves as the front line of defense against viral infection, which is triggered through the recognition of viral products, referred to as pathogen-associated molecular patterns (PAMPs), by host cell pattern recognition receptors (PRRs). The PRRs-PAMPs interaction results in the induction of interferon-stimulated genes (ISGs) in infected cells, as well as the secretion of interferons (IFNs), to establish a tissue-wide antiviral state in an autocrine and paracrine manner. Cumulative evidence suggests significant variability in the expression patterns of PRRs, the induction potency of ISGs and IFNs, and the IFN response across different cell types and species. Hence, in our understanding of viral hepatitis pathogenesis, insights gained through hepatoma cell lines or murine-based experimental systems are uncertain in precisely recapitulating the innate antiviral response of genuine human hepatocytes. Accordingly, this review article aims to extract and summarize evidence made possible with bona fide human hepatocytes-based study tools, along with their clinical relevance and implications, as well as to identify the remaining gaps in knowledge for future investigations.


Asunto(s)
Virus de la Hepatitis Delta , Hepatocitos , Inmunidad Innata , Interferones , Receptores de Reconocimiento de Patrones , Humanos , Hepatocitos/virología , Hepatocitos/inmunología , Interferones/inmunología , Interferones/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Virus de la Hepatitis Delta/inmunología , Virus de la Hepatitis Delta/fisiología , Animales , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Hepatitis D/inmunología , Hepatitis D/virología , Interacciones Huésped-Patógeno/inmunología
2.
Adv Protein Chem Struct Biol ; 140: 525-555, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38762279

RESUMEN

There is an urgent need to combat pathogen infestations in crop plants to ensure food security worldwide. To counter this, plants have developed innate immunity mediated by Pattern Recognition Receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and damage- associated molecular patterns (DAMPs). PRRs activate Pattern-Triggered Immunity (PTI), a defence mechanism involving intricate cell-surface and intracellular receptors. The diverse ligand-binding ectodomains of PRRs, including leucine-rich repeats (LRRs) and lectin domains, facilitate the recognition of MAMPs and DAMPs. Pathogen resistance is mediated by a variety of PTI responses, including membrane depolarization, ROS production, and the induction of defence genes. An integral part of intracellular immunity is the Nucleotide-binding Oligomerization Domain, Leucine-rich Repeat proteins (NLRs) which recognize and respond to effectors in a potent manner. Enhanced understanding of PRRs, their ligands, and downstream signalling pathways has contributed to the identification of potential targets for genetically modified plants. By transferring PRRs across plant species, it is possible to create broad-spectrum resistance, potentially offering innovative solutions for plant protection and global food security. The purpose of this chapter is to provide an update on PRRs involved in disease resistance, clarify the mechanisms by which PRRs recognize ligands to form active receptor complexes and present various applications of PRRs and PTI in disease resistance management for plants.


Asunto(s)
Plantas Modificadas Genéticamente , Receptores de Reconocimiento de Patrones , Receptores de Reconocimiento de Patrones/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Proteínas de Plantas/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inmunidad de la Planta
3.
Cell Chem Biol ; 31(5): 835-850, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38636521

RESUMEN

Mammalian innate immunity is regulated by pattern-recognition receptors (PRRs) and guard proteins, which use distinct strategies to detect infections. PRRs detect bacterial molecules directly, whereas guards detect host cell manipulations by microbial virulence factors. Despite sensing infection through different mechanisms, both classes of innate immune sensors can activate the inflammasome, an immune complex that can mediate cell death and inflammation. Inflammasome-mediated immune responses are crucial for host defense against many bacterial pathogens and prevent invasion by non-pathogenic organisms. In this review, we discuss the mechanisms by which inflammasomes are stimulated by PRRs and guards during bacterial infection, and the strategies used by virulent bacteria to evade inflammasome-mediated immunity.


Asunto(s)
Bacterias , Inmunidad Innata , Inflamasomas , Receptores de Reconocimiento de Patrones , Inflamasomas/metabolismo , Inflamasomas/inmunología , Humanos , Receptores de Reconocimiento de Patrones/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Bacterias/inmunología , Bacterias/metabolismo , Animales , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología
4.
J Integr Plant Biol ; 65(7): 1613-1619, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36856338

RESUMEN

Plant cells possess a two-layered immune system consisting of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), mediated by cell surface pattern-recognition receptors and intracellular nucleotide-binding leucine-rich repeat receptors (NLRs), respectively. The CONSTITUTIVE EXPRESSION OF PR GENES 5 (CPR5) nuclear pore complex protein negatively regulates ETI, including ETI-associated hypersensitive response. Here, we show that CPR5 is essential for the activation of various PTI responses in Arabidopsis, such as resistance to the non-adapted bacterium Pseudomonas syringae pv. tomato DC3000 hrcC- . In a forward-genetic screen for suppressors of cpr5, we identified the mediator protein MED4. Mutation of MED4 in cpr5 greatly restored the defective PTI of cpr5. Our findings reveal that CPR5 plays opposite roles in regulating PTI and ETI, and genetically regulates PTI via MED4.


Asunto(s)
Proteínas de Arabidopsis , Proteínas de la Membrana , Inmunidad de la Planta , Arabidopsis/inmunología , Proteínas de Arabidopsis/inmunología , Proteínas de la Membrana/inmunología , Pseudomonas syringae/patogenicidad , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Receptores de Reconocimiento de Patrones/inmunología , Proteínas NLR/inmunología
5.
Nature ; 613(7942): 145-152, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36517600

RESUMEN

Phytohormone signalling pathways have an important role in defence against pathogens mediated by cell-surface pattern recognition receptors and intracellular nucleotide-binding leucine-rich repeat class immune receptors1,2 (NLR). Pathogens have evolved counter-defence strategies to manipulate phytohormone signalling pathways to dampen immunity and promote virulence3. However, little is known about the surveillance of pathogen interference of phytohormone signalling by the plant innate immune system. The pepper (Capsicum chinense) NLR Tsw, which recognizes the effector nonstructural protein NSs encoded by tomato spotted wilt orthotospovirus (TSWV), contains an unusually large leucine-rich repeat (LRR) domain. Structural modelling predicts similarity between the LRR domain of Tsw and those of the jasmonic acid receptor COI1, the auxin receptor TIR1 and the strigolactone receptor partner MAX2. This suggested that NSs could directly target hormone receptor signalling to promote infection, and that Tsw has evolved a LRR resembling those of phytohormone receptors LRR to induce immunity. Here we show that NSs associates with COI1, TIR1 and MAX2 through a common repressor-TCP21-which interacts directly with these phytohormone receptors. NSs enhances the interaction of COI1, TIR1 or MAX2 with TCP21 and blocks the degradation of corresponding transcriptional repressors to disable phytohormone-mediated host immunity to the virus. Tsw also interacts directly with TCP21 and this interaction is enhanced by viral NSs. Downregulation of TCP21 compromised Tsw-mediated defence against TSWV. Together, our findings reveal that a pathogen effector targets TCP21 to inhibit phytohormone receptor function, promoting virulence, and a plant NLR protein has evolved to recognize this interference as a counter-virulence strategy, thereby activating immunity.


Asunto(s)
Capsicum , Enfermedades de las Plantas , Reguladores del Crecimiento de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Receptores de Reconocimiento de Patrones , Leucina , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Reguladores del Crecimiento de las Plantas/metabolismo , Inmunidad de la Planta/inmunología , Proteínas de Plantas/química , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Receptores de Reconocimiento de Patrones/química , Receptores de Reconocimiento de Patrones/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Reconocimiento de Inmunidad Innata , Capsicum/inmunología , Capsicum/metabolismo , Capsicum/virología , Virulencia
6.
Nature ; 610(7931): 335-342, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36131021

RESUMEN

Plants rely on cell-surface-localized pattern recognition receptors to detect pathogen- or host-derived danger signals and trigger an immune response1-6. Receptor-like proteins (RLPs) with a leucine-rich repeat (LRR) ectodomain constitute a subgroup of pattern recognition receptors and play a critical role in plant immunity1-3. Mechanisms underlying ligand recognition and activation of LRR-RLPs remain elusive. Here we report a crystal structure of the LRR-RLP RXEG1 from Nicotiana benthamiana that recognizes XEG1 xyloglucanase from the pathogen Phytophthora sojae. The structure reveals that specific XEG1 recognition is predominantly mediated by an amino-terminal and a carboxy-terminal loop-out region (RXEG1(ID)) of RXEG1. The two loops bind to the active-site groove of XEG1, inhibiting its enzymatic activity and suppressing Phytophthora infection of N. benthamiana. Binding of XEG1 promotes association of RXEG1(LRR) with the LRR-type co-receptor BAK1 through RXEG1(ID) and the last four conserved LRRs to trigger RXEG1-mediated immune responses. Comparison of the structures of apo-RXEG1(LRR), XEG1-RXEG1(LRR) and XEG1-BAK1-RXEG1(LRR) shows that binding of XEG1 induces conformational changes in the N-terminal region of RXEG1(ID) and enhances structural flexibility of the BAK1-associating regions of RXEG1(LRR). These changes allow fold switching of RXEG1(ID) for recruitment of BAK1(LRR). Our data reveal a conserved mechanism of ligand-induced heterodimerization of an LRR-RLP with BAK1 and suggest a dual function for the LRR-RLP in plant immunity.


Asunto(s)
Glicósido Hidrolasas , Phytophthora , Inmunidad de la Planta , Proteínas de Plantas , Receptores de Reconocimiento de Patrones , Secuencias de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Glicósido Hidrolasas/metabolismo , Leucina/metabolismo , Ligandos , Phytophthora/enzimología , Phytophthora/inmunología , Phytophthora/fisiología , Proteínas de Plantas/química , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Multimerización de Proteína , Receptores de Reconocimiento de Patrones/química , Receptores de Reconocimiento de Patrones/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Nicotiana/química , Nicotiana/metabolismo
7.
J Virol ; 96(18): e0121222, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36069553

RESUMEN

The mitochondrial apoptosis pathway has the function to kill the cell, but recent work shows that this pathway can also be activated to a sublethal level, where signal transduction can be observed but the cell survives. Intriguingly, this signaling has been shown to contribute to inflammatory activity of epithelial cells upon infection with numerous agents. This suggests that microbial recognition can generate sublethal activity in the mitochondrial apoptosis pathway. Because this recognition is achieved by pattern recognition receptors (PRRs), it also implies that PRR signals are linked to the mitochondrial apoptosis apparatus. We here test this hypothesis during infection of epithelial cells with modified vaccinia virus Ankara (MVA). MVA recognition is achieved through receptors specific for nucleic acids, and we present evidence that the three receptors, Toll-like receptor 3 (TLR3), RIG-I/MDA5, and cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING), are involved in this signaling. When stimulated directly by specific ligands, all three receptors could trigger sublethal apoptosis signals. During infection with MVA, sublethal apoptosis signals were unmasked in X-linked IAP (XIAP)-deficient cells, where apoptosis induction was observed. Deletion of any of the three signaling adapters, TRIF, MAVS, and STING, reduced the DNA damage response, a sensitive measure of sublethal apoptosis signals. Our results suggest that PRRs signal via mitochondria, where they generate sublethal signals through the BCL-2-family, which may contribute to the response to infectious agents. IMPORTANCE A contribution of the mitochondrial apoptosis apparatus, in the absence of cell death, to the reaction of nonprofessional immune cells to viruses is suggested to play a role as a broad alert system of an infected cell: the apoptosis system can be activated by many upstream signals and could therefore act as a central coordinator of viral recognition. The proapoptotic activity of PRRs has been documented in multiple situations, but this activity seems too low to be meaningful, and a physiological significance of such activity is not immediately obvious. This work suggests the alternative interpretation that PRRs do not have the primary function to induce apoptosis but to trigger sublethal signals in the apoptosis system. A number of lines of recent research suggest that mitochondria contribute to cellular reactions, and this pathway may be a way of triggering an early host response.


Asunto(s)
Apoptosis , Mitocondrias , Ácidos Nucleicos , Receptores de Reconocimiento de Patrones , Virosis , Proteínas Adaptadoras del Transporte Vesicular/inmunología , Humanos , Inmunidad Innata , Mitocondrias/inmunología , Nucleotidiltransferasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Receptor Toll-Like 3/metabolismo , Virus Vaccinia , Virosis/inmunología
8.
Nat Immunol ; 23(2): 165-176, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35105981

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2, continues to cause substantial morbidity and mortality. While most infections are mild, some patients experience severe and potentially fatal systemic inflammation, tissue damage, cytokine storm and acute respiratory distress syndrome. The innate immune system acts as the first line of defense, sensing the virus through pattern recognition receptors and activating inflammatory pathways that promote viral clearance. Here, we discuss innate immune processes involved in SARS-CoV-2 recognition and the resultant inflammation. Improved understanding of how the innate immune system detects and responds to SARS-CoV-2 will help identify targeted therapeutic modalities that mitigate severe disease and improve patient outcomes.


Asunto(s)
COVID-19/inmunología , Inmunidad Innata , SARS-CoV-2/inmunología , Animales , COVID-19/metabolismo , COVID-19/virología , Citocinas/inmunología , Citocinas/metabolismo , Humanos , Evasión Inmune , Inflamasomas/inmunología , Inflamasomas/metabolismo , Proteínas NLR/inmunología , Proteínas NLR/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , SARS-CoV-2/patogenicidad , Transducción de Señal , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismo , Internalización del Virus
9.
Nat Immunol ; 23(2): 275-286, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35102342

RESUMEN

The humoral arm of innate immunity includes diverse molecules with antibody-like functions, some of which serve as disease severity biomarkers in coronavirus disease 2019 (COVID-19). The present study was designed to conduct a systematic investigation of the interaction of human humoral fluid-phase pattern recognition molecules (PRMs) with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Of 12 PRMs tested, the long pentraxin 3 (PTX3) and mannose-binding lectin (MBL) bound the viral nucleocapsid and spike proteins, respectively. MBL bound trimeric spike protein, including that of variants of concern (VoC), in a glycan-dependent manner and inhibited SARS-CoV-2 in three in vitro models. Moreover, after binding to spike protein, MBL activated the lectin pathway of complement activation. Based on retention of glycosylation sites and modeling, MBL was predicted to recognize the Omicron VoC. Genetic polymorphisms at the MBL2 locus were associated with disease severity. These results suggest that selected humoral fluid-phase PRMs can play an important role in resistance to, and pathogenesis of, COVID-19, a finding with translational implications.


Asunto(s)
COVID-19/inmunología , Inmunidad Humoral , Receptores de Reconocimiento de Patrones/inmunología , SARS-CoV-2/inmunología , Animales , Proteína C-Reactiva/inmunología , Proteína C-Reactiva/metabolismo , COVID-19/metabolismo , COVID-19/virología , Estudios de Casos y Controles , Chlorocebus aethiops , Activación de Complemento , Proteínas de la Nucleocápside de Coronavirus/genética , Proteínas de la Nucleocápside de Coronavirus/inmunología , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Femenino , Glicosilación , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Masculino , Lectina de Unión a Manosa/genética , Lectina de Unión a Manosa/inmunología , Lectina de Unión a Manosa/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/inmunología , Fosfoproteínas/metabolismo , Polimorfismo Genético , Unión Proteica , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Componente Amiloide P Sérico/inmunología , Componente Amiloide P Sérico/metabolismo , Transducción de Señal , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero
10.
Cell Immunol ; 372: 104483, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35085880

RESUMEN

The occurring in SR-A/CD204- or CD36-deficient mice increased susceptibility to infections with Staphylococcus aureus (Sa) had traditionally been ascribed to the impairment of macrophage-mediated phagocytosis, which is, however, inconsistent with low effectiveness of unopsonized Sa killing within macrophages and redundant roles of both receptors in this process. We have found that Sa-stimulated cytokine production in mouse macrophages seems to be exclusively mediated by TLR2, mainly from within endosomes in response to Sa-derived lipoteichoic acid. By driving endocytic trafficking of TLR2 and its ligands through the clathrin-dependent pathway, CD36 and SR-A sensitize macrophages to activation by Sa as well as regulate the type and amount of cytokines produced. Additionally, upon direct Sa binding, both receptors autonomously generate anti-inflammatory signaling. Consequently, the delayed induction of acute inflammation in knockout mice may allow for the initial, uncontrolled multiplication of bacteria, stimulating excessive, septic shock-inducing production of inflammatory cytokines in later stages of infection.


Asunto(s)
Antígenos CD36/inmunología , Citocinas/biosíntesis , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/microbiología , Receptores Depuradores de Clase A/inmunología , Staphylococcus aureus/inmunología , Staphylococcus aureus/patogenicidad , Animales , Antígenos CD36/deficiencia , Antígenos CD36/genética , Endocitosis/inmunología , Ligandos , Receptores de Lipopolisacáridos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Reconocimiento de Patrones/inmunología , Receptores Depuradores de Clase A/deficiencia , Receptores Depuradores de Clase A/genética , Transducción de Señal/inmunología , Receptor Toll-Like 2/inmunología
11.
Mol Immunol ; 142: 50-62, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34959072

RESUMEN

γδ T cells represent a high proportion of lymphocytes in the blood of ruminants with the majority expressing lineage-specific glycoproteins from the WC1 family. WC1 receptors are coded for by a multigenic array whose genes have variegated but stable expression among cells in the γδ T cell population. WC1 molecules function as hybrid pattern recognition receptors as well as co-receptors for the TCR and are required for responses by the cells. Because of the variegated gene expression, WC1+ γδ T cells can be divided into two main populations known as WC1.1+ and WC1.2+ based on monoclonal antibody reactivity with the expressed WC1 molecules. These subpopulations differ in their ability to respond to specific pathogens. Here, we showed these populations are established in the thymus and that WC1.1+ and WC1.2+ subpopulations have transcriptional programming that is consistent with stratification towards Tγδ1 or Tγδ17. WC1.1+ cells exhibited the Tγδ1 phenotype with greater transcription of Tbx21 and production of more IFNγ while the WC1.2+ subpopulation tended towards Tγδ17 programming producing higher levels of IL-17 and had greater transcription of Rorc. However, when activated both WC1+ subpopulations' cells transcribed Tbx21 and secreted IFNγ and IL-17 reflecting the complexity of these subpopulations defined by WC1 gene expression. The gene networks involved in development of these two subpopulations including expression of their archetypal genes wc1-3 (WC1.1+) and wc1-4 (WC1.2+) were unknown but we report that SOX-13, a γδ T cell fate-determining transcription factor, has differential occupancy on these WC1 gene loci and suggest a model for development of these subpopulations.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Factores de Transcripción SOXD/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Bovinos , Regulación de la Expresión Génica , Interferón gamma/inmunología , Interleucina-17/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Receptores de Reconocimiento de Patrones/inmunología , Subgrupos de Linfocitos T/citología
12.
Front Immunol ; 12: 765615, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858419

RESUMEN

Background: Pattern recognition receptors (PRRs) family plays a vital role in the initial stage of innate immune response and the subsequent activation of adaptive immunity. Increasing evidences have indicated that several PRRs play critical roles in the progress of inflammation and tumorigenesis. However, the comprehensive significance of PRRs family in clinical prognosis of different cancers is still elusive. Methods: We analyzed expression of 20 canonical PRRs in tumor samples from 9502 patients of 33 tumor types. Next, we used expression profiles of PRRs in skin cutaneous melanoma (SKCM) to build a Cox prognosis model. Then, we analyzed immune infiltration features and immune activity of high risk score and low risk score patients. Finally, we analyzed the single-cell sequencing data of different cancers and detected the expression of PRRs in mouse melanoma model to identify PRRs-expressing cell types. Results: We found PRRs had a significantly positive correlation with prognosis in SKCM rather than other tumors, and PRR-based Cox model had a much better prognosis potential than any single PRR. Further analysis shows risk score could indicate immunocyte infiltration and immune activity in SKCM. We also found the expressions of some PRR genes were highly correlated with the expression of immune checkpoints molecules in SKCM, indicating they could be indicators for clinical immune therapy. Finally, we found only in SKCM samples, the expression of PRRs is especially high in a subpopulation of macrophages with a trait of CD206 low expression, probably explaining why PRRs have prognosis potential in melanoma. Conclusions: Our study reveals PRR family in macrophages has a positive prognosis potential in melanoma and could be valuable for clinical prognosis and immune therapy.


Asunto(s)
Inmunoterapia , Macrófagos/inmunología , Melanoma/inmunología , Melanoma/terapia , Receptores de Reconocimiento de Patrones/inmunología , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/terapia , Animales , Melanoma/diagnóstico , Ratones , Ratones Endogámicos C57BL , Pronóstico , Receptores de Reconocimiento de Patrones/genética , Análisis de la Célula Individual , Neoplasias Cutáneas/diagnóstico , Melanoma Cutáneo Maligno
13.
Int J Mol Sci ; 22(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34768828

RESUMEN

Cell death is an essential immunological apparatus of host defense, but dysregulation of mutually inclusive cell deaths poses severe threats during microbial and parasitic infections leading to deleterious consequences in the pathological progression of infectious diseases. Nucleotide-binding oligomerization domain (NOD)-Leucine-rich repeats (LRR)-containing receptors (NLRs), also called nucleotide-binding oligomerization (NOD)-like receptors (NLRs), are major cytosolic pattern recognition receptors (PRRs), their involvement in the orchestration of innate immunity and host defense against bacteria, viruses, fungi and parasites, often results in the cleavage of gasdermin and the release of IL-1ß and IL-18, should be tightly regulated. NLRs are functionally diverse and tissue-specific PRRs expressed by both immune and non-immune cells. Beyond the inflammasome activation, NLRs are also involved in NF-κB and MAPK activation signaling, the regulation of type I IFN (IFN-I) production and the inflammatory cell death during microbial infections. Recent advancements of NLRs biology revealed its possible interplay with pyroptotic cell death and inflammatory mediators, such as caspase 1, caspase 11, IFN-I and GSDMD. This review provides the most updated information that caspase 8 skews the NLRP3 inflammasome activation in PANoptosis during pathogen infection. We also update multidimensional roles of NLRP12 in regulating innate immunity in a content-dependent manner: novel interference of NLRP12 on TLRs and NOD derived-signaling cascade, and the recently unveiled regulatory property of NLRP12 in production of type I IFN. Future prospects of exploring NLRs in controlling cell death during parasitic and microbial infection were highlighted.


Asunto(s)
Infecciones/inmunología , Proteínas NLR/fisiología , Enfermedades Parasitarias/inmunología , Animales , Muerte Celular/inmunología , Interacciones Microbiota-Huesped , Interacciones Huésped-Parásitos , Humanos , Mediadores de Inflamación/metabolismo , Proteínas NLR/genética , Proteínas NLR/inmunología , Proteínas NLR/metabolismo , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/inmunología , Transducción de Señal , Virus/inmunología
14.
Front Immunol ; 12: 769775, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804060

RESUMEN

The crosstalk between the immune system and microbiota drives an amazingly complex mutualistic symbiosis. In mammals, the upper respiratory tract acts as a gateway for pathogen invasion, and the dynamic interaction between microbiota and mucosal immunity on its surface can effectively prevent disease development. However, the relationship between virus-mediated mucosal immune responses and microbes in lower vertebrates remains uncharacterized. In this study, we successfully constructed an infection model by intraperitoneally injecting common carp (Cyprinus carpio) with spring viremia of carp virus (SVCV). In addition to the detection of the SVCV in the nose and pharynx of common carp, we also identified obvious histopathological changes following viral infection. Moreover, numerous immune-related genes were significantly upregulated in the nose and pharynx at the peak of SVCV infection, after which the expression levels decreased to levels similar to those of the control group. Transcriptome sequencing results revealed that pathways associated with bacterial infection in the Toll-like receptor pathway and the Nod-like receptor pathway were activated in addition to the virus-related Rig-I-like receptor pathway after SVCV infection, suggesting that viral infection may be followed by opportunistic bacterial infection in these mucosal tissues. Using 16S rRNA gene sequencing, we further identified an upward trend in pathogenic bacteria on the mucosal surface of the nose and pharynx 4 days after SVCV infection, after which these tissues eventually reached new homeostasis. Taken together, our results suggest that the dynamic interaction between mucosal immunity and microbiota promotes the host to a new ecological state.


Asunto(s)
Bacterias/inmunología , Carpas/inmunología , Enfermedades de los Peces/inmunología , Inmunidad Mucosa/inmunología , Faringe/inmunología , Rhabdoviridae/inmunología , Estructuras Animales/inmunología , Estructuras Animales/microbiología , Estructuras Animales/virología , Animales , Bacterias/clasificación , Bacterias/genética , Carpas/microbiología , Carpas/virología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/virología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica/métodos , Homeostasis/genética , Homeostasis/inmunología , Inmunidad Mucosa/genética , Faringe/microbiología , Faringe/virología , Filogenia , ARN Ribosómico 16S/genética , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/inmunología , Rhabdoviridae/genética , Rhabdoviridae/fisiología , Transducción de Señal/genética , Transducción de Señal/inmunología
15.
Front Immunol ; 12: 770515, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34795676

RESUMEN

Neutrophils are innate immune cells with important roles in antimicrobial defense. However, impaired or dysregulated neutrophil function can result in host tissue damage, loss of homeostasis, hyperinflammation or pathological immunosuppression. A central link between neutrophil activation and immune outcomes is emerging to be the calcineurin-nuclear factor of activated T cells (NFAT) signaling pathway, which is activated by neutrophil detection of a microbial threat via pattern recognition receptors and results in inflammatory cytokine production. This potent pro-inflammatory pathway is also the target of several immunosuppressive drugs used for the treatment of autoimmune disorders, during solid organ and hematopoietic cell transplantations, and as a part of anti-cancer therapy: but what effects these drugs have on neutrophil function, and their broader consequences for immune homeostasis and microbial defense are not yet known. Here, we bring together the emerging literature describing pathology- and drug- induced neutrophil impairment, with particular focus on their effects on calcineurin-NFAT signaling in the innate immune compartment.


Asunto(s)
Calcineurina/inmunología , Homeostasis/inmunología , Tolerancia Inmunológica/inmunología , Factores de Transcripción NFATC/inmunología , Neutrófilos/inmunología , Transducción de Señal/inmunología , Animales , Calcineurina/metabolismo , Citocinas/inmunología , Citocinas/metabolismo , Humanos , Inmunidad Innata/inmunología , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Factores de Transcripción NFATC/metabolismo , Neutrófilos/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Receptores de Reconocimiento de Patrones/metabolismo
16.
Int J Biol Macromol ; 193(Pt B): 2173-2182, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34780895

RESUMEN

Although class B scavenger receptors (SR-Bs) in mammals are multifunctional molecules, the functions of SR-Bs in invertebrates remain largely unknown. In this study, we characterized an SR-B homolog, namely SpSR-B2, from Scylla paramamosain. SpSR-B2 shared high similarity with mammalian SR-Bs, and exhibited specific binding activity to ac-LDL, indicating that it may be a new member of SR-B class in invertebrates. SpSR-B2 was upregulated after challenge with white spot syndrome virus (WSSV) or bacteria. Binding assays showed that SpSR-B2 specifically interacted with WSSV envelope protein VP24. Besides, SpSR-B2 could bind to all tested bacterial cells and agglutinate these bacteria. SpSR-B2 also exhibited a strong binding activity to LPS but weak binding activities to other tested polysaccharides. These findings indicated that SpSR-B2 was a potential recognition molecule for viral protein VP24 and bacterial LPS. Knockdown of SpSR-B2 resulted in dramatically decreased expressions of certain antimicrobial peptides (AMPs), and overexpression of SpSR-B2 led to the increased expression of the AMP of SpALF2, suggesting that SpSR-B2 could regulate the expression of AMPs. Taken together, this study revealed that SpSR-B2 functioned as a potential pattern recognition receptor participating in antiviral and antibacterial immunity, and provided new insights into the immune functions of invertebrate SR-Bs.


Asunto(s)
Antibacterianos/inmunología , Antivirales/inmunología , Proteínas de Artrópodos/inmunología , Braquiuros/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Animales , Péptidos Antimicrobianos/inmunología , Bacterias/inmunología , Inmunidad/inmunología , Lipopolisacáridos/inmunología , Filogenia , Virus del Síndrome de la Mancha Blanca 1/inmunología
17.
Front Immunol ; 12: 689866, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34737734

RESUMEN

Rapid recruitment of neutrophils to an inflamed site is one of the hallmarks of an effective host defense mechanism. The main pathway through which this happens is by the innate immune response. Neutrophils, which play an important part in innate immune defense, migrate into lungs through the modulation actions of chemokines to execute a variety of pro-inflammatory functions. Despite the importance of chemokines in host immunity, little has been discussed on their roles in host immunity. A holistic understanding of neutrophil recruitment, pattern recognition pathways, the roles of chemokines and the pathophysiological roles of neutrophils in host immunity may allow for new approaches in the treatment of infectious and inflammatory disease of the lung. Herein, this review aims at highlighting some of the developments in lung neutrophil-immunity by focusing on the functions and roles of CXC/CC chemokines and pattern recognition receptors in neutrophil immunity during pulmonary inflammations. The pathophysiological roles of neutrophils in COVID-19 and thromboembolism have also been summarized. We finally summarized various neutrophil biomarkers that can be utilized as prognostic molecules in pulmonary inflammations and discussed various neutrophil-targeted therapies for neutrophil-driven pulmonary inflammatory diseases.


Asunto(s)
Inmunidad Innata/inmunología , Neutrófilos/inmunología , Neumonía/inmunología , Biomarcadores/sangre , COVID-19/inmunología , Degranulación de la Célula/inmunología , Quimiocinas/inmunología , Ensayos Clínicos como Asunto , Trampas Extracelulares/inmunología , Humanos , Integrinas/inmunología , Pulmón/inmunología , Pulmón/patología , Neutrófilos/efectos de los fármacos , Neumonía/diagnóstico , Neumonía/tratamiento farmacológico , Receptores de Reconocimiento de Patrones/inmunología , Estallido Respiratorio/inmunología , SARS-CoV-2 , Tromboembolia/inmunología
18.
Future Microbiol ; 16: 1229-1238, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34615380

RESUMEN

Helicobacter pylori (H. pylori) infection is highly prevalent, affecting 4.4 billion people globally. This pathogen is a risk factor in the pathogenesis of more than 75% of worldwide cases of gastric cancer. Pattern recognition receptors are essential in the innate immune response to H. pylori infection. They recognize conserved pathogen structures and myriad alarmins released by host cells in response to microbial components, cytokines or cellular stress, thus triggering a robust proinflammatory response, which is crucial in H. pylori-induced gastric carcinogenesis. In this review, we intend to highlight the main pattern recognition receptors involved in the recognition and host response to H. pylori, as well as the main structures recognized and the subsequent inflammatory response.


Asunto(s)
Infecciones por Helicobacter , Receptores de Reconocimiento de Patrones , Infecciones por Helicobacter/inmunología , Helicobacter pylori , Humanos , Receptores de Reconocimiento de Patrones/inmunología
19.
Front Immunol ; 12: 742074, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630423

RESUMEN

Chickens are the natural host of Newcastle disease virus (NDV) and avian influenza virus (AIV). The discovery that the RIG-I gene, the primary RNA virus pattern recognition receptor (PRR) in mammals, is naturally absent in chickens has directed attention to studies of chicken RNA PRRs and their functions in antiviral immune responses. Here, we identified Asp-Glu-Ala-Asp (DEAD)-box helicase 1 (DDX1) as an essential RNA virus PRR in chickens and investigated its functions in anti-RNA viral infections. The chDDX1 gene was cloned, and cross-species sequence alignment and phylogenetic tree analyses revealed high conservation of DDX1 among vertebrates. A quantitative RT-PCR showed that chDDX1 mRNA are widely expressed in different tissues in healthy chickens. In addition, chDDX1 was significantly upregulated after infection with AIV, NDV, or GFP-expressing vesicular stomatitis virus (VSV-GFP). Overexpression of chDDX1 in DF-1 cells induced the expression of IFN-ß, IFN-stimulated genes (ISGs), and proinflammatory cytokines; it also inhibited NDV and VSV replications. The knockdown of chDDX1 increased the viral yield of NDV and VSV and decreased the production of IFN-ß, which was induced by RNA analog polyinosinic-polycytidylic acid (poly[I:C]), by AIV, and by NDV. We used a chicken IRF7 (chIRF7) knockout DF-1 cell line in a series of experiments to demonstrate that chDDX1 activates IFN signaling via the chIRF7 pathway. Finally, an in-vitro pulldown assay showed a strong and direct interaction between poly(I:C) and the chDDX1 protein, indicating that chDDX1 may act as an RNA PRR during IFN activation. In brief, our results suggest that chDDX1 is an important mediator of IFN-ß and is involved in RNA- and RNA virus-mediated chDDX1-IRF7-IFN-ß signaling pathways.


Asunto(s)
Proteínas Aviares/inmunología , Pollos/inmunología , ARN Helicasas DEAD-box/inmunología , Inmunidad Innata/inmunología , Interferón gamma/inmunología , Animales , Infecciones por Virus ARN/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Transducción de Señal/inmunología
20.
J Clin Invest ; 131(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34623322

RESUMEN

Triggering receptor expressed on myeloid cells 2 (TREM-2) is a modulator of pattern recognition receptors on innate immune cells that regulates the inflammatory response. However, the role of TREM-2 in in vivo models of infection and inflammation remains controversial. Here, we demonstrated that TREM-2 expression on CD4+ T cells was induced by Mycobacterium tuberculosis infection in both humans and mice and positively associated with T cell activation and an effector memory phenotype. Activation of TREM-2 in CD4+ T cells was dependent on interaction with the putative TREM-2 ligand expressed on DCs. Unlike the observation in myeloid cells that TREM-2 signals through DAP12, in CD4+ T cells, TREM-2 interacted with the CD3ζ-ZAP70 complex as well as with the IFN-γ receptor, leading to STAT1/-4 activation and T-bet transcription. In addition, an infection model using reconstituted Rag2-/- mice (with TREM-2-KO vs. WT cells or TREM-2+ vs. TREM-2-CD4+ T cells) or CD4+ T cell-specific TREM-2 conditional KO mice demonstrated that TREM-2 promoted a Th1-mediated host defense against M. tuberculosis infection. Taken together, these findings reveal a critical role of TREM-2 in evoking proinflammatory Th1 responses that may provide potential therapeutic targets for infectious and inflammatory diseases.


Asunto(s)
Complejo CD3/inmunología , Glicoproteínas de Membrana/inmunología , Receptores Inmunológicos/inmunología , Células TH1/inmunología , Tuberculosis/inmunología , Proteína Tirosina Quinasa ZAP-70/inmunología , Adulto , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunidad Innata , Activación de Linfocitos , Masculino , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Modelos Inmunológicos , Mycobacterium tuberculosis/inmunología , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/genética , Receptores de Reconocimiento de Patrones/inmunología , Factores de Transcripción STAT/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA